JPH03248577A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH03248577A
JPH03248577A JP4772890A JP4772890A JPH03248577A JP H03248577 A JPH03248577 A JP H03248577A JP 4772890 A JP4772890 A JP 4772890A JP 4772890 A JP4772890 A JP 4772890A JP H03248577 A JPH03248577 A JP H03248577A
Authority
JP
Japan
Prior art keywords
strain
type
layer
resistance
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4772890A
Other languages
Japanese (ja)
Inventor
Katsuji Sakai
酒井 勝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP4772890A priority Critical patent/JPH03248577A/en
Publication of JPH03248577A publication Critical patent/JPH03248577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a device, and to improve a gauge factor by forming a plurality of strain resistors onto a surface having strain characteristics in the same direction while forming these strain resistors by N-type resistance layers and P-type resistance layers. CONSTITUTION:An N-type silicon layer 14 constituting a strain resistor R2(R3) and a P-type silicon layer 15 constituting a strain resistor R1(R4) are formed on a surface 13 having strain characteristics in the same direction as the film section 12 of a diaphragm 11. These silicon layers 14, 15 are bridge-connected while an electrode 16 for supplying electric power is shaped in a pattern form, and a conductive wire for leading out an output is connected to the electrode 16 while a protective film 17 covering the silicon layers 14, 15 and the electrode 16 is formed. Consequently, one of the resistance of the N-type resistance layer 14 and the resistance of the P-type resistance layer 15, which are bridge- connected, is increased and the other is reduced to strain in the same direction as the pressure-receiving section of the diaphragm 11, thus obtaining a high gauge factor. Accordingly, a device can be miniaturized and the gauge factor improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体ダイヤフラムを用いた圧力センサの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a pressure sensor using a semiconductor diaphragm.

〔従来の技術〕[Conventional technology]

従来のこの種の圧力センサは、特開平1−199476
号公報などで開示されているように、ダイヤフラムの受
圧部となる膜部分の面に歪抵抗パターンをブリッジ接続
にて形成し、圧力に応じたダイヤフラムの変形をピエゾ
抵抗効果によって歪抵抗の抵抗変化に変換して圧力を検
出するようになっている。これは、例えば第5図に示す
ようにダイヤフラムlの膜部分2の面に歪抵抗となるポ
リシリコン層3をパターン状に形成し、かつポリシリコ
ン層3をブリ・7ジ接続するとともに給電用となる電極
4をパターン状に形成し、この電極4に出力取出用の導
電ワイヤー(図示せず)を接続するとともにポリシリコ
ン層3および電極4を覆う保護膜5を形成して構成され
ており、その製造方法の一例を第6図により説明する。
A conventional pressure sensor of this type is disclosed in Japanese Patent Application Laid-Open No. 1-199476.
As disclosed in the above publication, a strain resistance pattern is formed by bridge connection on the surface of the membrane part that becomes the pressure receiving part of the diaphragm, and the deformation of the diaphragm in response to pressure is caused by a piezoresistance effect that changes the resistance of the strain resistance. It is designed to detect pressure by converting it into For example, as shown in FIG. 5, a polysilicon layer 3 serving as a strain resistance is formed in a pattern on the surface of the membrane portion 2 of the diaphragm l, and the polysilicon layer 3 is connected by bridges and bridges for power supply. The electrode 4 is formed in a pattern, a conductive wire (not shown) for output extraction is connected to the electrode 4, and a protective film 5 is formed to cover the polysilicon layer 3 and the electrode 4. , an example of its manufacturing method will be explained with reference to FIG.

先ず、第6図(A)に示すようにダイヤフラム1の表面
に必要に応じ窒化シリコン(SiN)、酸化シリコン(
SiOz)などの絶縁膜(図示せず)を形成するととも
に、プラズマCVD法にてアモルファスシリコン膜3a
を形成し、次に第6図(B)に示すようにアモルファス
シリコン膜3aの表面にレーザーアニールを施し結晶化
させてポリシリコン膜3bを形成し、次に第6図(C)
に示すようにエツチングにてポリシリコン膜3bのバタ
ーニングを施して歪抵抗となるポリシリコン層3のパタ
ーンを形成し、次に第6図(D)に示すように真空蒸着
法にてアルミニウム膜4aまたはアルミニウム合金膜を
蒸着し、かつ第6図(E)のようにエツチングにてアル
ミニウム膜4aのパターニングを施してアルミニウム膜
パターンからなる電極4を形成し、この後第6図(F)
のように図示しない導電ワイヤーの接続および窒化シリ
コン(SiN)などからなる保護膜5の形成を行うもの
である。この場合、複数のポリシリコン層3は第7図の
ブリッジ回路に示す抵抗R+、 Rz、 Rx、 R4
を構成しており、これらは電極パターンにてブリッジ接
続されている。
First, as shown in FIG. 6(A), silicon nitride (SiN), silicon oxide (
In addition to forming an insulating film (not shown) such as SiOz), an amorphous silicon film 3a is formed by plasma CVD.
6(B), the surface of the amorphous silicon film 3a is crystallized by laser annealing to form a polysilicon film 3b, and then, as shown in FIG. 6(C).
As shown in FIG. 6(D), the polysilicon film 3b is patterned by etching to form a pattern of the polysilicon layer 3 that serves as a strain resistor, and then an aluminum film is formed by vacuum evaporation as shown in FIG. 6(D). 4a or an aluminum alloy film is vapor deposited, and the aluminum film 4a is patterned by etching as shown in FIG. 6(E) to form an electrode 4 consisting of an aluminum film pattern, and then as shown in FIG. 6(F).
As shown in FIG. 3, connection of conductive wires (not shown) and formation of a protective film 5 made of silicon nitride (SiN) or the like are performed. In this case, the plurality of polysilicon layers 3 are resistors R+, Rz, Rx, R4 shown in the bridge circuit of FIG.
These are bridge-connected using an electrode pattern.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、R1−R4の各歪抵抗を形成
するポリシリコン層3の抵抗変化特性が同一で伸びに対
し抵抗が増加するものであるため、第8図の概略図に示
すように受圧部となる膜部分2の歪み方向の異なる部分
にポリシリコン層3を形成することにより検出出力を得
るようにしている。つまり、受圧時に引張歪みを発生す
る部分2aに抵抗R,,R,を構成するポリシリコン層
3を形成し縮歪みを発生する部分2bに抵抗R2,R4
を構成するポリシリコン層3を形成して受圧時の不平衡
を得るようにしている。
In the above-mentioned conventional technology, the resistance change characteristics of the polysilicon layer 3 forming each of the strain resistances R1 to R4 are the same and the resistance increases with elongation. A detection output is obtained by forming a polysilicon layer 3 in a portion of the film portion 2 which serves as a portion having a different strain direction. In other words, the polysilicon layer 3 constituting the resistors R, , R, is formed in the portion 2a that generates tensile strain when receiving pressure, and the resistors R2, R4 are formed in the portion 2b that generates shrinkage strain.
A polysilicon layer 3 is formed to obtain unbalance when receiving pressure.

しかし、このように歪み方向の異なる膜部分に歪抵抗と
なる複数のポリシリコン層3を形成することは圧力セン
サのセンサ部分に大きなスペースを必要とし小型化を妨
げるとともに異なる方向の歪み量を大きくすることは難
しいためゲージ率も低くなるという問題があった。
However, forming a plurality of polysilicon layers 3 serving as strain resistance in film parts with different strain directions requires a large space in the sensor part of the pressure sensor, hinders miniaturization, and increases the amount of strain in different directions. Since it is difficult to do so, there is a problem that the gauge factor is also low.

そこで本発明は小型化およびゲージ率の向上を図ること
のできる圧力センサを提供することを目的とする。
Therefore, an object of the present invention is to provide a pressure sensor that can be downsized and have an improved gauge factor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ダイヤフラムの受圧部の面に複数の歪抵抗を
ブリッジ接続にて形成し、圧力に応じたダイヤフラムの
変形を歪抵抗の抵抗変化に変換して圧力を検出する圧力
センサにおいて、前記複数の歪抵抗を同一方向の歪み特
性を有する面に形成するとともにこれらの歪抵抗をn型
抵抗層とP型抵抗層とで形成したものである。
The present invention provides a pressure sensor that detects pressure by forming a plurality of strain resistors on the surface of a pressure receiving part of a diaphragm by bridge connection and converting deformation of the diaphragm according to pressure into a resistance change of the strain resistors. The strain resistors are formed on a surface having strain characteristics in the same direction, and these strain resistors are formed by an n-type resistance layer and a p-type resistance layer.

〔作用〕[Effect]

本発明はダイヤフラムの受圧部の同方向の歪みに対し、
ブリッジ接続されたn型抵抗層の抵抗とP型抵抗層の抵
抗の一方が増加し他方が減少することにより高いゲージ
率が得られる。
The present invention deals with distortion in the same direction of the pressure receiving part of the diaphragm.
A high gauge factor can be obtained by increasing one of the resistances of the bridge-connected n-type resistance layer and the resistance of the P-type resistance layer and decreasing the other.

〔実施例〕〔Example〕

以下、本発明の一実施例を添付図面を参照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図に示すように、ダイヤフラム11の膜部分12に
おける同一方向の歪み特性を有する面13に第5図の歪
抵抗Rz(Rs)を構成するn型9937層14と歪抵
抗R,(R,)を構成するP型シリコン層15とを形成
し、かつこれらシリコン層14.15をブリッジ接続す
るとともに給電用となる電極16をパターン状に形成し
、この電極16に出力取出用の導電ワイヤー(図示せず
)を接続するとともにシリコン層14.15および電極
16を覆う保護膜17を形成して構成している。第2図
は同一方向の歪み特性を有する面13にRt、Rxを構
成する2つのn型9937層14とRI、Raを構成す
る2つのP型シリコン層15を形成し、電極16にてブ
リッジ接続した状態を概略的に示している。この場合、
n型9937層14はアモルファスシリコン(a−Si
)またはポリシリコン(P−St)またはマイクロクリ
スタルシリコン(μc−Si)などに対し不純物として
リンをドーピングしたものであり、引張歪みが生じた時
に抵抗が減少する特性を有している。またP型シリコン
層15はアモルファスシリコン(a−5i)またはポリ
シリコン(P−Si)またはマイクロクリスタルシリコ
ン(μc−Si)などに対し不純物としてポロンをドー
ピングしたものであり、引張歪みが生じた時に抵抗が増
加する特性を有している。
As shown in FIG. 1, the n-type 9937 layer 14 forming the strain resistance Rz (Rs) in FIG. 5 and the strain resistance R, (R , ) are formed, and these silicon layers 14 and 15 are bridge-connected, and an electrode 16 for power supply is formed in a pattern, and a conductive wire for output output is connected to this electrode 16. (not shown), and a protective film 17 is formed to cover the silicon layers 14 and 15 and the electrodes 16. In FIG. 2, two n-type 9937 layers 14 forming Rt and Rx and two P-type silicon layers 15 forming RI and Ra are formed on a surface 13 having strain characteristics in the same direction, and bridged by an electrode 16. A connected state is schematically shown. in this case,
The n-type 9937 layer 14 is made of amorphous silicon (a-Si
), polysilicon (P-St), microcrystalline silicon (μc-Si), etc., doped with phosphorus as an impurity, and has the characteristic that resistance decreases when tensile strain occurs. Furthermore, the P-type silicon layer 15 is made of amorphous silicon (a-5i), polysilicon (P-Si), microcrystalline silicon (μc-Si), etc. doped with poron as an impurity, and when tensile strain occurs. It has the property of increasing resistance.

第3図は製造方法の一例を示し、先ず第3図(A)に示
すようにダイヤフラム11の表面にプラズマCVD法に
てアモルファスシリコン1I118ヲ形成し、次に第3
図(B)に示すようにn型9937層14が形成される
部分を残してアモルファスシリコン膜18の表面にレジ
スト層19を形成し、次に第3図(C)に示すようにリ
ン化水素ガス(PH3)を原料ガスとするイオン注入法
にてレジスト層19を有しない部分のアモルファスシリ
コン層18にリンイオンを拡散させてn型9937層1
4を形成し、次に第3図(D)のようにレジスト層19
を除去するとともにP型シリコン層15が形成される部
分を残してレジスト層20を形成し、次に第3図(E)
のようにレジスト層20を有しない部分のアモルファス
シリコン層18に、ジボラン(B、H,)などのポラン
ガスを原料ガスとするイオン注入法にてボロンイオンを
拡散させてP型シリコン層15を形成し、次にレジスト
層20を除去するとともに必要に応じアモルファスシリ
コン層18を除去し、適宜方法により電極16および保
護膜17などの形成を行うものである。
FIG. 3 shows an example of a manufacturing method. First, amorphous silicon 1118 is formed on the surface of the diaphragm 11 by plasma CVD method as shown in FIG.
As shown in FIG. 3(B), a resist layer 19 is formed on the surface of the amorphous silicon film 18, leaving a portion where the n-type 9937 layer 14 will be formed, and then a resist layer 19 is formed on the surface of the amorphous silicon film 18, as shown in FIG. 3(C). An n-type 9937 layer 1 is formed by diffusing phosphorus ions into a portion of the amorphous silicon layer 18 that does not have a resist layer 19 using an ion implantation method using gas (PH3) as a raw material gas.
4, and then a resist layer 19 is formed as shown in FIG. 3(D).
A resist layer 20 is formed leaving a portion where the P-type silicon layer 15 will be formed, and then a resist layer 20 is formed as shown in FIG. 3(E).
A P-type silicon layer 15 is formed by diffusing boron ions into the amorphous silicon layer 18 in a portion not having the resist layer 20 by an ion implantation method using a poran gas such as diborane (B, H, ) as a raw material gas, as shown in FIG. Then, the resist layer 20 and the amorphous silicon layer 18 are removed if necessary, and the electrodes 16, protective film 17, etc. are formed by an appropriate method.

この場合、アモルファスシリコン膜18に対し不純物を
ドーピングしたが、ポリシリコン膜あるいはマイクロク
リスタルシリコン膜を形成し、これに対し同様な工程で
不純物をドーピングしてn型。
In this case, the amorphous silicon film 18 is doped with impurities, but a polysilicon film or a microcrystalline silicon film is formed and doped with impurities in the same process to make it n-type.

P型のシリコン層14.15を形成してもよい。P-type silicon layers 14 and 15 may also be formed.

そして、第3図の概略説明図に示すように、同一方向の
歪み特性を有する面13に歪抵抗R,,R。
As shown in the schematic explanatory diagram of FIG. 3, strain resistances R, , R are provided on the surface 13 having strain characteristics in the same direction.

を構成するn型9937層14と、R1,R4を構成す
るP型シリコン層15とを形成するものであるため、面
13に引張歪みが生じるとn型9937層14の抵抗は
増加し逆にP型シリコン層15の抵抗が減少するため、
ブリッジ回路の不平衡状態が良好に得られ高いゲージ率
を得ることができる。
Since it forms the n-type 9937 layer 14 that constitutes R1 and the P-type silicon layer 15 that constitutes R1 and R4, when tensile strain occurs on the surface 13, the resistance of the n-type 9937 layer 14 increases, and conversely, Since the resistance of the P-type silicon layer 15 decreases,
A good unbalanced state of the bridge circuit can be obtained and a high gauge factor can be obtained.

このように上記実施例においては、同一方向の歪み特性
を有する面13にR2−R4を構成するシリコン層14
.15を形成できるためセンサ部は小スペースとなり圧
力センサの小型化を図ることができる。また、膜部分1
2の同一方向の歪みに対し、ブリフジ回路を構成する歪
抵抗Rl−Raのうちの一部の抵抗が増加し、逆に他の
抵抗が減少するためこれらの抵抗差が大きくなり、これ
に伴いゲージ率が高くなり圧力センサの精度が向上する
In this way, in the above embodiment, the silicon layer 14 forming R2-R4 is formed on the surface 13 having strain characteristics in the same direction.
.. 15 can be formed, the sensor section has a small space, and the pressure sensor can be downsized. In addition, membrane part 1
2 in the same direction, the resistance of some of the strain resistors Rl-Ra that make up the Brifuji circuit increases, and conversely, the other resistances decrease, so the difference in these resistances increases, and along with this, The gauge factor increases and the accuracy of the pressure sensor improves.

なお本発明は上記実施例に限定されるものではなく本発
明の要旨の範囲内において種々の変形実施が可能である
。例えばブリフジ回路は適宜タイプに適用可能であり、
また第5図においてR+、Raをn型抵抗層、RLR3
をP型抵抗層に形成するなど適宜変更可能であり、要は
少なくとも1つの抵抗をn型にした場合は他をP型にし
、逆に少なくとも1つの抵抗をP型にした場合は他をn
型にすればよい。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, the Brifuji circuit can be applied to appropriate types,
In addition, in FIG. 5, R+ and Ra are n-type resistance layers, RLR3
It can be changed as appropriate, such as by forming it in a P-type resistance layer.The point is that if at least one resistor is n-type, the others are p-type, and conversely, if at least one resistor is p-type, the others are n-type.
Just make it into a mold.

〔発明の効果〕〔Effect of the invention〕

本発明は、ダイヤフラムの受圧部の面に複数の歪抵抗を
ブリッジ接続にて形成し、圧力に応じたダイヤフラムの
変形を歪抵抗の抵抗変化に変換して圧力を検出する圧力
センサにおいて、前記複数の歪抵抗を同一方向の歪み特
性を有する面に形成するとともにこれらの歪抵抗をn型
抵抗層とP型抵抗層とで形成したものであり、小型化お
よびゲージ率の向上を図ることのできる圧力センサを提
供できる。
The present invention provides a pressure sensor that detects pressure by forming a plurality of strain resistors on the surface of a pressure receiving part of a diaphragm by bridge connection and converting deformation of the diaphragm according to pressure into a resistance change of the strain resistors. The strain resistors are formed on a surface having strain characteristics in the same direction, and these strain resistors are formed by an n-type resistance layer and a p-type resistance layer, and it is possible to reduce the size and improve the gauge factor. Can provide pressure sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の一実施例を示し、第1図は圧
力センサを示す概略説明図、第2図はブリッジ接続され
た抵抗層パターンを示す概略説明図、第3図(A)〜(
E)は製造工程を示す概略説明図、第4図は受圧状態を
示す概略説明図、第5図は従来の圧力センサを示す概略
説明図、第6図(A)〜(F)は従来の製造工程を示す
概略説明図、第7図は一般的なブリッジ回路図、第8図
は従来の受圧状態を示す概略説明図である。 11・−・ダイヤフラム 13−・−面 14−n型シリコン層(n型抵抗層)
1 to 4 show one embodiment of the present invention, FIG. 1 is a schematic explanatory diagram showing a pressure sensor, FIG. 2 is a schematic explanatory diagram showing a bridge-connected resistance layer pattern, and FIG. A)~(
E) is a schematic diagram showing the manufacturing process, Figure 4 is a schematic diagram showing the pressure receiving state, Figure 5 is a schematic diagram showing the conventional pressure sensor, and Figures 6 (A) to (F) are the conventional pressure sensors. FIG. 7 is a general bridge circuit diagram, and FIG. 8 is a schematic diagram showing a conventional pressure receiving state. 11 - Diaphragm 13 - Surface 14 - N-type silicon layer (n-type resistance layer)

Claims (1)

【特許請求の範囲】[Claims] (1)ダイヤフラムの受圧部の面に複数の歪抵抗をブリ
ッジ接続にて形成し、圧力に応じたダイヤフラムの変形
を歪抵抗の抵抗変化に変換して圧力を検出する圧力セン
サにおいて、前記複数の歪抵抗を同一方向の歪み特性を
有する面に形成するとともにこれらの歪抵抗をn型抵抗
層とP型抵抗層とで形成したことを特徴とする圧力セン
サ。
(1) A pressure sensor that detects pressure by forming a plurality of strain resistances on the surface of a pressure receiving part of a diaphragm by bridge connection and converting deformation of the diaphragm according to pressure into a resistance change of the strain resistance. A pressure sensor characterized in that strain resistors are formed on a surface having strain characteristics in the same direction, and these strain resistors are formed of an n-type resistance layer and a p-type resistance layer.
JP4772890A 1990-02-27 1990-02-27 Pressure sensor Pending JPH03248577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4772890A JPH03248577A (en) 1990-02-27 1990-02-27 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4772890A JPH03248577A (en) 1990-02-27 1990-02-27 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH03248577A true JPH03248577A (en) 1991-11-06

Family

ID=12783399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4772890A Pending JPH03248577A (en) 1990-02-27 1990-02-27 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH03248577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587649A (en) * 1991-09-30 1993-04-06 Nissan Motor Co Ltd Semiconductor stress detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587649A (en) * 1991-09-30 1993-04-06 Nissan Motor Co Ltd Semiconductor stress detector

Similar Documents

Publication Publication Date Title
US3858150A (en) Polycrystalline silicon pressure sensor
EP0947816B1 (en) Capacitive type pressure sensor
WO2012080811A1 (en) Semiconductor pressure sensor
CN101846563A (en) Semiconductor pressure sensor and method of producing the same
JP2012127793A (en) Semiconductor pressure sensor
JPH0818068A (en) Manufacture of semiconductor distortion sensor
Obermeier et al. Characteristics of polysilicon layers and their application in sensors
US6647795B2 (en) Capacitive physical load sensor and detection system
JP3359871B2 (en) Capacitive pressure sensor and method of manufacturing the same
CN101068032B (en) Semiconductor strain gauge and the manufacturing method
JPH03248577A (en) Pressure sensor
JP4035519B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JPS63308390A (en) Manufacture of semiconductor pressure sensor
JPH1114482A (en) Electrostatic capacity pressure sensor and its manufacturing method
KR20050075225A (en) Mems monolithic multi-functional integrated sensor and methods for fabricating the same
JP3546151B2 (en) Distortion detecting element and method for manufacturing distortion detecting element
JPS63102377A (en) Manufacture of thin film pressure sensor
JPH0964404A (en) Thin film semiconductor element
JPH01302867A (en) Semiconductor sensor
JPH0486505A (en) Strain resistance device
JP2748077B2 (en) Pressure sensor
JPH0412236A (en) Distortion resistance device
JPH07176765A (en) Semiconductor strain transducer
JPH06163939A (en) Semiconductor pressure sensor and fabrication thereof
JPH0262928A (en) Thin film pressure sensor