JPH0480970A - Insulated-gate field-effect transistor - Google Patents

Insulated-gate field-effect transistor

Info

Publication number
JPH0480970A
JPH0480970A JP19523890A JP19523890A JPH0480970A JP H0480970 A JPH0480970 A JP H0480970A JP 19523890 A JP19523890 A JP 19523890A JP 19523890 A JP19523890 A JP 19523890A JP H0480970 A JPH0480970 A JP H0480970A
Authority
JP
Japan
Prior art keywords
region
schottky barrier
drain region
diode
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19523890A
Other languages
Japanese (ja)
Inventor
Akihiko Sugai
昭彦 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP19523890A priority Critical patent/JPH0480970A/en
Publication of JPH0480970A publication Critical patent/JPH0480970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a vertical MOSFET to overcome defects (reverse recovery loss, forward loss) caused by the action of a parasitic PN junction diode by a method wherein a Schottky barrier diode is built in the cell of the vertical MOSFET. CONSTITUTION:A U-shaped groove is provided through a well-known anisotropic dry etching technique extending from the primary surface where a source region partially overlaps up to an N<-> drain region 1, and a metal coating 9 is formed on the surface of the U-shaped groove through sputtering. When metal such as Cr, Ti, or Mo or their silicides which forms a Schottky barrier against an N-type silicon is employed, a groove region overlapping an N<-> drain region functions as a Schottky barrier diode, and a back gate is brought into contact with the side face of the groove.

Description

【発明の詳細な説明】 この発明は、絶縁ゲート型電界効果トランジスタの構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an insulated gate field effect transistor.

従来から、電力用絶縁ゲート型電界効果トランジスタと
して、縦型MO3FET構造を基本とし、種々の構造が
提案されている。それらの構造はいずれも、ポリシリコ
ンをゲート電極として又、そのポリシリコンゲート電極
をマスクとして、チャネル領域、ソース領域を二重セル
フアライメント法により形成するものが基本である。第
1図に、従来縦型M OS F E Tのセルの一部の
断面構造を示す。図中1はドレイン領域、2はチャネル
領域、3はソース領域、4はポリシリコンゲート電極、
5はゲート絶縁膜、6は高濃度P″″″領域 はソース
およびパックゲートオーミックコンタクト用電極、8は
層間絶縁膜である。第2図に、第1図の等価回路を示す
。図中D1はドレイン領域1とチャネル領域2及び高濃
度P゛領域6により 形成される寄生PN接合ダイオー
ドである。このような構造の縦型MO3FETを電源機
器の1次側スイッチング素子として使用する時、 この寄生PN 接合ダイオードD1は、フライホイールダイオドとして
使用される。ところが、この場合、寄生PN接合ダイオ
ードの少数キャリアの蓄積による逆回復損失が大きく、
高周波動作ができない。そこで、一般には高速のショッ
トキーバリアダイオドをパラに外付けする等の工夫が必
要となっている。また、同期整流素子として使用した場
合にゲー は、傘中ト電圧立上りの遅れ等により、この寄生PN接
合ダイオードが動作し、順方向損失及び逆回復損失等の
問題を生じ、FETの低損失・高速性が活かされていな
い。
Conventionally, various structures have been proposed as insulated gate field effect transistors for power use, based on a vertical MO3FET structure. The basic structure of all of these structures is to form a channel region and a source region by a double self-alignment method using polysilicon as a gate electrode and using the polysilicon gate electrode as a mask. FIG. 1 shows a cross-sectional structure of a part of a conventional vertical MOS FET cell. In the figure, 1 is a drain region, 2 is a channel region, 3 is a source region, 4 is a polysilicon gate electrode,
5 is a gate insulating film, 6 is a high-concentration P region, an electrode for source and pack gate ohmic contacts, and 8 is an interlayer insulating film. Fig. 2 shows an equivalent circuit of Fig. 1. In the figure, D1 is a parasitic PN junction diode formed by the drain region 1, channel region 2, and high concentration P region 6. When a vertical MO3FET with such a structure is used as a primary side switching element of a power supply device, this parasitic The PN junction diode D1 is used as a flywheel diode.However, in this case, the reverse recovery loss due to the accumulation of minority carriers in the parasitic PN junction diode is large.
High frequency operation is not possible. Therefore, it is generally necessary to take measures such as attaching a high-speed Schottky barrier diode externally. In addition, when used as a synchronous rectifier, this parasitic PN junction diode operates due to a delay in the rise of the voltage during operation, causing problems such as forward loss and reverse recovery loss, resulting in low loss and High speed is not taken advantage of.

本発明は、上記、寄生PN接合ダイオードが動作するこ
とによる欠点(逆回復損失、順方向損失)を克服するこ
とを目的とする。
The present invention aims to overcome the drawbacks (reverse recovery loss, forward loss) caused by the operation of the parasitic PN junction diode.

第3図は、本発明の実施例であって、縦型MO3FET
のセル断面図を示したものである。
FIG. 3 shows an embodiment of the present invention, in which a vertical MO3FET
This figure shows a cross-sectional view of the cell.

図中1は、エピタキシャル法等により形成されるシリコ
ン基体であり、n−型のドレイン領域、2はドレイン領
域1の主表面からP型の不純物、例えばボロンをイオン
注入し、アニールならびに拡散処理を行ったチャネル領
域、3はチャネル領域2の内部にドレイン領域1と同一
の導電型になるn型の不純物、例えばリンをイオン注入
しアニルならびに拡散処理を行ったソース領域、4はゲ
ト絶縁膜5を介してチャネル領域2上にドレイン領域1
とソース領域3にまたがるように設けたゲート電極であ
り、例えばポリシリコンにより形成される。8は、ゲー
ト電極4とソース電極7を絶縁分離する層間絶縁膜であ
り、例えば、リンケイ酸ガラス(PSG)で形成される
。ポリシリコンやPSGはいずれも周知のCVD法等で
形成される。
In the figure, 1 is a silicon substrate formed by an epitaxial method, etc., and 2 is an n-type drain region, and 2 is a P-type impurity, such as boron, ion-implanted from the main surface of the drain region 1, and then subjected to annealing and diffusion treatment. 3 is a source region in which an n-type impurity, such as phosphorus, is ion-implanted into the channel region 2 to have the same conductivity type as that of the drain region 1, and annealing and diffusion treatments are performed; 4 is a gate insulating film 5; drain region 1 on channel region 2 via
This is a gate electrode provided so as to straddle the source region 3 and the source region 3, and is made of polysilicon, for example. Reference numeral 8 denotes an interlayer insulating film for insulating and separating the gate electrode 4 and the source electrode 7, and is made of, for example, phosphosilicate glass (PSG). Both polysilicon and PSG are formed by the well-known CVD method.

9は、ソース領域1にかかる主表面からn−ドレイン領
域伊まで到達するようにU字形の溝を周知/の異方性ド
ライエツチング技術で形成し、その溝表面に例えば、ス
パッタ法で形成した金属被膜である。金属として、n型
シリコンに対してショットキー障壁を形成する金属、例
えばCr、Ti、Moまたはこれらのシリサイドを用い
ればn−ドレイン領域にかかる溝部領域は、ショットキ
ーバリアーダイオードとなり、バックゲートは、溝の側
面でコンタクトされる。
9, a U-shaped groove was formed by a well-known anisotropic dry etching technique so as to reach from the main surface of the source region 1 to the n-drain region 1, and was formed on the surface of the groove by, for example, a sputtering method. It is a metal coating. If a metal that forms a Schottky barrier to n-type silicon, such as Cr, Ti, Mo, or a silicide thereof, is used as the metal, the trench region over the n-drain region becomes a Schottky barrier diode, and the back gate becomes a Schottky barrier diode. Contact is made on the sides of the groove.

第4図は、本発明の製造工程を示したものである。FIG. 4 shows the manufacturing process of the present invention.

図中(a)は、高濃度n゛基体所望の不純物濃度n−層
1をエピタキシャル成長させたものである。(b)は、
高濃度P+領域6を(a)の基体に、P型となる不純物
、例えばボロンを高濃度に選択的にイオン注入し形成し
たものである。
In the figure (a), an n- layer 1 with a desired impurity concentration is epitaxially grown on a high-concentration n-substrate. (b) is
The high-concentration P+ region 6 is formed by selectively ion-implanting a P-type impurity, such as boron, into the substrate of (a) at a high concentration.

次に、ゲート絶縁膜例えば酸化膜5をシリコン基体の熱
酸化により形成し、その後ポリシリコン4を減圧CVD
法で形成する。ポリシリコンへのリンの気相デポジショ
ン、及びポリシリコンのパタニングによりゲート電極を
形成する(図中C)。
Next, a gate insulating film such as an oxide film 5 is formed by thermal oxidation of the silicon substrate, and then polysilicon 4 is formed by low pressure CVD.
form by law. A gate electrode is formed by vapor phase deposition of phosphorus onto polysilicon and patterning of the polysilicon (C in the figure).

次にこのポリシリコンをマスクにして、ボロンのイオン
注入、アニール及び拡散によりチャネル領域2を形成し
、さらに同一ポリシリコンをマスクにして、n型になる
不純物、例えばリン牽イオン注入、アニール、及び拡散
により、ソース領域3を形成する(図中d)。次にゲー
ト電極とソース電極とを絶縁分離するために、層間膜8
(PSG)を常圧CVD法等により形成し、さらに、ソ
ース領域とソース電極をコンタクトさせるためのコンタ
クトホールを形成する(図中e)。次にコンタクトホー
ルの内側のシリコンを、異方性ドライエツチングにより
、n′″ドレイン領域に到達する0字l形の溝Uを形成
する(図中f)。次にn型シリコンに対する金属9、例
えば、Cr薄膜をスパッタリング法により、溝内に形成
し、バターニングを行う(図中g)。最後に、ソース電
極7となる金属、例えばA1層をスパッタリングにより
形成し、パターニングを行う(図中h)。
Next, using this polysilicon as a mask, a channel region 2 is formed by ion implantation, annealing, and diffusion of boron. Furthermore, using the same polysilicon as a mask, an impurity to become n-type, such as phosphorous ion implantation, annealing, and A source region 3 is formed by diffusion (d in the figure). Next, in order to insulate and separate the gate electrode and the source electrode, an interlayer film 8
(PSG) is formed by a normal pressure CVD method or the like, and a contact hole for contacting the source region and the source electrode is formed (e in the figure). Next, the silicon inside the contact hole is subjected to anisotropic dry etching to form a 0-shaped groove U reaching the n''' drain region (f in the figure). Next, a metal 9 for the n-type silicon, For example, a Cr thin film is formed in the groove by sputtering and patterned (g in the figure).Finally, a metal that will become the source electrode 7, for example an A1 layer, is formed by sputtering and patterned (g in the figure). h).

第5図は、本発明品の等何回路を示したものである。図
中D1は、チャネル領域2及び高濃度P“領域6とn−
ドレイン領域1とにより形成されるPN接合ダイオード
、SBDはn−ドレイン領域の溝部に形成されるショッ
トキーバリアーダイオドである。
FIG. 5 shows a similar circuit of the product of the present invention. In the figure, D1 indicates the channel region 2 and the high concentration P" region 6 and n-
The PN junction diode SBD formed by the drain region 1 is a Schottky barrier diode formed in the groove of the n-drain region.

本半導体装置を電源機器の1次側のスイッチング素子ど
して使用し、このMOSFETのソースドレイン間に並
列接続されている寄生ダイオードをフライホイールダイ
オードとして使用する場合の動作を以下に示す。第6図
にショットキーバリアダイオードSBD及びPN接合ダ
イオードD1の順方向V−I特性を示す。ショットキー
バリアダイオードSBDはPN接合ダイオードD1より
も低い電圧で立上る。本発明では、これら二つのダイオ
ードが並列接続されているため、PN接合ダイオードD
ユが動作する前にショットキーバリアダイオードSBD
が動作し、PN接合ダイオドの立上り電圧になるまで、
ショットキーバリアダイオードのみが動作する。ショッ
トキバリアダイオードは多数キャリアデバイスであり、
少数キャリアの蓄積が無い。従って、この動作領域では
逆回復による損失は極めて小さくなる。
The operation when this semiconductor device is used as a switching element on the primary side of a power supply device and a parasitic diode connected in parallel between the source and drain of this MOSFET is used as a flywheel diode will be described below. FIG. 6 shows forward VI characteristics of the Schottky barrier diode SBD and the PN junction diode D1. The Schottky barrier diode SBD rises at a lower voltage than the PN junction diode D1. In the present invention, since these two diodes are connected in parallel, the PN junction diode D
Schottky barrier diode SBD before operation
operates and reaches the rising voltage of the PN junction diode.
Only Schottky barrier diodes work. A Schottky barrier diode is a majority carrier device,
There is no accumulation of minority carriers. Therefore, in this operating region, the loss due to reverse recovery is extremely small.

次に、本半導体装置を同期整流素子として使用する場合
の実施例について述べる。
Next, an example in which the present semiconductor device is used as a synchronous rectifier will be described.

第7図は、実施例を示した特性例である。FIG. 7 is a characteristic example showing an example.

図中1はMOSFETのチャネル電流のみの特性、2は
ショットキーバリアダイオードのみの特性、3は寄生P
N接合ダイオードのみの特性、4は本発明による特性で
ある。図中O−a間は、チャネル電流のみが流れる領域
であり、a−b間は、チャネル電流とショットキバリア
ダイオードを流れる電流との合成電流が流れる領域であ
る。従って、0−b間まで、多数キャリアによる電流が
流れ、少数キャリアの蓄積が無いため、逆回復損失が極
めて小さくなる。
In the figure, 1 is the characteristic of only the MOSFET channel current, 2 is the characteristic of only the Schottky barrier diode, and 3 is the characteristic of the parasitic P
Characteristics of only the N-junction diode, 4 are characteristics according to the present invention. In the figure, a region between O and a is a region where only the channel current flows, and a region between a and b is a region where a combined current of the channel current and the current flowing through the Schottky barrier diode flows. Therefore, current due to majority carriers flows between 0 and b, and there is no accumulation of minority carriers, so that reverse recovery loss becomes extremely small.

通常動作では、例えば、図中C点で動作させるため、他
の整流素子に比べ順方向電圧降下■、の非常に低い整流
素子となる。また、大きいノイズ電流が入った場合でも
、b点までは、多数キャリア電流が流れるため、ノイズ
電流による逆回復損失は極めて小さくなる。さらに、ゲ
ート電圧立ち上がりの遅れが生じて、寄生ダイオードが
動作した場合でも、ショットキバリアダイオードが動作
するため、従来構造よりも順方向損失及び逆回復損失が
小さくなる。
In normal operation, for example, since the rectifying element operates at point C in the figure, the rectifying element has a forward voltage drop that is very low compared to other rectifying elements. Furthermore, even when a large noise current is applied, the majority carrier current flows up to point b, so that the reverse recovery loss due to the noise current becomes extremely small. Furthermore, even if a parasitic diode operates due to a delay in the rise of the gate voltage, the Schottky barrier diode operates, so the forward loss and reverse recovery loss are smaller than in the conventional structure.

以上の説明から明らかなように本発明によれば従来構造
の縦型MO3FETのセル内部にショットキーバリアダ
イオードを内蔵させるため■特別に外付はショットキー
ダイオードを設ける必要が無いため回路構成が簡略化さ
れる。
As is clear from the above explanation, according to the present invention, a Schottky barrier diode is built into the cell of a conventionally structured vertical MO3FET. ■There is no need to provide an external Schottky diode, so the circuit configuration is simplified. be converted into

■ショットキーバリアダイオードを内蔵しても、チップ
サイズは増加しない。−(低価格)■寄生PN接合ダイ
オード領域の一部からSBDになっているため、寄生P
N接合ダイオードの有効面積を小さくでき、PN接合ダ
イオードが動作しても少数キャリアの注入量を減らすこ
とができる。
■Including a Schottky barrier diode does not increase the chip size. - (Low price) ■Since a part of the parasitic PN junction diode region becomes SBD, the parasitic P
The effective area of the N-junction diode can be reduced, and even when the PN-junction diode operates, the amount of minority carriers injected can be reduced.

■寄生PN接合ダイオードが動作する前にSBDが動作
する為、逆回復損失が小さい。
■Since the SBD operates before the parasitic PN junction diode operates, reverse recovery loss is small.

■ノイズ電流に対しても逆回復損失が小さい。■Reverse recovery loss is small even against noise current.

等、実用上の効果は大きい。etc., the practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の縦形MO8FETセルの断面図
及びその等価回路図、第3図、第5図は本発明の一実施
例構造を示す断面図及びその等価回路図、第4図は本発
明の製造工程を示す断面図、第6図、第7図は本発明の
動作を示す特性図である。図中1はドレイン領域、2は
チャンネル領域、3はソース領域、4はポリシリコンゲ
ート電極、5はゲート絶縁膜、6は高濃度P′″領域、
7 はソース電極、8は層間絶縁膜、9はショットキバ
リア金属、Dlは寄生PNダイオード、SBD はショ
ットキバリアダイオードである。
1 and 2 are a sectional view and an equivalent circuit diagram of a conventional vertical MO8FET cell, FIGS. 3 and 5 are a sectional view and an equivalent circuit diagram of an embodiment of the present invention, and FIG. 6 is a sectional view showing the manufacturing process of the present invention, and FIGS. 6 and 7 are characteristic diagrams showing the operation of the present invention. In the figure, 1 is a drain region, 2 is a channel region, 3 is a source region, 4 is a polysilicon gate electrode, 5 is a gate insulating film, 6 is a high concentration P''' region,
7 is a source electrode, 8 is an interlayer insulating film, 9 is a Schottky barrier metal, Dl is a parasitic PN diode, and SBD is a Schottky barrier diode.

Claims (1)

【特許請求の範囲】[Claims]  ドレイン領域となる第1導電型の半導体基体に、第2
導電型のチャネル領域を形成し、該チャネル領域内に形
成した第1導電型のソース領域及び該ドレイン領域上に
ゲート絶縁膜を介して、該ドレイン領域と該ソース領域
にまたがるように設けたゲート電極から成り、該ゲート
電極に囲まれた窓内にソース電極をコンタクトさせるよ
うにした絶縁ゲート型電界効果トランジスタにおいて、
ソース電極からドレイン領域に至るまで溝を掘り、少な
くとも該溝部ドレイン領域にショットキー障壁を形成し
た構造を特徴とする絶縁ゲート型電界効果トランジスタ
A second conductivity type semiconductor substrate serving as a drain region is provided with a second conductivity type semiconductor substrate.
A conductivity type channel region is formed, a first conductivity type source region formed in the channel region, and a gate provided over the drain region so as to span the drain region and the source region with a gate insulating film interposed therebetween. In an insulated gate field effect transistor consisting of an electrode and having a source electrode in contact with a window surrounded by the gate electrode,
1. An insulated gate field effect transistor characterized by a structure in which a trench is dug from a source electrode to a drain region, and a Schottky barrier is formed at least in the trench drain region.
JP19523890A 1990-07-24 1990-07-24 Insulated-gate field-effect transistor Pending JPH0480970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19523890A JPH0480970A (en) 1990-07-24 1990-07-24 Insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19523890A JPH0480970A (en) 1990-07-24 1990-07-24 Insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0480970A true JPH0480970A (en) 1992-03-13

Family

ID=16337785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19523890A Pending JPH0480970A (en) 1990-07-24 1990-07-24 Insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0480970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149195A (en) * 1995-06-21 2006-06-08 Cree Inc Converter circuit, and circuit having at least one switching device, and circuit module
EP1999792A2 (en) * 2006-03-10 2008-12-10 Alpha & Omega Semiconductor Limited Shielded gate trench(sgt) mosfet cells implemented with a schottky source contact
WO2013177552A1 (en) * 2012-05-24 2013-11-28 Microsemi Corporation Monolithically integrated sic mosfet and schottky barrier diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149195A (en) * 1995-06-21 2006-06-08 Cree Inc Converter circuit, and circuit having at least one switching device, and circuit module
EP1999792A2 (en) * 2006-03-10 2008-12-10 Alpha & Omega Semiconductor Limited Shielded gate trench(sgt) mosfet cells implemented with a schottky source contact
EP1999792A4 (en) * 2006-03-10 2009-05-20 Alpha & Omega Semiconductor Shielded gate trench(sgt) mosfet cells implemented with a schottky source contact
WO2013177552A1 (en) * 2012-05-24 2013-11-28 Microsemi Corporation Monolithically integrated sic mosfet and schottky barrier diode

Similar Documents

Publication Publication Date Title
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
US9252211B2 (en) Semiconductor device and manufacturing method thereof
US7714383B2 (en) Semiconductor device
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
JPH0427712B2 (en)
JPH01253966A (en) Vertical field effect transistor
EP3089216B1 (en) Split-gate power semiconductor field-effect transistor
JP2001077354A (en) Vertical insulating gate semiconductor device
JPH04127480A (en) High breakdown strength low resistance semiconductor device
JP3307112B2 (en) Method for manufacturing semiconductor device
JPH0621468A (en) Insulated gate semiconductor device
CN117497601B (en) Structure, manufacturing method and electronic equipment of planar silicon carbide transistor
US7795103B2 (en) Bipolar transistors with depleted emitter
JPH08213613A (en) Vertical semiconductor device and its manufacturing method
JPH03109775A (en) Insulation-gate-type semiconductor device
JP2000164859A (en) Semiconductor device and method for manufacturing the same
JPH0494576A (en) Vertical power mos fet
JPH0480970A (en) Insulated-gate field-effect transistor
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP3210146B2 (en) Semiconductor device
JP3744196B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2672694B2 (en) MOSFET
JPH04363068A (en) Semiconductor device
KR910003275B1 (en) Semiconductor device and its manufacture method
JPS606104B2 (en) MIS semiconductor device