JPH0636646B2 - Ground fault direction relay - Google Patents

Ground fault direction relay

Info

Publication number
JPH0636646B2
JPH0636646B2 JP62175326A JP17532687A JPH0636646B2 JP H0636646 B2 JPH0636646 B2 JP H0636646B2 JP 62175326 A JP62175326 A JP 62175326A JP 17532687 A JP17532687 A JP 17532687A JP H0636646 B2 JPH0636646 B2 JP H0636646B2
Authority
JP
Japan
Prior art keywords
zero
phase
ground fault
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62175326A
Other languages
Japanese (ja)
Other versions
JPS6419910A (en
Inventor
正彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Trading Co Ltd
Original Assignee
Hikari Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Trading Co Ltd filed Critical Hikari Trading Co Ltd
Priority to JP62175326A priority Critical patent/JPH0636646B2/en
Publication of JPS6419910A publication Critical patent/JPS6419910A/en
Publication of JPH0636646B2 publication Critical patent/JPH0636646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高圧配電線路等の地絡を検出する地絡方向継
電装置に係り、特に零相電圧信号を零相電流検出用の変
流器の浮遊静電容量を利用したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault direction relay device for detecting a ground fault such as a high voltage distribution line, and more particularly to a current transformer for detecting a zero phase voltage signal and a zero phase current. The thing using the floating capacitance of.

従来の技術 地絡方向継電装置は、地絡事故が発生したときに零相電
圧と零相電流を検出して、これらの電圧と電流の位相と
を比較し、その事故が零相変流器を境にして電源側か負
荷側かの方向を判別し、負荷側の地絡事故の場合には保
護動作を行う継電装置である。
2. Description of the Related Art A ground fault direction relay device detects a zero-phase voltage and a zero-phase current when a ground fault occurs and compares the phases of these voltages and currents to determine that the fault is a zero-phase current transformer. It is a relay device that discriminates the direction of the power supply side or the load side with the vessel as a boundary, and performs a protective operation in case of a ground fault accident on the load side.

第5図は、このような従来の地絡方向継電装置の回路図
を示している。
FIG. 5 shows a circuit diagram of such a conventional ground fault direction relay device.

第5図において、DGは地絡方向継電器、ZCTは零相電流
I0を検出するための零相変流器、ZPDは零相電圧E0を検
出するための零相電圧検出装置を示している。地絡方向
継電器DGは、これらの零相電圧E0及び零相電流I0を入
力とし、内部に電圧E0及び電流I0のレベルを検出して設
定レベルに達したときに波形整形された信号を出力する
レベル検出回路と、波形整形されたレベル検出回路の出
力信号を導入して位相比較し、地絡事故が変流器を境に
負荷側か電源側かを判別する位相判別回路を有する。そ
して負荷側で地絡事故が発生すると地絡方向継電器DG
に零相電流I0と零相電圧E0の信号が入力され、これらの
信号が設定レベルに達したとき矩形波のパルスおよび時
間巾の狭いパルスに変換された信号が位相判別回路に入
力されてこの位相判別回路で、前記の零相電流信号と零
相電圧信号が時間的に重なる時だけ出力を出し、時限回
路を経て補助リレーを動作させる。地絡事故が零相変流
器ZCTの電源側の場合は、零相電流の位相が180度
異るので零相電流信号と零相電圧信号とは時間的に波形
が重ならないので、位相判別回路から出力信号は出ない
ようにしてある。
In Fig. 5, DG is a ground fault direction relay, ZCT is a zero-phase current.
The zero-phase current transformer for detecting I 0 , ZPD indicates a zero-phase voltage detecting device for detecting the zero-phase voltage E 0 . The ground fault direction relay DG receives the zero-phase voltage E 0 and the zero-phase current I 0 as inputs, internally detects the levels of the voltage E 0 and the current I 0 , and shapes the waveform when the set level is reached. A phase detection circuit that introduces the output signals of the level detection circuit that outputs a signal and the waveform-shaped level detection circuit and compares the phases to determine whether the ground fault is on the load side or the power supply side with the current transformer as the boundary. Have. When a ground fault occurs on the load side, the ground fault direction relay DG
The signals of the zero-phase current I 0 and the zero-phase voltage E 0 are input to, and when these signals reach the set level, the rectangular wave pulse and the signal converted into the narrow pulse are input to the phase determination circuit. The lever discriminating circuit outputs an output only when the zero-phase current signal and the zero-phase voltage signal are temporally overlapped with each other, and the auxiliary relay is operated through the time limit circuit. When the ground fault is on the power supply side of the zero-phase current transformer ZCT, the phases of the zero-phase currents differ by 180 degrees, so the waveforms of the zero-phase current signal and zero-phase voltage signal do not overlap in time, so phase discrimination No output signal is output from the circuit.

発明が解決しようとする問題点 上記の地絡方向継電装置においては、零相電圧信号を得
るための零相電圧検出装置ZPDにはコンデンサが使用
されるが、このコンデンサは高圧線路に直接接続される
ので、絶縁対策が必要であり、一般的には高圧碍子に内
蔵される。従つて高価格となり、又配電盤内に設置する
場合も相間又は他の機器間との絶縁距離をとる必要があ
り取付スペースが大きくなり、且つ工事費も高くつく。
また各相の高圧線路の静電容量にはアンバランスがあり
零相電圧出力端子tには常に残留電圧(見掛上の零相電
圧)が発生しているので、地絡方向継電器DGの感度を
上げるために零相電圧出力端子tの出力信号を増巾する
と、地絡方向継電器DGが誤動作をする恐れがある。従
つて感度を上げることができず、感度を下げて誤動作を
防止する必要がある等の欠点があつた。
Problems to be Solved by the Invention In the above ground fault relay device, a capacitor is used for the zero-phase voltage detection device ZPD for obtaining the zero-phase voltage signal, but this capacitor is directly connected to the high voltage line. Therefore, it is necessary to take measures for insulation, and it is generally built in a high voltage insulator. Therefore, the cost is high, and even when the equipment is installed in a switchboard, it is necessary to secure an insulation distance between the phases or other devices, resulting in a large mounting space and high construction cost.
In addition, since there is an imbalance in the electrostatic capacity of the high-voltage line of each phase and a residual voltage (apparent zero-phase voltage) is always generated at the zero-phase voltage output terminal t, the sensitivity of the ground fault direction relay DG is high. If the output signal of the zero-phase voltage output terminal t is increased in order to increase the voltage, the ground fault direction relay DG may malfunction. Therefore, there is a drawback that the sensitivity cannot be increased and it is necessary to reduce the sensitivity to prevent malfunction.

本発明はこのような問題点に鑑みてなされたもので零相
電圧検出用の特別のコンデンサを必要とすることなく、
しかも誤動作の恐れのない此種継電装置を得ることを目
的としたものである。
The present invention has been made in view of such problems, without requiring a special capacitor for zero-phase voltage detection,
Moreover, the purpose is to obtain this type of relay device that is free from the risk of malfunction.

問題点を解決するための手段 本発明において、上記の問題点を解決するための手段
は、線絡の地絡事故時に発生する零相電流と零相電圧を
検出して零相電流信号と零相電圧信号を得、これら零相
電流信号と零相電圧信号が設定レベルに達したときその
位相を比較して地絡事故が前記零相電流検出用の変流器
を境として電源側か負荷側かの方向を判別して負荷側で
あるときに動作するようにした地絡方向継電装置におい
て、前記零相電圧信号を,前記変流器の浮遊静電容量を
利用して検出し、且つこの浮遊静電容量の不平衡に基づ
く残留電圧と地絡時に発生する零相電圧とを合成してそ
の差によつて得るようにする。
Means for Solving the Problems In the present invention, a means for solving the above problems is to detect a zero-phase current and a zero-phase voltage that occur at the time of a ground fault due to a line fault and to detect a zero-phase current signal and a zero-phase current signal. The phase voltage signal is obtained, and when the zero phase current signal and the zero phase voltage signal reach the set level, their phases are compared to each other, and a ground fault occurs at the power source side or the load with the current transformer for detecting the zero phase current as a boundary. In the ground fault direction relay device which is operated when it is the load side by discriminating the direction of the side, the zero-phase voltage signal is detected by using the stray capacitance of the current transformer, In addition, the residual voltage based on the imbalance of the floating capacitance and the zero-phase voltage generated at the time of the ground fault are combined to obtain the difference.

作用 地絡事故が無い正常時においては、零相電流も零相電圧
も発生しないので、地絡方向継電装置は動作しない。た
ゞ変流器の三相各相の浮遊静電容量は必ずしも同じとは
ならないので不平衡(アンバランス)による残留電圧が
発生するが、零相電圧が発生していないので、その合成
による差の信号は現われないため誤動作を生ずるおそれ
はない。
Action In a normal state where there is no ground fault accident, neither zero-phase current nor zero-phase voltage is generated, so the ground fault direction relay device does not operate. The stray capacitances of the three phases of the current transformer are not always the same, so residual voltage is generated due to unbalance, but since zero-phase voltage is not generated, the difference due to their combination is generated. Since the signal of does not appear, there is no risk of malfunction.

地絡事故が発生し、零相電流信号が設定レベルに達し、
また零相電圧の方も残留電圧との差が設定レベルに達す
と、零相電流信号と零相電圧信号との位相が比較され地
絡事故が負荷側であるときは地絡方向継電装置は動作す
る。
A ground fault occurred, the zero-phase current signal reached the set level,
Also, when the difference between the zero-phase voltage and the residual voltage reaches the set level, the phases of the zero-phase current signal and the zero-phase voltage signal are compared, and if the ground fault is on the load side, the ground fault direction relay device. Works.

また、正常時に負荷開閉器等の投入により負荷電流が急
激に変化して見掛上の零相電流が流れ、設定レベル以上
となつた場合は、零相電流信号は出力されるが、零相電
圧は発生しないので、残留電圧との合成による差の信号
は現われないため地継方向継電装置は動作することはな
い。
Also, when the load switch is turned on normally during normal operation and the load current changes abruptly, an apparent zero-phase current flows, and when it exceeds the set level, the zero-phase current signal is output, but the zero-phase current signal is output. Since the voltage is not generated, the signal of the difference due to the combination with the residual voltage does not appear, so that the earth relay device does not operate.

実施例 以下、本発明の実施例を第1図乃至第4図によつて説明
する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は、本発明の一実施例を示すブロツク結線図で、
I0は零相電流、1は零相電流を増巾するための増巾器、
2は整流器で増巾された零相電流を整流する。3はレベ
ル検出回路で、整流器2の出力が設定レベルに達したと
きに信号を出す。4は波形整形回路で、増巾された零相
電流を矩形波のパルス状に変換する。5はアンドゲート
で、レベル検出回路3と波形整形回路の出力信号が同時
に入力されたときに出力信号を出す。V0は零相電圧、
6,7は互に並列に設けられた零相電圧を増巾するため
の増巾器、8は遅延回路(又は記憶回路)で、増巾器7
の出力信号を遅らせる。9は差動増巾器等のような合成
回路で、増巾器6の出力信号とこの信号を遅らせた遅延
回路8の出力信号とを合成し、その差の零相電圧信号を
得る。10は合成回路9の出力信号を整流する整流器、11
はレベル検出回路、12は合成回路9の出力信号を時間巾
の短いパルス状の信号に変換する波形整形回路、13はア
ンドゲートで、レベル検出回路11と波形整形回路12の出
力信号が同時に入力されたときに出力信号を出す。14は
位相判別回路で、アンドゲート5と13の出力信号を受け
てその位相を比較して地絡事故が零相変流器を境に負荷
側か電源側かを判別し、負荷側であるときに出力信号を
出しタイマー15を駆動させる。16はタイマー15の設定時
限後に出される信号により動作する補助リレーを示し、
該補助リレー15で事故回線のしや断器をしや断する。
FIG. 1 is a block connection diagram showing an embodiment of the present invention.
I 0 is a zero-phase current, 1 is an amplifier for increasing the zero-phase current,
2 rectifies the zero-phase current amplified by the rectifier. A level detection circuit 3 outputs a signal when the output of the rectifier 2 reaches a set level. Reference numeral 4 is a waveform shaping circuit, which converts the increased zero-phase current into a rectangular wave pulse. An AND gate 5 outputs an output signal when the output signals of the level detection circuit 3 and the waveform shaping circuit are simultaneously input. V 0 is the zero-phase voltage,
Reference numerals 6 and 7 denote amplifiers provided in parallel with each other for amplifying the zero-phase voltage, and 8 denotes a delay circuit (or a storage circuit).
Delay the output signal of. Reference numeral 9 is a combining circuit such as a differential amplifier, which combines the output signal of the amplifier 6 and the output signal of the delay circuit 8 which delays this signal to obtain a zero-phase voltage signal of the difference. 10 is a rectifier for rectifying the output signal of the synthesis circuit 9, 11
Is a level detection circuit, 12 is a waveform shaping circuit for converting the output signal of the synthesizing circuit 9 into a pulse signal having a short time width, 13 is an AND gate, and the output signals of the level detection circuit 11 and the waveform shaping circuit 12 are input at the same time. Output signal when given. Reference numeral 14 is a phase discriminating circuit, which receives the output signals of the AND gates 5 and 13 and compares their phases to discriminate whether the ground fault is on the load side or the power source side with the zero-phase current transformer as a boundary. At the same time, it outputs an output signal to drive the timer 15. 16 indicates an auxiliary relay operated by a signal issued after the setting time limit of the timer 15,
The auxiliary relay 15 is used to turn on and off the accident circuit.

第2図(a)は、3個の変流器により零相電流I0と零相電
圧V0を検出するための回路図で、R,S,Tは3相各相
の高圧1次導体、CT1,CT2,CT3は各高圧1次導体に個々
に設けられた変流器で、その2次巻線は互に並列接続さ
れ、抵抗rに接続される。この抵抗rの両端から零相電
流信号I0を検出する。ZPDは零相電圧検出装置で、各
変流器CT1,CT2,CT3の共通接続線の一方とアースE間に
設けられる。CPはその分圧コンデンサ、Tは変成器を示
し、この変成器Tの2次巻線側から零相電圧信号V0を検
出する。LSは負荷開閉器を示している。
FIG. 2 (a) is a circuit diagram for detecting zero-phase current I 0 and zero-phase voltage V 0 by three current transformers, where R, S, and T are high-voltage primary conductors for each of the three phases. , CT1, CT2, CT3 are current transformers individually provided in the respective high voltage primary conductors, and their secondary windings are connected in parallel with each other and connected to the resistor r. The zero-phase current signal I 0 is detected from both ends of this resistance r. ZPD is a zero-phase voltage detection device, and is provided between one of the common connection lines of the current transformers CT1, CT2 and CT3 and the ground E. C P represents the voltage dividing capacitor, T represents a transformer, and the zero-phase voltage signal V 0 is detected from the secondary winding side of the transformer T. L S indicates a load switch.

第2図(b)は、貫通形零相変流器ZCTにより零相電流I
0と零相電圧V0を検出する場合の回路図で、貫通形の零
相変流器ZCTは3相の高圧1次流体R,S,Tを鉄心
20の中を貫通し、この鉄心20に2次巻線21を分布して巻
回して成る。1次回路に接地電流が流れたとき2次巻線
に出力が現われ、端子Z1,Z2から零相電流I0を検出す
る。また高圧1次導体R,S,Tと鉄心20間、たR,
S,Tとシールド鉄心(図示省略)または2次巻線21間
には浮遊静電容量があるので、これらとアースE間に零
相電圧検出装置ZPDを設ければ、零相電圧V0が得られ
る。
Fig. 2 (b) shows the zero-phase current I by the through-type zero-phase current transformer ZCT.
In the circuit diagram for detecting 0 and zero-phase voltage V 0 , the through-type zero-phase current transformer ZCT is a three-phase high-pressure primary fluid R, S, T
It is formed by penetrating through 20 and distributing secondary windings 21 around this iron core 20. When a ground current flows in the primary circuit, an output appears in the secondary winding, and the zero-phase current I 0 is detected from the terminals Z 1 and Z 2 . Also, between the high voltage primary conductors R, S and T and the iron core 20,
Since there is a stray capacitance between S and T and the shield iron core (not shown) or the secondary winding 21, if a zero-phase voltage detector ZPD is provided between these and the ground E, the zero-phase voltage V 0 can get.

第3図はこの零相電圧を検出する等価回路を示し、C1
C2,C3は各変流器と高圧1次導体間の浮遊静電容量を示
し、第4図は各変流器の浮遊静電容量がアンバランスの
ときの残留電圧出力を説明するためのもので、アンバラ
ンスがあると本来の中性点Nが浮遊静電容量による中性
点N′となり、N′→Nの残留電圧Vが常に現われる。
Figure 3 shows an equivalent circuit for detecting the zero-phase voltage, C 1,
C 2 and C 3 indicate the stray capacitance between each current transformer and the high-voltage primary conductor, and Fig. 4 is for explaining the residual voltage output when the stray capacitance of each current transformer is unbalanced. intended, neutral point N 'next, N' original neutral point N when there is unbalanced due to the stray capacitance → residual voltage V x of N is always appear.

次に以下の構成による動作を説明する。Next, the operation of the following configuration will be described.

各相に設けられた変流器CT1,CT2,CT3又は零相変流
器ZCTの浮遊静電容量C1,C2,C3は、各変流器の形
状,取付方法,又は1次導体と鉄心との距離等の差によ
り同じとはならず、従つて正常時においても単にこれら
静電容量を合成しただけでは第4図に示すようにN−
N′に相当する残留電圧Vが常に出力されている。こ
の残留電圧Vxは、第1図の零相電圧信号Vとして入力
される。この残留電圧Vは増巾器6,7で増巾され一
方は遅延回路8を介して、他方はそのまま合成回路9に
入力される。従つて正常時には、増巾器6の入力もVx
あるから合成回路9の入力信号は時間的な差はあるがVx
同志が比較されることになり、その差の出力信号は無い
ので、レベル検出回路11からの零相電圧出力信号は出な
い。また零相電流も正常時には流れないので、レベル検
出回路3からの零相電流出力信号も出ないため、アンド
ゲート5から出力信号は出ず、補助リレー16は不動作の
状態にある。
The stray capacitances C 1 , C 2 , C 3 of the current transformers CT1, CT2, CT3 or the zero-phase current transformer ZCT provided in each phase are the shape of each current transformer, the mounting method, or the primary conductor. The difference between the core and the iron core does not result in the same value. Therefore, even if the capacitances are simply combined in normal condition, as shown in FIG.
Residual voltage V x corresponding to N 'is always outputted. This residual voltage V x is input as the zero-phase voltage signal V 0 of FIG. This residual voltage V X is amplified by the amplifiers 6 and 7, and one of them is inputted to the combining circuit 9 through the delay circuit 8 and the other as it is. Therefore, in a normal condition, the input of the amplifier 6 is also V x , so that the input signal of the combining circuit 9 has a time difference but V x.
Since the two are compared with each other and there is no output signal of the difference, the zero-phase voltage output signal from the level detection circuit 11 is not output. Further, since the zero-phase current does not flow in the normal state, the zero-phase current output signal from the level detection circuit 3 is not output, so that the output signal is not output from the AND gate 5 and the auxiliary relay 16 is in the inoperative state.

このような正常状態において例えば第2図(a)において
負荷開閉器Lsを投入して1次導体R,S,Tに瞬時的に
定格電流より大きい突入電流が流れたとすると、変流器
CT1,CT2,CT3の鉄心の飽和点が必ずしも同じでないの
で、その出力電流に不平衡を生じ、抵抗rの両端には見
掛上の零相電流I0が発生し、レベル検出回路3の設定レ
ベル以上になつて、アンドゲート5に零相電流出力信号
を出すことがある。しかしこの場合は零相電圧V0は残留
電圧Vxのみで正常時と変らないので、レベル検出回路11
からは出力信号が出ないため、アンドゲート13からは出
力信号が出ない。
In such a normal state, if the load switch L s is turned on and a rush current larger than the rated current instantaneously flows through the primary conductors R, S, T in FIG.
Since the saturation points of the iron cores of CT1, CT2, and CT3 are not necessarily the same, imbalance occurs in their output currents, and an apparent zero-phase current I 0 is generated at both ends of the resistor r, so that the level detection circuit 3 is set. When the level is exceeded, a zero-phase current output signal may be output to the AND gate 5. However, in this case, the zero-phase voltage V 0 is the residual voltage V x only and remains unchanged from the normal state.
Since no output signal is output from the AND gate 13, an output signal is not output from the AND gate 13.

次に1次導体R,S,Tの1線のg点(図示省略)に地
絡事故が発生し、その零相電流I0が、レベル検出回路3
の設定レベルに達した場合は、アンドゲート5に出力信
号を出し、波形整形回路4の出力信号とのアンド条件が
成立したときアンドゲート5を介して矩形のパルス信号
を位相判別回路14に導入される。同時に零相電圧E0も発
生して第4図のN′→gの電圧が現われ合成回路9に入
力される。合成回路9にN′→gの電圧が入力されたと
き、該N′→gの電圧と遅延回路8で遅延したN′→Nの
残留電圧とが合成され、本来求むべき零相電圧信号N→
gが求められてレベル検出回路11に入力される。このレ
ベル検出回路11の出力信号が設定レベルに達した場合
は、アンドゲート13に出力信号を出し波形整形回路12の
出力信号とのアンド条件が成立したときアンドゲート13
を介して時間巾の狭いパルス信号を位相判別回路14に導
入する。位相判別回路14では、パルス状の零相電圧信号
と矩形波パルス状の零相電流信号が時間的に重なるとき
だけで出力を出し、タイマー15を経て補助リレー16を駆
動してしや断器をしや断又は警報を発して保護動作を行
う。
Next, a ground fault occurs at a point g (not shown) on the first line of the primary conductors R, S, and T, and the zero-phase current I 0 is generated by the level detection circuit 3.
When it reaches the set level of, the output signal is output to the AND gate 5, and when the AND condition with the output signal of the waveform shaping circuit 4 is satisfied, a rectangular pulse signal is introduced to the phase determination circuit 14 via the AND gate 5. To be done. At the same time, the zero-phase voltage E 0 is also generated and the voltage of N ′ → g in FIG. 4 appears and is input to the synthesis circuit 9. When a voltage of N ′ → g is input to the synthesizing circuit 9, the voltage of N ′ → g and the residual voltage of N ′ → N delayed by the delay circuit 8 are synthesized, and the zero-phase voltage signal N originally desired to be obtained. →
g is obtained and input to the level detection circuit 11. When the output signal of the level detection circuit 11 reaches the set level, the AND gate 13 outputs the output signal and when the AND condition with the output signal of the waveform shaping circuit 12 is satisfied, the AND gate 13
A pulse signal having a narrow time width is introduced into the phase determination circuit 14 via. The phase determination circuit 14 outputs an output only when the pulse-shaped zero-phase voltage signal and the rectangular-wave pulse-shaped zero-phase current signal overlap each other in time, and drives the auxiliary relay 16 via the timer 15 and disconnects it. Protective action is carried out by turning off or disconnecting or issuing an alarm.

地絡事故が電源側であるときは、零相電流の位相が18
0度異るので位相判別回路14で時間的に波形の重なると
ころが無くなり、補助リレー15は動作しない。
When the ground fault is on the power supply side, the phase of the zero-phase current is 18
Since they differ by 0 degrees, the phase discriminating circuit 14 eliminates the temporal overlapping of the waveforms and the auxiliary relay 15 does not operate.

効果 以上の通り、従来の3つの変流器を使用して零相電流を
検出する方式では残留電流が大きく、特に負荷突入時の
瞬間的な過電流時に顕著に現われるため、地絡継電器に
使用すると誤動作を起すので、実用化が困難視されてい
た。
Effects As described above, the conventional three-current transformer method for detecting zero-phase current has a large residual current, which is particularly noticeable when there is a momentary overcurrent during load inrush, so it is used in a ground fault relay. Then, it causes a malfunction, which has been regarded as difficult to put into practical use.

また、変流器や貫通形の零相変流器等の浮遊静電容量を
利用して零相電圧を検出することも試みられていたが、
浮遊静電容量は、各相の容量がアンバランスとなり常に
残留電圧が発生してこのままでは零相電圧検出器として
使用できなかつた。
Also, it has been attempted to detect the zero-phase voltage by using the floating capacitance of a current transformer or a through-type zero-phase current transformer.
The stray capacitance could not be used as a zero-phase voltage detector as it is because the capacitance of each phase becomes unbalanced and a residual voltage is always generated.

本発明においては、変流器と高圧1次導体間の浮遊静電
容量を利用して零相電圧を検出するに当り、あらかじめ
浮遊静電容量のアンバランスによる残留電圧信号を記憶
しておき、これと地絡事故時に発生する零相電圧信号と
を合成して残留電圧を差引いた本来の零相電圧信号を求
めて、この零相電圧信号が設定レベルに達しなければ、
地絡方向継電器は一切動作しないようにしたので、全く
誤動作のおそれはなく、また零相電圧検出は従来のよう
に高価な高圧コンデンサをわざわざ設ける必要はなく、
一般に設置されている変流器、零相変流器の浮遊静電容
量を利用して検出するので極めて安価となり、また、配
電盤内に設置する場合高圧コンデンサが必要としないの
で、盤内の設置面積が大巾に減少して配電盤の小形化が
でき、また取付、配線工事が極めて簡単となる等極めて
優れた効果を奏する。
In the present invention, when the zero-phase voltage is detected by utilizing the floating capacitance between the current transformer and the high voltage primary conductor, the residual voltage signal due to the imbalance of the floating capacitance is stored in advance, If the original zero-phase voltage signal obtained by combining this and the zero-phase voltage signal generated at the time of the ground fault and subtracting the residual voltage is obtained, and this zero-phase voltage signal does not reach the set level,
Since the ground fault direction relay does not operate at all, there is no risk of malfunction, and zero-phase voltage detection does not require the purpose of installing an expensive high-voltage capacitor as in the past.
It is extremely inexpensive because it is detected by using the stray capacitance of current transformers and zero-phase current transformers that are generally installed, and when installed in a switchboard, high-voltage capacitors are not required. The area is drastically reduced and the distribution board can be downsized, and the installation and wiring work is extremely easy, resulting in extremely excellent effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック結線図、第2
図は本発明の零相電流と零相電圧を検出するための回路
図、第3図は第2図の等価回路図、第4図は零相電圧と
残留電圧のベクトル図、第5図は、従来の地絡方向継電
装置の回路図を示す。 1,6,7……増巾器、2,10……整流器、3,11……
レベル検出回路、4,12……波形整形回路、8……遅延
回路、9……合成回路、5,13……アンドゲート、14…
…位相判別回路、15……タイマー、16……補助リレー、
ZPD……零相電圧検出装置。
FIG. 1 is a block connection diagram showing an embodiment of the present invention, and FIG.
FIG. 3 is a circuit diagram for detecting zero-phase current and zero-phase voltage of the present invention, FIG. 3 is an equivalent circuit diagram of FIG. 2, FIG. 4 is a vector diagram of zero-phase voltage and residual voltage, and FIG. FIG. 3 shows a circuit diagram of a conventional ground fault direction relay device. 1,6,7 …… Amplifier, 2,10 …… Rectifier, 3,11 ……
Level detection circuit, 4, 12 ... waveform shaping circuit, 8 ... delay circuit, 9 ... synthesis circuit, 5, 13 ... AND gate, 14 ...
… Phase discrimination circuit, 15 …… Timer, 16 …… Auxiliary relay,
ZPD: Zero-phase voltage detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】線路の地絡事故時に発生する零相電流と零
相電圧を検出し、これら零相電圧の信号と零相電流の信
号の位相を比較して地絡事故が前記零相電流検出用の変
流器を境として電源側か負荷側かの方向を判別して負荷
側であるときに動作するようにした地絡方向継電装置に
おいて、前記零相電圧信号を,前記の変流器の浮遊静電
容量を利用して検出してこの浮遊静電容量の不平衡に基
づく残留電圧と地絡事故時に発生する零相電圧とを合成
してその差によつて得るようにしたことを特徴とする地
絡方向継電装置。
1. A zero-phase current and a zero-phase voltage generated at the time of a ground fault of a line are detected, and the phase of the signal of the zero-phase voltage and the phase of the signal of the zero-phase current are compared to detect the ground fault. In a ground fault direction relay device in which the direction of the power supply side or the load side is discriminated with the current transformer for detection as a boundary and the device is operated when it is on the load side, the zero-phase voltage signal Detected by utilizing the floating capacitance of the current transformer, the residual voltage based on the imbalance of the floating capacitance and the zero-phase voltage generated at the time of the ground fault were combined and obtained by the difference. A ground fault direction relay device characterized by the above.
JP62175326A 1987-07-14 1987-07-14 Ground fault direction relay Expired - Lifetime JPH0636646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62175326A JPH0636646B2 (en) 1987-07-14 1987-07-14 Ground fault direction relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62175326A JPH0636646B2 (en) 1987-07-14 1987-07-14 Ground fault direction relay

Publications (2)

Publication Number Publication Date
JPS6419910A JPS6419910A (en) 1989-01-24
JPH0636646B2 true JPH0636646B2 (en) 1994-05-11

Family

ID=15994121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62175326A Expired - Lifetime JPH0636646B2 (en) 1987-07-14 1987-07-14 Ground fault direction relay

Country Status (1)

Country Link
JP (1) JPH0636646B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261324A (en) * 1984-06-08 1985-12-24 株式会社日立製作所 Selective ground-fault protecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261324A (en) * 1984-06-08 1985-12-24 株式会社日立製作所 Selective ground-fault protecting device

Also Published As

Publication number Publication date
JPS6419910A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US2384375A (en) Protection of electric systems
US7149066B2 (en) Fault detector for two line power distribution system and protection apparatus incorporating the same
US5627712A (en) Transformer differential relay
Owen The historical development of neutral grounding practices
JPH0636646B2 (en) Ground fault direction relay
JP3019363B2 (en) Ground fault display of distribution line
JP3199940B2 (en) Transformer protection relay device
JP3378418B2 (en) Leakage protection method
US2345440A (en) Protective system
JP3408992B2 (en) Low-voltage side ground fault relay
JPH0638690B2 (en) Ground fault relay
WO2020255440A1 (en) General-purpose leakage detection device
JPS5852838Y2 (en) transformer protection device
JP2002118954A (en) Directional ground relay
JP2967362B2 (en) High voltage ground fault relay method
JP2732000B2 (en) Insulation degradation detector
JPS6155327B2 (en)
SU904064A1 (en) Device for earthing protection in electric network with low earthing current
Harder et al. Linear couplers, field tests and experience at York and Middletown, Pa.
JPH04355622A (en) Surge protective circuit of ground directional relay
JPH03270633A (en) Ground relay device
JPS6146116A (en) Transformer protective relaying device
JP2003329722A (en) Failure-point locating apparatus
JPH07236226A (en) Ground protector
JPH0480613B2 (en)