JP3210146B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3210146B2
JP3210146B2 JP19393493A JP19393493A JP3210146B2 JP 3210146 B2 JP3210146 B2 JP 3210146B2 JP 19393493 A JP19393493 A JP 19393493A JP 19393493 A JP19393493 A JP 19393493A JP 3210146 B2 JP3210146 B2 JP 3210146B2
Authority
JP
Japan
Prior art keywords
region
gate
gate electrode
silicide
serving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19393493A
Other languages
Japanese (ja)
Other versions
JPH0730112A (en
Inventor
昭彦 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP19393493A priority Critical patent/JP3210146B2/en
Publication of JPH0730112A publication Critical patent/JPH0730112A/en
Application granted granted Critical
Publication of JP3210146B2 publication Critical patent/JP3210146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野の説明】本発明は半導体装置の構造
に関するものである。
Description of the Field of the Invention The present invention relates to the structure of a semiconductor device.

【0002】[0002]

【従来技術】従来から、整流用デバイスとして、PN接
合ダイオ−ド、ショットキ−障壁を用いたショットキ−
バリア−ダイオ−ド及びパワ−MOSFETを整流素子
として使う方法がある。PN接合ダイオ−ドは、PN接
合のビルトインポテンシャルのため、順方向電圧降下V
Fを0.8V以下に小さくすることができず、また、少
数キャリア−の蓄積による逆回復損失を生じる。ショッ
トキ−バリア−ダイオ−ドは、多数キャリア−デバイス
であるため、逆回復損失がなくショットキ−障壁高さの
小さいバリア金属を使用すればVFを小さくできる。し
かし、ショットキ−障壁高さが小さくなるに従い、逆方
向リ−ク電流が増加してしまうため、ショットキ−障壁
を小さくするにも限界があ (2) る。一方、パワ−MOSFETは電流が0Vから立ち上
がるため、オン抵抗の非常に小さいMOSFETを用い
れば、VFの非常に小さい整流素子を実現することがで
きる。さらに、多数キャリア−デバイスであるため、逆
回復損失もなく、逆方向リ−ク電流もPN接合特性であ
るため非常に小さい。
2. Description of the Related Art Conventionally, a schottky device using a PN junction diode and a Schottky barrier has been used as a rectifying device.
There is a method of using a barrier diode and a power MOSFET as a rectifying element. The PN junction diode has a forward voltage drop V due to the built-in potential of the PN junction.
F cannot be reduced below 0.8 V, and reverse recovery loss due to accumulation of minority carriers occurs. Since the Schottky barrier diode is a majority carrier device, VF can be reduced by using a barrier metal having a small Schottky barrier height without reverse recovery loss. However, as the height of the Schottky barrier decreases, the reverse leakage current increases. Therefore, there is a limit to reducing the Schottky barrier (2). On the other hand, since the power MOSFET has a current rising from 0 V, a rectifying element with a very small VF can be realized by using a MOSFET with a very small on-resistance. Further, since the device is a majority carrier device, there is no reverse recovery loss, and the reverse leakage current is very small because of the PN junction characteristics.

【0003】[0003]

【従来技術の問題点】係るパワ−MOSFETのオン抵
抗は、微細加工技術により単位面積当たりのチャネル幅
を増加させることにより実現されてきている。しかし、
図2に示すように、基本的にチャネル3を有しているた
め、平面上にチャネルを形成する通常の縦型MOSFE
Tにおいては、チャネル長の寸法により、微細化が制限
される。さらに、チャネル領域3の抵抗成分があるた
め、オン抵抗の低減にも限界がある。また、チャネル領
域3上にゲ−ト酸化膜7が存在するため、ゲ−ト・ソ−
ス間の容量15及びゲ−ト・ドレ−ン間容量16が存在
する。従って、このようなパワ−MOSFETを動作さ
せた場合、これらゲ−ト容量の充放電による電力損失を
生じるため、オン抵抗低減によるVFの低下に見合った
電子機器の効率化が図れない等の問題がある。
2. Description of the Related Art The on-resistance of a power MOSFET has been realized by increasing the channel width per unit area by a fine processing technique. But,
As shown in FIG. 2, since the semiconductor device basically has a channel 3, a normal vertical MOSFE forming a channel on a plane is used.
At T, miniaturization is limited by the size of the channel length. Further, since there is a resistance component in the channel region 3, there is a limit in reducing the on-resistance. Further, since the gate oxide film 7 exists on the channel region 3, the gate source
The capacitance 15 between the gate and the drain and the capacitance 16 between the gate and the drain exist. Therefore, when such a power MOSFET is operated, a power loss occurs due to charging and discharging of these gate capacitances, so that it is not possible to increase the efficiency of electronic devices corresponding to the reduction in VF due to the reduction in on-resistance. There is.

【0004】[0004]

【課題を解決するための本発明に手段】本発明は、ドレ
ーン領域となる第一導電型の半導体基体に形成したソー
ス領域となるショットキーバリアー領域と、該ショット
キーバリアー領域とドレーン領域にまたがるように形成
されたゲート酸化膜及びゲート電極と、該ゲート電極に
囲まれた窓内にソース電極とを有する半導体装置におい
て、前記ゲート電極に囲まれた窓内のソース領域に、S
i面がゲート領域のSi面より少なくとも0.1μmか
ら2.0μmの深さの溝を有し、この溝の底部に前記ソ
ース領域となるショットキーバリアー領域がシリサイド
から形成され、前記ソース領域となるシリサイドの端部
が前記ゲート電極の直下に形成され、、前記溝底部シリ
サイド直下に第二導電型不純物領域を有し、前記ゲート
電極の直下ドレーン領域に前記ゲート酸化膜より厚い絶
縁膜を有し、この厚い絶縁膜直下に第二導電型の不純物
領域を有するここを特徴とする。、
According to the present invention, there is provided a Schottky barrier region serving as a source region formed on a semiconductor substrate of a first conductivity type serving as a drain region, and extending over the Schottky barrier region and the drain region. In a semiconductor device having a gate oxide film and a gate electrode formed as described above and a source electrode in a window surrounded by the gate electrode, the source region in the window surrounded by the gate electrode has S
The i-plane has a groove having a depth of at least 0.1 μm to 2.0 μm from the Si plane of the gate region, and a Schottky barrier region serving as the source region is formed at the bottom of the groove from silicide. An end of the silicide is formed immediately below the gate electrode, has a second conductivity type impurity region immediately below the trench bottom silicide, and has an insulating film thicker than the gate oxide film in a drain region immediately below the gate electrode. A feature is that an impurity region of the second conductivity type is provided directly under the thick insulating film. ,

【0005】[0005]

【発明の目的】パワ−MOSFETを同期整流素子とし
て使用した場合、ゲ−ト容量の充放電によるゲ−ト駆動
電力損失を少なくし、特に高いスイッチング周波数の使
用に供してオン抵抗、及びゲ−ト容量の非常に小さい同
期整流用半導体装置の提供を目的とする。
When a power MOSFET is used as a synchronous rectifier, a gate drive power loss due to charging and discharging of a gate capacitance is reduced, and particularly when a high switching frequency is used, an on-resistance and a gate driving power are reduced. It is an object of the present invention to provide a semiconductor device for synchronous rectification having a very small capacitance.

【0006】[0006]

【実施例】図1は本発明の一実施例構造図、図3はその
動作説明図で、図中1は高濃度ドレ−ン領域、2は低濃
度ドレ−ン領域、5はショットキ−領域、7はゲ−ト酸
化膜、8はポリSiゲ−ト電極、9は層間絶縁膜、10
はソ−ス電極である。図3は本デバイスの整流特性を示
したものである。1象限では、ソ−ス、ドレ−ン間は順
バイアス状態であり、この時、ゲ−ト電圧はドレ−ン電
位に対して正にバイアスされ、ゲ−ト電圧が正にバイア
スされるため、ショットキ−金属と接しているN型半導
体表面が蓄積状態になり、よりN型不純物濃度の高い状
態になる。この為、ショットキ−金属とN型半導体表面
との接触はオ−ミック接触となり、電流は0Vから流れ
始める。次に、第3次象限では、ソ−ス、ドレ−ン間は
逆バイアス状態であり、この時、ゲ−ト電圧はドレ−ン
電位に対して0または負にバイアスされる。この時、N
型シリコンとシリサイドショットキ−接合のバリア高さ
できまるリ−ク電流が流れるが、P型シ−ルド領域4及
びフロ−テングP型領域11の空乏層の広がりにより、
ショットキ−接合領域が空乏化され、リ−ク電流を抑え
ることができる。
FIG. 1 is a structural view of one embodiment of the present invention, and FIG. 3 is an explanatory view of the operation. In FIG. 1, 1 is a high-concentration drain region, 2 is a low-concentration drain region, and 5 is a Schottky region. 7 is a gate oxide film, 8 is a poly-Si gate electrode, 9 is an interlayer insulating film, 10
Is a source electrode. FIG. 3 shows the rectification characteristics of the device. In one quadrant, there is a forward bias between the source and the drain. At this time, the gate voltage is positively biased with respect to the drain potential and the gate voltage is positively biased. Then, the surface of the N-type semiconductor in contact with the Schottky metal is in an accumulation state, and the N-type impurity concentration is higher. Therefore, the contact between the Schottky metal and the N-type semiconductor surface becomes ohmic contact, and the current starts to flow from 0V. Next, in the third quadrant, the source and the drain are in a reverse bias state. At this time, the gate voltage is biased to 0 or negative with respect to the drain potential. At this time, N
Current flows depending on the barrier height between the silicon and the silicide Schottky junction, but due to the spread of the depletion layer in the P-type shield region 4 and the floating P-type region 11,
The Schottky junction region is depleted, and the leakage current can be suppressed.

【0007】また、ゲ−ト電極8の幅を極端に細く形成
すると、ゲ−ト抵抗が増加し、高周波動作が難しくなっ
てしまう問題が出てくる。低いゲ−ト抵抗にするために
は、ゲ−ト電極の幅をある程度確保しなければならな
い。しかし、ゲ−ト電極幅を広くすると、その分ゲ−ト
容量が増加してしまう。さらに、逆バイ (4) アス時の各セル間の空乏層がつながり難くなり、逆方向
リ−ク電流が増加してしまう問題が発生する。そこで、
ゲ−ト電極直下のショットキ−金属と接していない他の
ドレ−ン領域に厚い絶縁膜6を形成し、これによりこの
領域のゲ−ト容量の低減を行う。さらに、この厚い絶縁
膜6の下に形成したP型不純物領域11により、各セル
の空乏層が、このP型不純物領域を介して各セル間につ
ながるようにして、逆方向のリ−ク電流を抑えることが
できる。このようにして作られた同期整流素子を、電子
機器、例えばスイッチング電源に使用した場合、オン抵
抗が小さく、さらにゲ−ト駆動電力が小さくてすむた
め、高効率のスイッチング電源を得ることができ、また、
寄生的に存在するバイポ−ラトランジスタによる動作が
無視できるため信頼性が高くなる。
If the width of the gate electrode 8 is extremely small, the gate resistance increases, which causes a problem that high-frequency operation becomes difficult. In order to obtain a low gate resistance, it is necessary to secure a certain width of the gate electrode. However, when the width of the gate electrode is widened, the gate capacitance increases accordingly. Further, the depletion layer between the cells at the time of the reverse bias (4) assuring becomes difficult to be connected, which causes a problem that the reverse leakage current increases. Therefore,
A thick insulating film 6 is formed in the other drain region directly under the gate electrode which is not in contact with the Schottky metal, thereby reducing the gate capacitance in this region. Further, the depletion layer of each cell is connected between the cells via the P-type impurity region by the P-type impurity region 11 formed under the thick insulating film 6, so that the leakage current in the reverse direction is increased. Can be suppressed. When the synchronous rectifier thus manufactured is used in an electronic device, for example, a switching power supply, the on-resistance is small and the gate drive power is small, so that a high efficiency switching power supply can be obtained. ,Also,
Since the operation due to the parasitic bipolar transistor can be ignored, the reliability is improved.

【0008】因みに図4(a)〜(l)は本発明の製造
方法を示す工程断面図で、まず(a)高濃度ドレ−ン領
域となる高濃度N型基体1に低高濃度ドレ−ン領域2と
なるN型領域をエピタキシャル成長させたSi基体を用
い、(b)ゲ−ト電極となる領域の一部にP型不純物領
域11を形成し、(c)その上に厚い絶縁膜6を熱酸化
又はCVD法により形成し、パタ−ニングを行う。
(d)次に、ゲ−ト酸化膜7・ゲ−ト電極用ポリSi8
を形成し、ポリSiの抵抗を下げる為に、例えばPOC
13等によりリンを高濃度にド−プする。(e)次に、
フォトレジストをマスクにしてゲ−ト電極用ポリSiの
パタ−ニングを行う。この時、窓が開いたポリSiを突
き抜けて下地のSiもエッチングを行い0.1μmから
2.0μmの範囲の深さの溝12を形成する。(f)次
に、全面酸化を行う。この場合、酸化膜厚さはポリSi
領域とポリSi窓部では、不純物濃度が異なる為、厚さ
が異なる。ポリSi領域の方が厚く形成される。(g)
次に、P型不純物となるB+イオン注入、拡散を行い、
P型領域4を形成する。(h)次に、ポリSi窓部のS
i上の酸化膜をウェット処理で除去する。この場合、ポ
リSi上の方が厚いので、ポリSi上の酸化膜は残った
状態になっている。
FIGS. 4 (a) to 4 (l) are cross-sectional views showing the steps of a manufacturing method according to the present invention. First, (a) a low-concentration drain is applied to a high-concentration N-type substrate 1 serving as a high-concentration drain region. (B) a P-type impurity region 11 is formed in a part of a region serving as a gate electrode, and (c) a thick insulating film 6 is formed thereon. Is formed by thermal oxidation or CVD, and patterning is performed.
(D) Next, gate oxide film 7 and poly Si8 for gate electrode
To reduce the resistance of poly-Si, for example, POC
13 and so on to dope phosphorus to a high concentration. (E) Next,
Using the photoresist as a mask, patterning of poly-Si for the gate electrode is performed. At this time, the underlying Si is also etched by penetrating the poly-Si having the opened window to form a groove 12 having a depth in the range of 0.1 μm to 2.0 μm. (F) Next, the whole surface is oxidized. In this case, the oxide film thickness is poly Si
The region and the poly-Si window have different thicknesses due to different impurity concentrations. The poly Si region is formed thicker. (G)
Next, B + ion implantation and diffusion as P-type impurities are performed,
A P-type region 4 is formed. (H) Next, S in the poly-Si window
The oxide film on i is removed by a wet process. In this case, since the thickness on the poly-Si is thicker, the oxide film on the poly-Si remains.

【0009】 (5) (i)次に、全面に金属を蒸着又はスパッタ法により形
成する。この場合の金属は、Ti、Pt等である。
(j)次に、600℃程度の低温熱処理を行い、ポリS
i窓部のSi上の金属がSiと反応し、ポリSi窓部の
Si上のみにシリサイド5aが形成される。また、ポリ
Si上には酸化膜が残っており、この上の金属は反応し
ないで残っている。次に、シリサイド層と未反応金属と
の選択性のあるエッチング液、例えばアンモニア水と過
酸化水素水の混合液でエッチングを行う。この場合、ポ
リSiの窓の開いたSi溝部表面にのみ、低温で形成さ
れたシリサイドが残る。次に、800℃程度の熱処理を
行い600℃で形成されたシリサイド層の低抵抗化を行
う。(k)次に、層間絶縁膜をCVD法により形成、コ
ンタクトホ−ル9aを形成し、(l)Al電極10を形
成する。
(5) (i) Next, a metal is formed on the entire surface by vapor deposition or sputtering. The metal in this case is Ti, Pt, or the like.
(J) Next, low-temperature heat treatment at about 600 ° C.
The metal on Si in the i-window portion reacts with Si, and silicide 5a is formed only on Si in the poly-Si window portion. Further, an oxide film remains on the poly-Si, and the metal on this remains without reacting. Next, etching is performed with an etching solution having a selectivity between the silicide layer and the unreacted metal, for example, a mixed solution of aqueous ammonia and aqueous hydrogen peroxide. In this case, the silicide formed at a low temperature remains only on the surface of the Si groove where the poly-Si window is open. Next, heat treatment at about 800 ° C. is performed to reduce the resistance of the silicide layer formed at 600 ° C. (K) Next, an interlayer insulating film is formed by a CVD method, a contact hole 9a is formed, and (l) an Al electrode 10 is formed.

【0010】[0010]

【発明の効果】図5は従来例と比較した本発明実施例の
周波数(f)と損失(w)の関係を示す特性図で、図中
は従来例、は本発明の夫々特性を示す。本発明の構
造によればに示す如く、従来パワ−MOSに比べオ
ン抵抗が小さい為、導通ロスが小さく、さらに、ゲ−ト
容量も小さい為、ゲ−ト駆動ロスも小さい。従って、整
流素子としての損失が従来パワ−MOSに比べ、非常に
小さくでき、スイッチング周波数が大きくなっても損失
の増加が小さくできる。また、通常パワ−MOSFET
に見られる寄生バイポ−ラトランジスタ効果がないた
め、信頼性の高い半導体装置を得ることができる。さら
に、自己整合的にショットキ−バリア領域を形成するこ
とができる為、マスク工程を減らすことが出来、工程の
簡略化が図られ、また、オン抵抗を小さくする事が出来
る為、チップサイズの縮小化が出来るので、製造コスト
を低減する事ができる。
FIG. 5 is a characteristic diagram showing the relationship between the frequency (f) and the loss (w) of the embodiment of the present invention as compared with the conventional example. In the figure, the conventional example shows the respective characteristics of the present invention. According to the structure of the present invention, the ON resistance is smaller than that of the conventional power MOS, so that the conduction loss is small, and the gate capacitance is also small, so that the gate drive loss is small. Therefore, the loss as a rectifying element can be made very small as compared with the conventional power MOS, and the increase in loss can be made small even when the switching frequency becomes large. Normal power MOSFET
Since there is no parasitic bipolar transistor effect shown in FIG. Furthermore, since the Schottky barrier region can be formed in a self-aligned manner, the number of mask steps can be reduced, the steps can be simplified, and the on-resistance can be reduced, thereby reducing the chip size. Therefore, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例構造図 (6)FIG. 1 is a structural view of an embodiment of the present invention (6).

【図2】従来構造図FIG. 2 is a conventional structural diagram.

【図3】本発明の動作説明図FIG. 3 is a diagram illustrating the operation of the present invention.

【図4】本発明の製造方法を示す工程断面図FIG. 4 is a process sectional view showing the manufacturing method of the present invention.

【図5】従来例と比較した本発明の特性図FIG. 5 is a characteristic diagram of the present invention compared to a conventional example.

【符号の説明】[Explanation of symbols]

2 ドレ−ン領域 3 チャネル領域 4 シ−ルド領域 5 シリサイド領域 6 厚い絶縁膜 7 ゲ−ト酸化膜 8 ゲ−ト電極 9 層間絶縁膜 10 ソ−ス電極 11 フロ−ティング領域 12 溝 Reference Signs List 2 drain region 3 channel region 4 shield region 5 silicide region 6 thick insulating film 7 gate oxide film 8 gate electrode 9 interlayer insulating film 10 source electrode 11 floating region 12 groove

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ドレーン領域となる第一導電型の半導体基
体に形成したソース領域となるショットキーバリアー領
域と、該ショットキーバリアー領域とドレーン領域にま
たがるように形成されたゲート酸化膜及びゲート電極
と、該ゲート電極に囲まれた窓内にソース電極とを有す
る半導体装置において、前記ゲート電極に囲まれた窓内
のソース領域に、Si面がゲート領域のSi面より少な
くとも0.1μmから2.0μmの深さの溝を有し、こ
の溝の底部に前記ソース領域となるショットキーバリア
ー領域がシリサイドから形成され、前記ソース領域とな
るシリサイドの端部が前記ゲート電極の直下に形成さ
れ、前記溝底部シリサイド直下に第二導電型不純物領域
を有し、前記ゲート電極の直下ドレーン領域に前記ゲー
ト酸化膜より厚い絶縁膜を有し、この厚い絶縁膜直下に
第二導電型の不純物領域を有するここを特徴とする半導
体装置。
1. A Schottky barrier region serving as a source region formed on a semiconductor substrate of a first conductivity type serving as a drain region, a gate oxide film and a gate electrode formed so as to extend over the Schottky barrier region and the drain region. And a source electrode in a window surrounded by the gate electrode, wherein the source region in the window surrounded by the gate electrode has a Si surface at least 0.1 μm to 2 μm larger than the Si surface of the gate region. A trench having a depth of 0.0 μm, a Schottky barrier region serving as the source region is formed from silicide at the bottom of the groove, and an end of the silicide serving as the source region is formed immediately below the gate electrode; An insulating film having a second conductivity type impurity region immediately below the silicide at the bottom of the trench and a drain region immediately below the gate electrode being thicker than the gate oxide film; And a semiconductor device having a second conductivity type impurity region immediately below the thick insulating film.
JP19393493A 1993-07-09 1993-07-09 Semiconductor device Expired - Fee Related JP3210146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19393493A JP3210146B2 (en) 1993-07-09 1993-07-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19393493A JP3210146B2 (en) 1993-07-09 1993-07-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0730112A JPH0730112A (en) 1995-01-31
JP3210146B2 true JP3210146B2 (en) 2001-09-17

Family

ID=16316179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19393493A Expired - Fee Related JP3210146B2 (en) 1993-07-09 1993-07-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3210146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044151B2 (en) * 2006-06-26 2012-10-10 株式会社東芝 Semiconductor device
CN103915493A (en) * 2013-01-06 2014-07-09 上海华虹宏力半导体制造有限公司 Vdmos structure
CN107946351B (en) * 2017-09-20 2023-09-12 重庆中科渝芯电子有限公司 Schottky contact super barrier rectifier and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0730112A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US9252211B2 (en) Semiconductor device and manufacturing method thereof
US7791135B2 (en) Insulated gate silicon carbide semiconductor device and method for manufacturing the same
JP5395275B2 (en) Semiconductor device and manufacturing method thereof
CN102694009B (en) Semiconductor device and manufacture method thereof
KR101230680B1 (en) Semiconductor device and method for manufacturing the same
US7417265B2 (en) Schottky diode structure with enhanced breakdown voltage and method of manufacture
US20130270577A1 (en) Grid-umosfet with electric field shielding of gate oxide
US8377810B2 (en) Schottky barrier diode and method of forming a Schottky barrier diode
JP2004511910A (en) Trench double diffused metal oxide semiconductor transistor incorporating trench Schottky rectifier
JPWO2011136272A1 (en) Semiconductor device
US8691635B2 (en) Fabrication method of semiconductor device
JP3661664B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2004158813A (en) Semiconductor device and manufacturing method therefor
JP2000269487A (en) Semiconductor device and its manufacture
US11869969B2 (en) Semiconductor device and method for manufacturing the same
US10535783B2 (en) Unguarded schottky barrier diodes
JP2003101019A (en) Semiconductor device and manufacturing method therefor
JPH07131007A (en) Semiconductor device
JP2012004197A (en) Semiconductor device and method of manufacturing the same
US8309409B2 (en) Method for fabricating trench gate to prevent on voltage parasetic influences
JP3210146B2 (en) Semiconductor device
JPH05343686A (en) Semiconductor device and manufacture thereof
US6855983B1 (en) Semiconductor device having reduced on resistance
WO2011027525A1 (en) Semiconductor element and method for manufacturing same
US20240120394A1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees