JPH0262928A - Thin film pressure sensor - Google Patents

Thin film pressure sensor

Info

Publication number
JPH0262928A
JPH0262928A JP7007588A JP7007588A JPH0262928A JP H0262928 A JPH0262928 A JP H0262928A JP 7007588 A JP7007588 A JP 7007588A JP 7007588 A JP7007588 A JP 7007588A JP H0262928 A JPH0262928 A JP H0262928A
Authority
JP
Japan
Prior art keywords
strain gauge
thin film
length
pressure sensor
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7007588A
Other languages
Japanese (ja)
Inventor
Tsugunori Tabata
亜紀 田畑
Atsushi Tachika
田近 淳
Tomotake Suzuki
鈴木 朝缶
Makoto Kamaike
蒲池 誠
Yukio Kobayashi
小林 諭樹夫
Takeshi Furukawa
健 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7007588A priority Critical patent/JPH0262928A/en
Publication of JPH0262928A publication Critical patent/JPH0262928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To easily control a resistance value by patterning strain gauges longer than the length between electrodes and connecting them. CONSTITUTION:An SiO2 film is laminated as an insulator 2 on a diaphragm made of stainless steel and n-type polycrystalline Si is laminated thereupon as a strain gauge 3 by a plasma VCD method and patterned in an optional shape. The gauge 3 is provided where stress is applied sufficiently. Then an electrode wiring pattern 4 is provided by laminating Al through a metal mask. Then the gauge 3 is about 0.6mum in film thickness and 50mum in film width and this is extended around in a U shape and patterned to about 2mm overall length, thereby obtaining high resistance of about 3.5kOMEGA. The length between electrodes is set to about 600mum and those range length and position are enough to indicate the stress remarkably. Thus, the shape of the strain gauge is selected properly to easily the desired high resistance.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は薄膜圧カセンサ係わり、その歪みゲージの抵抗
値制御を効果的に達成する薄膜圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film pressure sensor, and more particularly to a thin film pressure sensor that effectively controls the resistance value of its strain gauge.

[従来の技術] 近年、「半導体の抵抗値が応力によって変化する」とい
うビエソ効果を利用した半導体歪みゲージが圧力センサ
や加速度センサ等に多く用いられてきている。 そして
圧力センサについでは、その1つとして、ステンしス等
のダイヤフラム上に絶縁膜を介して、歪みゲージとして
多結晶シリコン等の半導体薄膜を形成した薄膜圧力セン
サがある。 例えば2本発明者等の提案(特願昭62−
55975号)にて説明すれは、第4図(a)、(b)
に示すように、ステンレス製のダイヤフラム1と、この
ダイヤフラムの表面に形成した絶縁物2としての酸化シ
リコン(S i 02 )と、更にこの絶縁物上に歪み
ゲージとしてプラズマCVD法により積層したn型多結
晶シリコンのパターン3と、この歪みゲージに対し給電
するための、また出力電圧を測定するための電極配線の
パターン4とから構成されている。 かかる構成におけ
る作用を説明すると、圧力がダイヤフラム1に加わると
[Prior Art] In recent years, semiconductor strain gauges that utilize the Biesot effect, in which the resistance value of a semiconductor changes with stress, have been widely used in pressure sensors, acceleration sensors, and the like. As for pressure sensors, one example is a thin film pressure sensor in which a semiconductor thin film such as polycrystalline silicon is formed as a strain gauge on a diaphragm such as stainless steel with an insulating film interposed therebetween. For example, two proposals by the inventors (patent application 1986-
55975), as shown in Figures 4 (a) and (b).
As shown in the figure, there is a diaphragm 1 made of stainless steel, silicon oxide (S i 02 ) as an insulator 2 formed on the surface of the diaphragm, and an n-type diaphragm laminated on this insulator as a strain gauge by plasma CVD. It consists of a polycrystalline silicon pattern 3 and an electrode wiring pattern 4 for supplying power to the strain gauge and for measuring output voltage. To explain the operation in such a configuration, when pressure is applied to the diaphragm 1.

歪みゲージの抵抗値が変化して、この変化ffiを測定
することにより該圧力を検出することが可能となる。
The resistance value of the strain gauge changes, and by measuring this change ffi, it becomes possible to detect the pressure.

[発明が解決しようとする課題] しかしながら、上記従来の構成による薄膜圧力センサに
おいては次に掲げる欠点がある。
[Problems to be Solved by the Invention] However, the thin film pressure sensor having the conventional configuration described above has the following drawbacks.

半導体圧力センサに用いる薄膜半導体歪みゲージの抵抗
値は、特にこれを定電流駆動させる場合、高抵抗値に制
御しなくてはならない。
The resistance value of a thin film semiconductor strain gauge used in a semiconductor pressure sensor must be controlled to a high resistance value, especially when driving the thin film semiconductor strain gauge with a constant current.

そして、この制御方法としては次の方法があるが、いず
れも無視できない重大なる欠点が認められる。 以下各
々の制御方法とその欠点とを述べる。
The following methods are available for this control, but all of them have serious drawbacks that cannot be ignored. Each control method and its drawbacks will be described below.

(1)半導体薄膜の成膜条件を制御して、不純物濃度を
少なくず名刀法 プラズマCVD法により成膜する場合、不純物濃度を均
一的に少なくすることが困難である。 殊に移動度の大
きい電子がキャリヤとなるようなn型の高抵抗の歪みゲ
ージを成膜しようとする場合、ガス圧及びRFパワー等
の諸条件がプラズマの不安定な領域となるため信頼性の
高い膜を成膜することができなくなってしまう。 この
ように、不純物濃度を制御し、高精度の抵抗値を確保す
ることは容易でない。
(1) When forming a semiconductor thin film by the famous plasma CVD method without reducing the impurity concentration by controlling the film forming conditions, it is difficult to uniformly reduce the impurity concentration. In particular, when attempting to form an n-type high-resistance strain gauge in which electrons with high mobility serve as carriers, reliability may be affected because various conditions such as gas pressure and RF power become unstable regions of the plasma. Therefore, it becomes impossible to form a film with a high temperature. Thus, it is not easy to control the impurity concentration and ensure a highly accurate resistance value.

(2)歪みゲージの膜厚を薄くする方法これを図面を参
照して説明すると、第3図の膜厚と抵抗値とそのバラツ
キとの関係図において、膜厚を薄くすれば抵抗値は当然
に高くなるが、他方膜厚を薄くすればするほど抵抗値の
バラツキも増大する(例えば2図中のハンチング域は抵
抗値としては申し分ないがバラツキが大きいため使用に
問題がある)。
(2) How to reduce the film thickness of a strain gauge To explain this with reference to the drawings, in the relationship diagram of film thickness, resistance value, and its variation in Figure 3, if the film thickness is made thinner, the resistance value will naturally increase. On the other hand, the thinner the film thickness is, the more the variation in resistance value increases (for example, the hunting area in Figure 2 has a satisfactory resistance value, but the variation is large, causing problems in use).

そして更には、膜厚が薄いと言うことはピンホール等の
欠陥の発生原因ともなる。 したがって、膜厚によって
高抵抗値に制御することの困難性は多大である。
Furthermore, the thin film thickness also causes defects such as pinholes. Therefore, it is extremely difficult to control the resistance value to a high value by changing the film thickness.

(3)歪みゲージの膜幅を狭くする方法歪みゲージの膜
幅を狭くすると、圧力センサに応力が繰り返し加えられ
た際、耐久性が著しく低下してしまうため、歪みゲージ
の剥離等の欠陥を生じる。  また製造の際の歪みゲー
ジの形成時には、パターニング精度が低下して抵抗値の
バラツキが大きくなったり更にはピンホール等の欠陥を
容易に起こす原因となったりして、製造上1歩留まり低
下の要因となる。
(3) How to narrow the strain gauge membrane width If the strain gauge membrane width is narrowed, durability will be significantly reduced when stress is repeatedly applied to the pressure sensor, so defects such as peeling of the strain gauge will be avoided. arise. In addition, when forming strain gauges during manufacturing, patterning accuracy decreases, resulting in large variations in resistance values, and can easily cause defects such as pinholes, resulting in a decrease in manufacturing yield. becomes.

(4)歪みゲージの長さを長くする方法これを図面を参
照して説明すると、第5図(a)、(b)の、応力とダ
イヤフラム上の歪みゲージの位置との関係図で示すよう
に、ダイヤフラム1には応力分布が存在するのであって
、仮に歪みゲージの長さを長くすると。
(4) Method of increasing the length of the strain gauge This will be explained with reference to the drawings, as shown in the relationship between stress and the position of the strain gauge on the diaphragm in Figures 5 (a) and (b). In addition, there is a stress distribution in the diaphragm 1, and if the length of the strain gauge is increased.

応力を受けない位置において歪みゲージのはとんとか位
置するという好ましくない結果となってしまう。 かか
る状態の歪みゲージの場合、仮に応力を受けても、歪み
ゲージの抵抗値変化は小さく感度の悪い圧力センサとな
って実用に耐えないものとなってしまう。
This results in an undesirable result in that the strain gauge is located at a position that is not subjected to stress. In the case of a strain gauge in such a state, even if it is subjected to stress, the change in resistance of the strain gauge is small, resulting in a pressure sensor with poor sensitivity and cannot be put into practical use.

本発明は、上記従来の問題点とこ鑑み、製造時において
は、その欠陥やバラツキが排除されたものであって、か
つ、使用時においては、精度や感度が低下しない薄膜圧
力センサを提供することを目的としている。
In view of the above-mentioned conventional problems, the present invention provides a thin film pressure sensor that is free from defects and variations during manufacturing and whose accuracy and sensitivity do not deteriorate during use. It is an object.

[課題を解決するための手段] 上記目的を達成するために2本発明に係わる薄膜圧力セ
ンサは、ダイヤフラム上の絶縁物を介し、電極よりなる
パターンと、前記電極間で結線されてなる。かつ、半導
体薄膜よりなる歪みゲージのパターンとを具備してなる
薄膜圧力センサにおいて、前記電極間長さよりもより長
く歪みゲージをパターニングして結線するよう構成した
[Means for Solving the Problems] In order to achieve the above objects, two thin film pressure sensors according to the present invention are formed by connecting a pattern made of electrodes and the electrodes via an insulator on a diaphragm. In addition, in the thin film pressure sensor including a pattern of a strain gauge made of a semiconductor thin film, the strain gauge is patterned to be longer than the length between the electrodes and wired.

[作用コ 上記構成によれば、最適位置において歪みゲージのパタ
ーン(つまり、形状)を任意に変化させるものである。
[Operation] According to the above configuration, the pattern (that is, the shape) of the strain gauge can be arbitrarily changed at the optimum position.

 これは歪みゲージの長ささを単に長くするのではなく
、最も理想の位置において、すなわち応力分布の小さい
範囲内において、又は従来と同一の電極の位置及び長さ
において9曲線、コの字状又はジグザク状等の任意形状
の歪みゲージをパターニングすることであって、このよ
うな構成にすることにより。
This does not simply increase the length of the strain gauge, but rather it can be used in the most ideal position, that is, within a small range of stress distribution, or at the same electrode position and length as before, such as a 9-curve, U-shaped or By patterning a strain gauge in an arbitrary shape such as a zigzag shape, and by forming it into such a configuration.

歪みゲージの長さを長くできるので容易に抵抗値を管理
することが可能となる。 そして本構成ては、他の抵抗
値制御法である歪みゲージの不純物濃度、膜厚又は膜幅
を管理するものではないことから、これらの制御によっ
て生じる肌脱の欠陥の発生を防止することが可能となる
Since the length of the strain gauge can be increased, the resistance value can be easily controlled. Furthermore, since this configuration does not control the impurity concentration, film thickness, or film width of the strain gauge, which are other resistance value control methods, it is difficult to prevent defects such as skin shedding caused by these controls. It becomes possible.

[実施例] 以下本発明に係わる実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

 第1図は本発明に係わる第1実施例図、第2図は本発
明に係わる第2及び第3実実施例を説明する図である。
FIG. 1 is a diagram for explaining a first embodiment of the present invention, and FIG. 2 is a diagram for explaining second and third embodiments of the present invention.

第1図の第1実施例は、ステンレス製のダイヤフラム上
において、絶縁物として酸化シリコン(S i 02 
)膜を積層し、この上に歪みゲージとしてプラズマCV
D法によりn型多結晶シリコンを略0.6μm積層する
。 そしてフォトリソグラフィにより任意の形状にパタ
ーニングする。 この時歪みゲージは応力が充分に加わ
る位置に設ける。 次に、歪みゲージに給電し、また出
力電圧を測定するための電極配線バパターン4をアルミ
ニュームをメタルマスクを介して積層することにより設
けた。 本第1実施例においては、膜厚が約0.6μm
、かつ。
In the first embodiment shown in FIG. 1, silicon oxide (S i 02
) film is laminated, and plasma CV is applied as a strain gauge on top of this.
N-type polycrystalline silicon is laminated to a thickness of approximately 0.6 μm using the D method. Then, it is patterned into an arbitrary shape by photolithography. At this time, the strain gauge is installed at a position where sufficient stress is applied. Next, an electrode wiring bar pattern 4 for supplying power to the strain gauge and measuring the output voltage was provided by laminating aluminum layers through a metal mask. In the first embodiment, the film thickness is approximately 0.6 μm.
,and.

膜幅が約50μmの歪みゲージとし、これを。This is a strain gauge with a membrane width of approximately 50 μm.

図示するように、30字状に引き回して全長が約2.0
mmの歪みゲージのパターニングとし。
As shown in the figure, the total length is approximately 2.0 mm when routed in a 30-character shape.
Patterning of mm strain gauge.

当初所望の抵抗である約3.5にΩの高抵抗を得ること
ができた。 尚、各々の電極間長さを約600μmとし
たが、この範囲長さとその位置とは応力を顕著に表すに
充分なるものであることは、肌脱明の膜厚と、抵抗値と
、そのバラツキとの関係図(第3図)及び応力とダイヤ
フラム上の歪みゲージの位置との開系図(第5図)より
明らかでである。
It was possible to obtain a high resistance of approximately 3.5 Ω, which was the initially desired resistance. Although the length between each electrode was set to approximately 600 μm, the range length and its position are sufficient to express stress clearly, depending on the skin lightening film thickness, resistance value, and its position. This is clear from the relationship diagram with variations (Figure 3) and the open relationship diagram between stress and the position of the strain gauge on the diaphragm (Figure 5).

第・2及び第3実施例は、電極間における歪みゲージの
任意形状をより効果的形状に求めた薄膜圧力センサの実
施例であり以下これを図面を参照して説明する。 歪み
ゲージをダイヤフラム上に配置する場合、歪みゲージ感
度の歪み方向依存性を考慮して配置しなければならない
The second and third embodiments are examples of a thin film pressure sensor in which the arbitrary shape of the strain gauge between the electrodes is determined to be a more effective shape, and will be described below with reference to the drawings. When a strain gauge is placed on a diaphragm, it must be placed in consideration of the strain direction dependence of the strain gauge sensitivity.

この特性は、歪みゲージを構成する半導体薄膜の種類や
夕、イブ(p型又はn型)によって異なる。 この例を
図面(第2図)によって示す。
This characteristic varies depending on the type of semiconductor thin film constituting the strain gauge and its type (p-type or n-type). An example of this is illustrated by the drawing (FIG. 2).

第2図(a)は、プラズマCVD法により成膜したn型
ポリシリコンと、n型ポリシリコンとについて、歪みゲ
ージ感度の歪み方向依存性を調べたグラフ図であり、縦
軸は歪みゲージ感度を、横軸は半径方向を水準上〇度(
0°)としたときの歪み方向の角度を示す。 同図が示
すように、n型では、歪み方向がゼロ度(0°)のとき
、負側で最大感度を示し、そして歪み方向が90度のと
き、はぼ感度ゼロ(零)となるに対し、p型では、歪み
方向がゼロ度(0°)のとき、正側で最大感度を持つが
、歪み方向角が大きくなるにしたがって感度は小さくな
り。
FIG. 2(a) is a graph showing the strain direction dependence of strain gauge sensitivity for n-type polysilicon deposited by plasma CVD and n-type polysilicon. The vertical axis is the strain gauge sensitivity. , the horizontal axis is the radial direction at 0 degrees above the level (
0°) is the angle of the distortion direction. As shown in the figure, in the n-type, when the distortion direction is zero degrees (0°), the sensitivity is maximum on the negative side, and when the distortion direction is 90 degrees, the sensitivity is zero (zero). On the other hand, the p-type has maximum sensitivity on the positive side when the strain direction is zero degrees (0°), but the sensitivity decreases as the strain direction angle increases.

45度と90度との略中岡点て感度ゼロ(零)となり、
更に歪み方向角が大きくなり90度となると負側て感度
を示すようになる。 かかる理由に基づき実施した例を
次に掲げる。
At approximately Nakaoka point between 45 degrees and 90 degrees, the sensitivity becomes zero (zero),
When the distortion direction angle further increases to 90 degrees, sensitivity begins to be shown on the negative side. Examples of implementation based on these reasons are listed below.

第2実施例・・・n型の歪みゲージをコの字状等の形状
に折り曲げて配置したもので。
Second embodiment: An N-type strain gauge is bent into a U-shape or the like and arranged.

第2図(b)に示すように、ダイヤフラムの歪み方向(
つまり、半径方向)にゼロ度成分を多く(つまり、長く
)配置して、高感度を得さしめた薄膜圧力センサ。
As shown in Figure 2(b), the strain direction of the diaphragm (
In other words, this is a thin-film pressure sensor that has a large number of zero-degree components (in other words, a long length) in the radial direction to achieve high sensitivity.

第3実施例・・・p型の歪みゲージをコの字状等の形状
に折り曲げて配置したもので。
Third embodiment: A p-type strain gauge is bent into a U-shape or the like and arranged.

これも第2実施例同様第2図(b)に示すように、ダイ
ヤフラムの歪み方向くつまり、半径方向)にゼロ度成分
を多く(つまり、長く)配置して、高感度を得さしめた
薄膜圧力センサ。
As in the second embodiment, as shown in FIG. 2(b), a large number of zero degree components (i.e., long) are arranged in the diaphragm distortion direction (radial direction) to obtain high sensitivity. Thin film pressure sensor.

尚、第2図(c)は、上記第2及び第3実施例における
第2図(b)の良好な歪みゲージの成分配置例図に対す
る。好ましくない歪みゲージの成分配置例を示す図であ
る。
Incidentally, FIG. 2(c) is a diagram showing an example of component arrangement of a good strain gauge in FIG. 2(b) in the second and third embodiments. It is a figure which shows the example of component arrangement|positioning of an unfavorable strain gauge.

[発明の効果コ 以上説明したように2本発明によれば、歪みゲージの形
状を適宜選択すれば、歪みゲージの不純物物質、膜厚及
び膜幅を全く変更することなく、容易に所望の高抵抗値
を得ることができる。 これは従来の薄膜圧力センサの
製造時における欠陥やバラツキを排除し、また使用時に
おける測定の精度や感度の低下という従来の問題を解消
しえる薄膜圧力センサであるばかりか更に、従来の薄膜
圧力センサの問題解決策であった他の抵抗値制御法であ
る歪みゲージの不純物濃度、膜厚又は膜幅の管理方法に
よる薄膜圧力センサでもないことからこれらの制御方法
によって生じる欠点をも排除した薄膜圧力センサである
[Effects of the Invention] As explained above, according to the present invention, by appropriately selecting the shape of the strain gauge, a desired height can be easily achieved without changing the impurity substances, film thickness, and film width of the strain gauge. You can get the resistance value. This is a thin film pressure sensor that eliminates the defects and variations that occur during the manufacturing of conventional thin film pressure sensors, and eliminates the conventional problem of reduced measurement accuracy and sensitivity during use. It is not a thin film pressure sensor that uses other resistance value control methods that were used to solve sensor problems, such as controlling the impurity concentration, film thickness, or film width of strain gauges, so it is a thin film that eliminates the drawbacks caused by these control methods. It is a pressure sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・本発明に係わる薄膜圧力センサの第1実施
例図 第2図・・・本発明に係わる薄膜圧力センサの第2及び
第3実施例を説明する図であって(a)は、プラズマC
VD法ζこより成膜したn型ポリシリコンと、p型ポリ
シリコンとについて、歪みゲージ感度の歪み方向依存性
を調べたグラフ図、(b)は9良好な歪みゲージの成分
配置倒閣、(C)は、(b)との比較において、好まし
くない歪みゲージの成分配置倒閣 第3図・・・薄膜圧力センサの膜厚と、抵抗値と、その
バラツキとの関係を示す図 第4図・・・従来の薄膜圧カセンサ倒閣であって、(a
)はダイヤフラム上の歪みゲージの配置を示す図、(b
)は(a)のA−A断面図 第5図・・・薄膜圧力センサの応力とダイヤフラム上の
歪みゲージの位置との関係図であって、(a)はダイヤ
フラム上面における歪み応力の発生分布図、(b)は歪
みケージの配置位置とダイヤフラム上面における歪み応
力の発生分布との関係を示す図 1・・・ダイヤフラム 2・・・絶縁物 3・・・歪みゲージ 4・・・電極 特許出願人  株式会社小松製作所 代理人 (弁理士)岡 1)和 春 画2図 (a) 第1図 第2図 (b) 男2図(C) 第4図(a)
FIG. 1: A first embodiment of a thin film pressure sensor according to the present invention. FIG. 2: A diagram illustrating second and third embodiments of a thin film pressure sensor according to the present invention. is plasma C
A graph showing the strain direction dependence of strain gauge sensitivity for n-type polysilicon and p-type polysilicon deposited using the VD method. ) is an unfavorable component arrangement of the strain gauge in comparison with (b). Figure 3 shows the relationship between the film thickness, resistance value, and variation of the thin film pressure sensor.・A conventional thin film pressure sensor, (a
) is a diagram showing the arrangement of strain gauges on the diaphragm, (b
) is a cross-sectional view taken along line A-A in (a). FIG. Figure 1 (b) shows the relationship between the placement position of the strain cage and the distribution of strain stress generation on the upper surface of the diaphragm. Diaphragm 2 Insulator 3 Strain gauge 4 Electrode patent application Person Komatsu Ltd. Agent (patent attorney) Oka 1) Japanese Shunga 2 (a) Figure 1 Figure 2 (b) Man 2 (C) Figure 4 (a)

Claims (1)

【特許請求の範囲】[Claims] ダイヤフラム上に絶縁層を介して半導体薄膜からなる歪
みゲージと、それを配線する金属電極パターンとを有す
る薄膜圧力センサにおいて、前記電極で結線される歪み
ゲージ長さを前記電極間長さよりも、より長く歪みゲー
ジをパターニングしたことを特徴とする薄膜圧力センサ
In a thin film pressure sensor having a strain gauge made of a semiconductor thin film on a diaphragm with an insulating layer interposed therebetween and a metal electrode pattern wiring the strain gauge, the length of the strain gauge connected by the electrodes is set to be longer than the length between the electrodes. A thin film pressure sensor characterized by a long strain gauge pattern.
JP7007588A 1988-03-24 1988-03-24 Thin film pressure sensor Pending JPH0262928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7007588A JPH0262928A (en) 1988-03-24 1988-03-24 Thin film pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7007588A JPH0262928A (en) 1988-03-24 1988-03-24 Thin film pressure sensor

Publications (1)

Publication Number Publication Date
JPH0262928A true JPH0262928A (en) 1990-03-02

Family

ID=13421062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7007588A Pending JPH0262928A (en) 1988-03-24 1988-03-24 Thin film pressure sensor

Country Status (1)

Country Link
JP (1) JPH0262928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008756A1 (en) * 1993-09-20 1995-03-30 Kabushiki Kaisha Komatsu Seisakusho Pressure sensor
WO2002008711A1 (en) * 2000-07-26 2002-01-31 Robert Bosch Gmbh Production method for a thin-layer component, especially a thin-layer high pressure sensor, and corresponding thin-layer component
FR2820201A1 (en) * 2001-01-31 2002-08-02 Denso Corp DYNAMIC QUANTITY SENSOR WITH SEMICONDUCTOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008756A1 (en) * 1993-09-20 1995-03-30 Kabushiki Kaisha Komatsu Seisakusho Pressure sensor
WO2002008711A1 (en) * 2000-07-26 2002-01-31 Robert Bosch Gmbh Production method for a thin-layer component, especially a thin-layer high pressure sensor, and corresponding thin-layer component
JP2004505239A (en) * 2000-07-26 2004-02-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing thin-film component, for example, thin-film high-pressure sensor, and thin-film component
FR2820201A1 (en) * 2001-01-31 2002-08-02 Denso Corp DYNAMIC QUANTITY SENSOR WITH SEMICONDUCTOR
JP2002373991A (en) * 2001-01-31 2002-12-26 Denso Corp Semiconductor dynamic quantity sensor

Similar Documents

Publication Publication Date Title
US4849730A (en) Force detecting device
US6642594B2 (en) Single chip multiple range pressure transducer device
US5549006A (en) Temperature compensated silicon carbide pressure transducer and method for making the same
US20070062812A1 (en) Gas sensor and method for the production thereof
JP2890601B2 (en) Semiconductor sensor
JPH0818068A (en) Manufacture of semiconductor distortion sensor
JPH0262928A (en) Thin film pressure sensor
CN101068032B (en) Semiconductor strain gauge and the manufacturing method
US20200284633A1 (en) Fluid sensor
US6510742B1 (en) Sensor formed on silicon on insulator structure and having reduced power up drift
JP3383395B2 (en) Thin film gas sensor and driving method thereof
JPS63102377A (en) Manufacture of thin film pressure sensor
JPH05281251A (en) Acceleration sensor and manufacture thereof
JPH05288771A (en) Diaphragm type acceleration sensor and its manufacture
JPH08261853A (en) Mechanical-quantity sensor element
USRE29009E (en) High sensitivity semiconductor strain gauge
JPS62268167A (en) Thin-film pressure sensor
JPH03208375A (en) Semiconductor pressure sensor
JPH0964404A (en) Thin film semiconductor element
JP4075222B2 (en) Resistance change type infrared detector
JPH04218777A (en) Micro flow sensor and manufacture thereof
JP2518352B2 (en) Semiconductor flow velocity sensor
JP2737479B2 (en) Semiconductor stress detector
JPS62256438A (en) Etching end-point control pattern
JPS62268166A (en) Thin-film pressure sensor