JPH0480613B2 - - Google Patents

Info

Publication number
JPH0480613B2
JPH0480613B2 JP16194487A JP16194487A JPH0480613B2 JP H0480613 B2 JPH0480613 B2 JP H0480613B2 JP 16194487 A JP16194487 A JP 16194487A JP 16194487 A JP16194487 A JP 16194487A JP H0480613 B2 JPH0480613 B2 JP H0480613B2
Authority
JP
Japan
Prior art keywords
zero
output
current
voltage
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16194487A
Other languages
Japanese (ja)
Other versions
JPS648822A (en
Inventor
Masahiko Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Trading Co Ltd
Original Assignee
Hikari Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Trading Co Ltd filed Critical Hikari Trading Co Ltd
Priority to JP16194487A priority Critical patent/JPS648822A/en
Publication of JPS648822A publication Critical patent/JPS648822A/en
Publication of JPH0480613B2 publication Critical patent/JPH0480613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高電圧線路等の地絡事故時の地絡電流
を検出して保護動作を行う継電装置に係わり、特
にこの地絡電流を3変流器により検出するものに
関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a relay device that detects a ground fault current in the event of a ground fault accident on a high voltage line, etc. and performs a protective operation. Concerning what is detected by a flow device.

従来の技術 地絡継電装置は、線路に地絡事故が発生した場
合に地絡電流を検出してこの地絡電流が一定値以
上流れたときに警報を発したり事故回線をしや断
するなどの一定の保護動作を行わせる継電装置で
ある。
Conventional technology A ground fault relay device detects ground fault current when a ground fault occurs on a line, and when this ground fault current flows over a certain value, it issues an alarm or disconnects the faulty line. This is a relay device that performs certain protective operations such as.

この地絡電流の検出には貫通形の零相変流器が
広く使われている。貫通形の零相変流器は3相の
1次導体を通す貫通孔を有する鉄心に2次巻線を
分布して巻回し、貫通孔に1次導体を貫通して1
次回路に地絡事故が発生したとき、2次巻線に地
絡電流に比例した出力を取り出すようにしてい
る。
Penetrating zero-phase current transformers are widely used to detect this ground fault current. A through-type zero-phase current transformer winds the secondary windings distributed around an iron core that has through holes through which three-phase primary conductors pass, and one
When a ground fault occurs in the next circuit, an output proportional to the ground fault current is output to the secondary winding.

発明が決しようとする問題点 零相変流器を高圧配電盤内に設置する場合、零
相変流器の貫通孔は比較的小径であるため、この
貫通孔に3相の高圧1次導体を貫通させる場合
は、各導体間および導体と鉄心や2次巻線間を厳
重に絶縁する必要があり、また貫通前後において
は3相の各導体間を一定間隔引き離す必要があ
り、これらの工事は容易ではなく、またスペース
が必要となる。
Problems to be Solved by the Invention When a zero-phase current transformer is installed in a high-voltage distribution board, the through-hole of the zero-phase current transformer has a relatively small diameter, so it is necessary to insert three-phase high-voltage primary conductors into this through-hole. When penetrating, it is necessary to strictly insulate between each conductor and between the conductor and the core or secondary winding, and before and after penetrating, it is necessary to separate the conductors of the three phases by a certain distance. It is not easy and requires space.

そこで各相の高圧1次導体にそれぞれ別個の変
流器を設け、その2次側を並列に接続して両端か
ら零相電流出力を得る方法(以下、3CT方式と称
す)も試みられているが、負荷電流の急激な増
加、例えば開閉器等の投入時に残留電流出力(定
格電流以上の電流が流れた場合、鉄心が飽和し、
その飽和点が各変流器とも同じでないため2次出
力に不平衡を生じ見掛上の零相電流が流れる。)
が出力され、この出力は地絡事故による零相電流
との区別ができないため地絡継電器が誤動作をす
るという欠点を有し、実用に供されていない。
Therefore, a method has been attempted in which separate current transformers are installed in the high-voltage primary conductors of each phase, and the secondary sides are connected in parallel to obtain zero-sequence current output from both ends (hereinafter referred to as the 3CT method). However, when there is a sudden increase in load current, for example when a switch is turned on, residual current output (if a current exceeding the rated current flows, the iron core will become saturated,
Since the saturation point is not the same for each current transformer, the secondary output becomes unbalanced and an apparent zero-sequence current flows. )
Since this output cannot be distinguished from the zero-sequence current caused by a ground fault accident, it has the disadvantage that the ground fault relay malfunctions, and is not put to practical use.

本発明は、以上の点に鑑みなされたもので、配
電盤の設置面積が少なくて済み、且つ取付工事も
簡単な3CT方式において、検出電流が、負荷電流
の急激な増加によるものか、地絡電流によるもの
かを判別して誤動作のない地絡継電装置を提供し
ようとするものである。
The present invention has been made in view of the above points, and uses the 3CT method, which requires a small installation area of the switchboard and is easy to install. The purpose of the present invention is to provide a ground fault relay device that does not malfunction by determining whether the ground fault is caused by a ground fault.

問題を解決するための手段 3相の各相に夫々設けた変流器を並列接続して
零相電流を検出し、該零相電流が設定レベルに達
したとき零相電流出力信号を出してリレーを動作
させるようにした地絡継電装置において、前記各
変流器の浮遊静電容量を利用して零相電圧を検出
する検出手段と、この零相電圧をあらかじめ各相
の浮遊静電容量の不平衡に基づく残留電圧信号を
記憶する記憶手段と、該記憶した信号と地絡事故
時に発生する零相電圧信号とを合成する合成手段
と、その合成信号が設定レベルに達したときに零
相電圧出力信号を出すレベル検出手段と、該零相
電圧出力信号と前記零相電流出力信号とが同時に
出力されたときに前記リレーを動作させる手段を
備える。
Measures to solve the problem Detect the zero-sequence current by connecting current transformers installed in each of the three phases in parallel, and output a zero-sequence current output signal when the zero-sequence current reaches a set level. A ground fault relay device configured to operate a relay includes a detection means for detecting a zero-sequence voltage using the stray capacitance of each current transformer, and a detection means for detecting a zero-sequence voltage by using the stray capacitance of each current transformer, and a storage means for storing a residual voltage signal based on capacitance unbalance; a synthesis means for synthesizing the stored signal and a zero-sequence voltage signal generated at the time of a ground fault; and when the synthesized signal reaches a set level. The apparatus includes level detection means for outputting a zero-phase voltage output signal, and means for operating the relay when the zero-phase voltage output signal and the zero-phase current output signal are output simultaneously.

作 用 地絡事故が無い正常時においては、零相電流は
流れず、また各相に設けられた変流器の浮遊静電
容量がアンバランスの場合で残留電圧が発生して
も、零相電圧が発生していないのでその合成出力
信号も出ないので、リレーは動作しない。
Operation Under normal conditions with no ground faults, zero-sequence current does not flow, and even if residual voltage occurs when the stray capacitance of the current transformer installed in each phase is unbalanced, the zero-sequence current does not flow. Since no voltage is generated, there is no combined output signal, so the relay does not operate.

地絡事故が発生し、零相電流が設定レベル以上
となり、また零相電圧の方も記憶された正常時の
残留電圧と地絡事故により発生した零相電圧との
合成電圧が設定レベルに達すると、零相電流と零
相電圧の出力信号が出てアンド条件が成立し、リ
レーが動作する。また負荷開閉器の投入により負
荷電流が急激に変化して見掛上の零相電流が流れ
設定レベルに達した場合は、零相電流信号は出力
されるが、零相電圧は発生せず、従つてアンド条
件は成立しないのでリレーは動作しない。
When a ground fault occurs and the zero-sequence current exceeds the set level, the zero-sequence voltage also reaches the set level when the composite voltage of the stored normal residual voltage and the zero-sequence voltage that occurred due to the ground fault occurs. Then, output signals of zero-sequence current and zero-sequence voltage are output, an AND condition is established, and the relay operates. In addition, if the load current suddenly changes when the load switch is turned on and an apparent zero-sequence current flows and reaches the set level, a zero-sequence current signal is output, but no zero-sequence voltage is generated. Therefore, the AND condition does not hold and the relay does not operate.

以上のように、地絡事故による零相電流が設定
レベル以上流れた場合以外は動作せず、誤動作の
無い此種継電装置が得られる。
As described above, it is possible to obtain this type of relay device that does not operate unless the zero-sequence current due to a ground fault flows at a set level or higher, and is free from malfunctions.

実施例 以下本発明の一実施例を第1図乃至第4図によ
つて説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明の一実施例を示すブロツク結線
図で、I0は零相電流、1は零相電流を増巾するた
めの増巾器、2は整流器で増巾された零相電流を
整流する。3はレベル検出回路で、整流器2の出
力が設定レベル以上となつたときに後述アンドゲ
ート9に零相電流出力信号を出す。V0は零相電
圧、4,5は互に並列に設けられ零相電圧を増巾
するための増巾器、6は記憶回路(例えば遅延回
路等)で正常時における増巾器5の出力を記憶す
る。7は差動増巾器で、増巾器4と記憶回路6の
出力を合成して残留出力電圧から地絡事故時の変
化量を取り出しこれを増巾してレベル検出回路8
に出力する。レベル検出回路8は差動増巾器7の
出力が設定値以上となつたときアンドゲーート9
に出力信号を出す。アンドゲート9は、レベル検
出回路3と8から出力信号が同時に入つたときに
タイマー10に出力信号を出す。タイマー10は
アンドゲート9からの信号を受けたとき、設定時
間後リレー11に出力を出し、該リレーを動作さ
せ、しや断器(図示省略)等をしや断する。
FIG. 1 is a block wiring diagram showing an embodiment of the present invention, where I 0 is a zero-sequence current, 1 is an amplifier for amplifying the zero-sequence current, and 2 is a zero-sequence current amplified by a rectifier. rectify. 3 is a level detection circuit which outputs a zero-phase current output signal to an AND gate 9, which will be described later, when the output of the rectifier 2 exceeds a set level. V 0 is the zero-sequence voltage, 4 and 5 are amplifiers arranged in parallel to amplify the zero-sequence voltage, and 6 is a memory circuit (for example, a delay circuit), which is the output of the amplifier 5 during normal operation. remember. 7 is a differential amplifier, which combines the outputs of the amplifier 4 and the memory circuit 6, extracts the amount of change at the time of a ground fault from the residual output voltage, amplifies it, and sends it to the level detection circuit 8.
Output to. When the output of the differential amplifier 7 exceeds a set value, the level detection circuit 8 outputs an AND gate 9.
output signal to. AND gate 9 outputs an output signal to timer 10 when output signals from level detection circuits 3 and 8 are input simultaneously. When the timer 10 receives the signal from the AND gate 9, it outputs an output to the relay 11 after a set time, activates the relay, and disconnects the breaker (not shown) or the like.

第2図は、零相電流I0と零相電圧V0を検出する
ための回路図で、R,S,Tは3相各相の高圧1
次導体、CT1,CT2,CT3は各高圧1次導体
に個々に設けられた変流器で、その2次巻線は互
いに並列接続され、抵抗rに接続される。この抵
抗rの両端から零相電流信号I0を検出する。ZPC
は零相電圧検出装置で、各変流器CT1,CT2,
CT3の共通接続線の一方とアースE間に設けら
れる。CPその分圧コンデンサ、Tは変成器を示
し、この変成器Tの2次巻線側から零相電圧信号
V0を検出する。LSは負荷開閉器をを示している。
第3図はこの零相電圧を検出する等価回路を示
し、C1,C2,C3は各変流器と高圧1次導体間の
浮遊静電容量を示し、第4図は各変流器の浮遊静
電容量がアンバランスのときの残留電圧出力を説
明するためのもので、アンバランスがあると本来
の中性点Nが浮遊静電容量による中性点N′とな
り、N−N′の残留電圧が常に出る。
Figure 2 is a circuit diagram for detecting zero-sequence current I 0 and zero-sequence voltage V 0 , where R, S, and T are high voltage 1 of each of the three phases.
The secondary conductors, CT1, CT2, and CT3, are current transformers provided individually in each high-voltage primary conductor, and their secondary windings are connected in parallel with each other and connected to a resistor r. A zero-phase current signal I 0 is detected from both ends of this resistor r. ZPC
is a zero-phase voltage detection device, and each current transformer CT1, CT2,
Provided between one of the common connection lines of CT3 and earth E. CP is a voltage dividing capacitor, T is a transformer, and the zero-phase voltage signal is output from the secondary winding side of this transformer T.
Detect V 0 . LS indicates the load switch.
Figure 3 shows an equivalent circuit for detecting this zero-sequence voltage, C 1 , C 2 , and C 3 represent the stray capacitance between each current transformer and the high-voltage primary conductor, and Figure 4 shows each current transformer. This is to explain the residual voltage output when the stray capacitance of the device is unbalanced. When there is unbalance, the original neutral point N becomes the neutral point N' due to the stray capacitance, and N-N ′ residual voltage always appears.

次に以上の構成による動作を説明する。 Next, the operation of the above configuration will be explained.

各相に設けられた変流器CT1,CT2,CT3
の浮遊静電容量C1,C2,C3は、各変流器の形状,
取付方法等の差により同じとはならず、従つて正
常時においても単にこれら静電容量を合成しただ
けでは第4図に示すようにN−N′に相当する残
留電圧Vxが常に出力されている。この残留電圧
Vxは、第1図の零相電圧信号V0として入力され
る。この残留電圧Vxは増巾器4,5で増巾され
一方は記憶回路6を介して、他方はそのまま差動
増巾器7に入力される。従つて正常時には、増巾
器4の入力もVxであるから差動増巾器7の入力
信号はVx同志が比較されることになり、その差
の出力信号は無いので、レベル検出回路8からの
零相電圧出力信号は出ない。また零相電流も正常
時には流れないので、レベル検出回路3からの零
相電流出力信号も出ないため、アンドゲート9か
ら出力信号は出ず、リレー11は不動作の状態に
ある。
Current transformers CT1, CT2, CT3 installed in each phase
The stray capacitances C 1 , C 2 , C 3 are the shape of each current transformer,
They are not the same due to differences in installation methods, etc. Therefore, even in normal conditions, simply combining these capacitances will always output a residual voltage V x equivalent to N-N' as shown in Figure 4. ing. This residual voltage
V x is input as the zero-phase voltage signal V 0 in FIG. This residual voltage V x is amplified by amplifiers 4 and 5, and one is inputted to a differential amplifier 7 via a storage circuit 6, and the other is inputted as is to a differential amplifier 7. Therefore, under normal conditions, the input signal of the amplifier 4 is also V x , so the input signal of the differential amplifier 7 is compared with V x , and since there is no output signal of the difference, the level detection circuit The zero-phase voltage output signal from 8 is not output. Further, since the zero-sequence current does not flow under normal conditions, no zero-sequence current output signal is output from the level detection circuit 3, so no output signal is output from the AND gate 9, and the relay 11 is in a non-operating state.

このような正常状態において例えば負荷開閉器
Lsを投入して1次導体R,S,Tに瞬時的に定
格電流より大きい突入電流が流れたとすると、変
流器CT1,CT2,CT3の出力電流に不平衡を
生じ、抵抗rの両端には見掛上の零相電流I0が発
生し、レベル検出回路3の設定レベル以上になつ
て、アンドゲート9に零相電流出力信号を出すこ
とがある。しかしこの場合は零相電圧V0は残留
電圧Vxのみで正常時と変らないので、レベル検
出回路8からは出力信号が出ないため、アンドゲ
ート9のアンド条件が成立せず、リレー11側に
出力信号を出すことはない。
In such a normal state, for example, a load switch
If Ls is turned on and an inrush current larger than the rated current instantaneously flows through the primary conductors R, S, and T, an imbalance will occur in the output currents of current transformers CT1, CT2, and CT3, and the An apparent zero-sequence current I 0 is generated, which may exceed the set level of the level detection circuit 3 and output a zero-sequence current output signal to the AND gate 9. However, in this case, the zero-phase voltage V 0 is only the residual voltage V x and is unchanged from the normal state, so no output signal is output from the level detection circuit 8, so the AND condition of the AND gate 9 is not satisfied, and the relay 11 side It does not output any output signal.

次に導体R,S,Tの1線のg点に地絡事故が
発生し、その零相電流I0が、レベル検出回路3の
設定レベルに達した場合は、アンドゲート9に出
力信号を出し、同時に零相電圧も発生して第4図
のN′→gの電圧が現われ、差動増巾器7に入力
される。差動増巾器7には、N′→gとN′−N相
当する電圧が入力されて該差動増巾器7で本来求
むべき零相電圧信号NN→gが求められレベル検
出回路8に入力される。このレベル検出回路8の
出力信号が設定レベル以上になつたときレベル検
出回路8から出力信号が出されアンドゲート9に
入力される。このときはアンド条件が成立してタ
イマー10に出力信号を出し、設定時間後リレー
11に信号を与えて該リレー11によりしや断器
をしや断又は警報を発して保護動作を行う。
Next, if a ground fault occurs at point g of one line of conductors R, S, and T, and the zero-sequence current I0 reaches the set level of level detection circuit 3, an output signal is sent to AND gate 9. At the same time, a zero-phase voltage is also generated, and the voltage N'→g in FIG. 4 appears and is input to the differential amplifier 7. A voltage corresponding to N′→g and N′−N is input to the differential amplifier 7, and the zero-phase voltage signal NN→g that should be originally obtained is obtained by the differential amplifier 7, and the level detection circuit 8 is input. When the output signal of this level detection circuit 8 exceeds a set level, an output signal is outputted from the level detection circuit 8 and inputted to the AND gate 9. At this time, the AND condition is satisfied and an output signal is sent to the timer 10, and after a set time, a signal is given to the relay 11, which causes the relay 11 to cut off the breaker or issue an alarm to perform a protective operation.

発明の効果 以上の通り、従来は3CT方式による零相電流の
検出には残留電流が大きいため、地絡継電に利用
すると誤動差を生じ実用化が困難であるとされて
いたが、本発明においては3CTの各変流器と高圧
1次導体間の浮遊静電容量を利用して零相電圧を
検出し、この零相電圧信号と前記の零相電流信号
のアンド条件によりリレーを動作させるようにし
て残留電流による誤動作の無い地絡継電器が得ら
れると共に、各変流器は各相別に高圧1次導体取
付ければよいので配電盤内の設置面積が大巾に減
少して配電盤の小形化ができ、また取付,配線工
事が極めて簡単となる。また、零相電圧信号を得
るため従来は別個に零相電圧検出用の高電圧コン
デンサを配電盤内の電路に設ける必要があつた
が、本発明では、変流器の本来有している浮遊静
電容量を利用しているので、新に設ける必要がな
い等此種継電装置のトータル価格が安価にできる
等優れた効果を奏する。
Effects of the Invention As described above, it was conventionally believed that zero-sequence current detection using the 3CT method involved a large residual current, which would lead to error differences and be difficult to put into practical use when used for ground fault relaying. In the invention, the zero-sequence voltage is detected using the stray capacitance between each current transformer of the 3CT and the high-voltage primary conductor, and the relay is operated according to the AND condition of this zero-sequence voltage signal and the above-mentioned zero-sequence current signal. In this way, it is possible to obtain a ground fault relay that does not malfunction due to residual current, and since the high-voltage primary conductor of each current transformer can be installed separately for each phase, the installation area within the switchboard is greatly reduced, making the switchboard more compact. It also makes installation and wiring work extremely easy. Furthermore, in order to obtain a zero-sequence voltage signal, conventionally it was necessary to separately install a high-voltage capacitor for zero-sequence voltage detection in the electrical circuit in the switchboard, but with the present invention, the stray static Since it utilizes capacitance, it has excellent effects such as no need for new installation and the total cost of this type of relay device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク結線
図、第2図は零相電流と零相電圧を検出するため
の回路図、第3図は第2図の等価回路図、第4図
は残留電圧の説明図。 1,4,5……増巾器、2……整流器、3,8
……レベル検出回路、6……記憶回路、7………
差動増巾器、ZPC……零相電圧検出装置、CT1,
CT2,CT3……変流器、C1,C2,C3……浮遊
静電容量。
Fig. 1 is a block wiring diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram for detecting zero-sequence current and zero-sequence voltage, Fig. 3 is an equivalent circuit diagram of Fig. 2, and Fig. 4 is an explanatory diagram of residual voltage. 1, 4, 5...amplifier, 2...rectifier, 3,8
... Level detection circuit, 6 ... Memory circuit, 7 ......
Differential amplifier, ZPC...Zero phase voltage detection device, CT1,
CT2, CT3...Current transformer, C1 , C2 , C3 ...Stray capacitance.

Claims (1)

【特許請求の範囲】[Claims] 1 3相の各相に夫々設けた変流器を並列接続し
て零相電流を検出し、該零相電流が設定レベルに
達したとき出力信号を出してリレーを動作させる
ようにした地絡継電装置において、前記各変流器
の浮遊静電量を利用して零相電圧を検出し、この
零相電圧をあらかじめ各相の浮遊静電容量の不平
衡に基づく残留電圧信号を記憶してこの記憶した
信号と地絡事故時に発生する零相電圧信号とを合
成してその合成信号が設定レベルに達したときに
零相電圧出力信号を出し、該零相電圧出力信号と
前記零相電流出力信号とが同時に出力されたとき
に前記リレーを動作させるようにしたことを特徴
とした地絡継電装置。
1 A ground fault system in which current transformers installed in each of the three phases are connected in parallel to detect the zero-sequence current, and when the zero-sequence current reaches a set level, an output signal is output to operate the relay. In the relay device, the zero-sequence voltage is detected using the stray capacitance of each current transformer, and the zero-sequence voltage is stored in advance as a residual voltage signal based on the unbalance of the stray capacitance of each phase. This stored signal and the zero-sequence voltage signal that occurs during a ground fault are synthesized, and when the combined signal reaches a set level, a zero-sequence voltage output signal is output, and the zero-sequence voltage output signal and the zero-sequence current are output. A ground fault relay device characterized in that the relay is operated when an output signal is output at the same time.
JP16194487A 1987-06-29 1987-06-29 Ground-fault relay Granted JPS648822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16194487A JPS648822A (en) 1987-06-29 1987-06-29 Ground-fault relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16194487A JPS648822A (en) 1987-06-29 1987-06-29 Ground-fault relay

Publications (2)

Publication Number Publication Date
JPS648822A JPS648822A (en) 1989-01-12
JPH0480613B2 true JPH0480613B2 (en) 1992-12-21

Family

ID=15745009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16194487A Granted JPS648822A (en) 1987-06-29 1987-06-29 Ground-fault relay

Country Status (1)

Country Link
JP (1) JPS648822A (en)

Also Published As

Publication number Publication date
JPS648822A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US3909672A (en) Capacitor bank protection relay
JPH0480613B2 (en)
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
JP3019363B2 (en) Ground fault display of distribution line
JP3112706B2 (en) Ground fault detection device for distribution system
JP3378418B2 (en) Leakage protection method
JPH0638690B2 (en) Ground fault relay
JP2594682B2 (en) Transformer protection relay
JP2002027661A (en) Leakage detection/protection method and apparatus for commonly grounded circuit
JPH0919047A (en) Ground-fault-line selection relay system by comparison of zero-phase current in distribution line
JP3080307B2 (en) How to prevent accidents caused by earth leakage breakers
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JPS6285636A (en) Grounding protecting system
JP3075607U (en) Ground fault protection device
JPS6155327B2 (en)
JPH11211776A (en) Method for detecting trouble of capacitor device
JP3254765B2 (en) Phase protection equipment shunt reactor protection relay
JP2732000B2 (en) Insulation degradation detector
JP2705198B2 (en) Ground fault detector
JPH07236226A (en) Ground protector
JPH0636646B2 (en) Ground fault direction relay
JPH01114324A (en) Selective ground-fault relay
JPS61236320A (en) Ground-fault detection system for parallel multiple circuit
GB1455845A (en) Ground fault protection system
JPH05276648A (en) Wiring method of test terminal for bus protective relay