JP3378418B2 - Leakage protection method - Google Patents

Leakage protection method

Info

Publication number
JP3378418B2
JP3378418B2 JP25836595A JP25836595A JP3378418B2 JP 3378418 B2 JP3378418 B2 JP 3378418B2 JP 25836595 A JP25836595 A JP 25836595A JP 25836595 A JP25836595 A JP 25836595A JP 3378418 B2 JP3378418 B2 JP 3378418B2
Authority
JP
Japan
Prior art keywords
line
leakage
ground
voltage
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25836595A
Other languages
Japanese (ja)
Other versions
JPH09103025A (en
Inventor
耕次 汲田
達哉 村田
Original Assignee
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光商工株式会社 filed Critical 光商工株式会社
Priority to JP25836595A priority Critical patent/JP3378418B2/en
Publication of JPH09103025A publication Critical patent/JPH09103025A/en
Application granted granted Critical
Publication of JP3378418B2 publication Critical patent/JP3378418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は漏電保護方式に関
し、特に、変圧器の2次側を第二種接地工事を施し、負
荷機器を第三種接地工事を施した受変電設備の漏電保護
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth leakage protection system, and more particularly, to earth leakage protection of a power receiving and transforming facility in which a secondary side of a transformer is subjected to a second type grounding work and a load device is subjected to a third type grounding work. .

【0002】[0002]

【従来の技術】複数台の変圧器を設置し、それぞれの変
圧器から負荷機器に電力を供給する受変電設備において
は、変圧器の2次側の1線又は中性線は、接地線を介し
て共通の接地母線に接続され、共通の接地極により第二
種接地工事が施されている。そして、各変圧器の接地線
に漏電リレーを設けて漏電時の保護を行っている。
2. Description of the Related Art In a power receiving and transforming facility in which a plurality of transformers are installed and electric power is supplied from each transformer to a load device, the grounding line is used for the primary or neutral line on the secondary side of the transformer. It is connected to a common ground busbar via a common grounding electrode, and second grounding work is performed by a common grounding electrode. An earth leakage relay is provided on the ground wire of each transformer to protect against electricity leakage.

【0003】図5にかかる受変電設備内の回路と、漏電
検出保護の説明図を示す。
FIG. 5 shows an explanatory diagram of a circuit in the power receiving and transforming equipment and leakage detection protection.

【0004】図5において、1A,1B,1Cは変圧器
で、2次側巻線のみを示し、各2次側は夫々回線A,
B,Cを介して負荷に接続され電力を供給する。そし
て、各変圧器の2次側の1線又は中性線は、接地線2
A,2B,2Cにより接地母線3を介して共通の接地極
4によって第二種接地工事が施されている。R2 はこの
第二種接地の接地抵抗を示している。
In FIG. 5, reference numerals 1A, 1B and 1C denote transformers, only secondary windings are shown, and each secondary side has a line A, respectively.
It is connected to the load via B and C to supply electric power. And, one wire or neutral wire on the secondary side of each transformer is the ground wire 2
The second type grounding work is carried out by the common grounding electrode 4 through the grounding busbar 3 by A, 2B and 2C. R 2 represents the grounding resistance of this type 2 grounding.

【0005】5A,5B,5Cは零相電流を検出する手
段としての零相変流器、6A,6B,6Cは零相変流器
5A,5B,5Cの出力側に接続された漏電リレーを示
している。
Reference numerals 5A, 5B and 5C are zero-phase current transformers for detecting zero-phase currents, and 6A, 6B and 6C are earth leakage relays connected to the output sides of the zero-phase current transformers 5A, 5B and 5C. Shows.

【0006】7は受変電設備内に設置された第三種接地
を要する負荷機器で、例えば、鉄台や配電盤の外箱等が
接地される。各機器は接地母線(又は集合端子)8を介
して接地極9により第三種接地が施されている。R3
この第三種接地の接地抵抗を示している。
Reference numeral 7 denotes a load device installed in the power receiving and transforming facility which requires a third type grounding, for example, an iron stand or an outer box of a switchboard is grounded. Each device is grounded by a grounding electrode 9 via a grounding busbar (or a collective terminal) 8 and is of the third type. R 3 represents the ground resistance of this third type ground.

【0007】CA,CB,CCは、各回線A,B,Cの
対地静電容量、K,Lは零相変流器を貫通する方向を示
し、K側を電源端として貫通する。
CA, CB, and CC are capacitances to ground of the lines A, B, and C, and K and L are directions passing through the zero-phase current transformer, and the K side is a power source end.

【0008】図6は図5の等価回路で、図5と同じ符号
は同一部分を示している。
FIG. 6 is an equivalent circuit of FIG. 5, and the same reference numerals as those in FIG. 5 denote the same parts.

【0009】次に、漏電保護について説明する。今、変
圧器1Cの負荷側の機器が完全地絡に相当する漏電が発
生すると、漏電電流iRは、回線Cの電路から第三種接
地極9、第二種接地の接地極4、接地線2Cおよび変圧
器1Cを通して流れる。この漏電電流iRは零相変流器
5Cによって検出され、漏電リレー6Cに入力され、該
漏電リレー6Cの設定値以上であるときは該漏電リレー
6Cは動作し、警報又は遮断器を遮断する等の保護動作
を行う。
Next, leakage protection will be described. Now, when the device on the load side of the transformer 1C has a leakage that corresponds to a complete ground fault, the leakage current iR is from the electric path of the line C to the third type grounding pole 9, the second type grounding grounding pole 4, and the grounding line. Flows through 2C and transformer 1C. The leakage current iR is detected by the zero-phase current transformer 5C and input to the leakage relay 6C. When the leakage current iR is equal to or more than the set value of the leakage relay 6C, the leakage relay 6C operates and shuts off an alarm or a circuit breaker. Performs the protective action of.

【0010】[0010]

【発明が解決しようとする課題】しかし、各回線A,
B,Cには、第5図に示すように対地静電容量CA,C
B,CCがあり、回線Cで漏電が発生したとき、他の健
全な回線AおよびBにも、この対地静電容量CA,CB
を介して漏れ電流iCA,iCBが流れる。
However, each line A,
B and C have electrostatic capacitances CA and C to the ground as shown in FIG.
B and CC exist, and when a leak occurs in the line C, the other ground lines A and B also have the ground capacitances CA and CB.
Leakage currents iCA and iCB flow through.

【0011】この漏れ電流iCA,iCBは、回線A,
Bの対地静電容量の大きさにより影響を受け、この漏れ
電流の電流値が漏電リレー6A,6Bの動作感度設定値
以上に流れると、回線A,Bは健全であるにかかわら
ず、漏電リレー6A,6Bは動作(貰い動作)し、健全
回線を遮断することがある。
The leakage currents iCA and iCB are
If the current value of this leakage current flows above the operation sensitivity set value of the earth leakage relays 6A and 6B, which is affected by the magnitude of the ground capacitance of the earth leakage relays 6A and 6B, the earth leakage relays are not affected even if the lines A and B are sound. 6A and 6B operate (obtaining operation) and may interrupt a healthy line.

【0012】この対策としては、漏電リレーの感度設定
を対地静電容量による漏れ電流に見合った感度電流にす
ればよいが、対地静電容量は、配電線の長さ、布設方法
及び負荷機器のもつ静電容量、その他、コンピュータ等
各種電子機器に設置されているノイズ防止用コンデンサ
などによって大きく変わる。
As a countermeasure against this, the sensitivity setting of the earth leakage relay may be set to a sensitivity current commensurate with the leakage current due to the earth capacitance, but the earth capacitance depends on the length of the distribution line, the laying method and the load equipment. It will vary greatly depending on its capacitance and other factors such as noise prevention capacitors installed in various electronic devices such as computers.

【0013】感度設定の電流値は、これらの負荷の静電
容量を予測し、他回線で事故が発生したとき健全回線に
流れ込む電流値を算出し、この電流値から、ある程度余
裕を持たせる必要があり、適切な設定値の決定は極めて
困難であった。
For the current value of the sensitivity setting, it is necessary to predict the electrostatic capacities of these loads, calculate the current value that flows into a sound line when an accident occurs in another line, and allow some margin from this current value. However, it was extremely difficult to determine an appropriate set value.

【0014】以上の点に鑑み、本発明は負荷側の対地静
電容量を考慮することなく、しかも、誤動作を生ずるこ
とのない此の種の漏電保護方式を提供することを目的と
する。
In view of the above points, an object of the present invention is to provide a leakage protection system of this kind without considering the ground capacitance on the load side and without causing malfunction.

【0015】[0015]

【課題を解決するための手段】本発明において、上記の
課題を解決するための手段は、ある回線で漏電が発生し
たとき、漏電電流は第三種接地の接地極から第二種接地
の接地極を介して故障回線内を流れる。このとき、両接
地極の接地抵抗により、第三種と第二種の接地極間に、
漏電電流に比例した電圧が発生する。そこで、本発明は
この電圧を検出して故障回線を判別するようにするもの
である。
Means for Solving the Problems In the present invention, the means for solving the above-mentioned problems is that, when a leakage occurs in a certain line, the leakage current is from the ground electrode of the third type ground to the ground of the second type ground. It flows in the fault circuit through the pole. At this time, due to the ground resistance of both ground electrodes, between the ground electrode of the third type and the second type,
A voltage proportional to the leakage current is generated. Therefore, the present invention detects this voltage and discriminates the faulty line.

【0016】また、この接地極間の電圧(以下、接地極
間電圧と称す)と漏電電流には、一定の位相関係があ
り、漏電電流の位相が接地極間電圧を基準として位相判
別を行い、動作位相のとき、故障回線を判別して保護動
作を行わせる。
Further, there is a constant phase relationship between the voltage between the grounding electrodes (hereinafter referred to as the voltage between the grounding electrodes) and the leakage current, and the phase of the leakage current is determined on the basis of the voltage between the grounding electrodes. , In the operation phase, the faulty line is discriminated and the protection operation is performed.

【0017】また、前記接地極間電圧が所定レベルに達
したとき出力信号を停止し、所定レベルに達しないとき
に出力信号を出し、該出力信号を零相電流が所定レベル
を超えたことを条件に出力する手段を設け、接地極間電
圧が所定レベル以下でも零相電流が所定レベルを超えた
ときに保護動作を行わせるようにする。
When the voltage between the ground electrodes reaches a predetermined level, the output signal is stopped, and when the voltage does not reach the predetermined level, an output signal is output to notify that the zero-phase current exceeds the predetermined level. A means for outputting to the condition is provided so that the protection operation is performed when the zero-phase current exceeds the predetermined level even when the voltage between the ground electrodes is equal to or lower than the predetermined level.

【0018】更に、漏電故障回線に流れる漏電電流は、
他の健全回線に対地静電容量を介して流れる漏れ電流よ
り常に大きいので、各回線の零相電流を比較し、最も大
きい零相電流の流れている回線を故障回線と判別するも
である。
Furthermore, the leakage current flowing in the leakage fault circuit is
Since it is always larger than the leakage current flowing through other healthy lines via the ground capacitance, the zero-phase current of each line is compared, and the line in which the largest zero-phase current is flowing is determined to be the faulty line.

【0019】このようにすることにより、各回線の対地
静電容量を予測して漏電リレー等の動作電流値を変更す
る必要はなくなり、従来の課題は解決される。
By doing so, it is not necessary to predict the ground capacitance of each line to change the operating current value of the earth leakage relay or the like, and the conventional problem is solved.

【0020】[0020]

【発明の実施の形態】本発明は、ある回線で漏電事故が
発生したとき、他の健全回線に対地静電容量を通して漏
れ電流が流れ、これにより健全回線に設置した漏電リレ
ーが貰い動作をするのを防止しようとするものである。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, when an electric leakage accident occurs in a certain line, a leakage current flows through another healthy line through the electrostatic capacitance to ground, thereby causing the earth leakage relay installed in the healthy line to operate. It is intended to prevent

【0021】その第1の発明の形態は、ある回線で漏電
が発生したとき、漏電電流は、第三種接地の接地極(以
下、第三種接地極と称する。)から第二種接地の接地極
(以下、第二種接地極と称す。)を通して故障回線内を
流れる。このとき、これら接地極の有する接地抵抗によ
り、接地極間に漏電電流に応じた電圧が発生する点に着
目し、この接地極間の電圧(以下、接地極間電圧と称
す。)を利用して漏電故障を検出するものである。
According to the first aspect of the invention, when a leakage occurs in a certain line, the leakage current is from the ground electrode of the third type ground (hereinafter referred to as the third type ground electrode) to the second type ground. It flows in the fault circuit through the ground electrode (hereinafter referred to as the second type ground electrode). At this time, attention is paid to the point that a voltage corresponding to the leakage current is generated between the ground electrodes due to the ground resistance of these ground electrodes, and the voltage between the ground electrodes (hereinafter referred to as the voltage between ground electrodes) is used. This is to detect a leakage fault.

【0022】図1は本発明を図5の受変電設備に適用し
た場合の等価回路図を示し、図5と同一又は相当部分に
は、これと同じ符号を付して説明を省略する。
FIG. 1 shows an equivalent circuit diagram in the case where the present invention is applied to the power receiving and transforming equipment of FIG. 5, and the same or corresponding parts as in FIG.

【0023】しかして、10は電圧検出手段としての電
圧リレーで、第三種接地極9と第二種接地極4間に接続
され、接地極9の接地抵抗R3と接地極4の接地抵抗R2
間に発生する電圧E3+E2を検出する。そして、この
電圧リレー10の動作電圧設定値をあらかじめ設定し、
検出電圧が、この設定値を超えたとき動作するようにす
る。
A voltage relay 10 as a voltage detecting means is connected between the third type grounding electrode 9 and the second type grounding electrode 4, and the grounding resistance R 3 of the grounding electrode 9 and the grounding resistance of the grounding electrode 4 are connected. R 2
The voltage E3 + E2 generated between them is detected. Then, set the operating voltage setting value of the voltage relay 10 in advance,
It operates when the detected voltage exceeds this set value.

【0024】図5に示す回線Cで漏電が発生すると、他
の健全回線A,Bにも対地静電容量CA,CBを通して
漏れ電流iCA,iCBが流れる。この漏れ電流値は、
対地静電容量に影響されるが、漏電電流が接地極の接地
抵抗R3,R2を流れたときに発生する接地極間電圧E3
およびE2にも影響される。漏電電流が大きければ、こ
の電圧E2+E3もそれに応じて高くなる。よって、漏電
故障回線に設けられた電圧リレー10は確実に動作す
る。
When a leak occurs on the line C shown in FIG. 5, leak currents iCA and iCB also flow to the other sound lines A and B through the ground capacitances CA and CB. This leakage current value is
Although affected by the capacitance to ground, the voltage E 3 between the ground electrodes generated when the leakage current flows through the ground resistances R 3 and R 2 of the ground electrodes.
Also affected by E 2 . If the leakage current is large, this voltage E 2 + E 3 will be correspondingly high. Therefore, the voltage relay 10 provided in the leakage fault circuit operates reliably.

【0025】一方、健全回線の第三種接地極には、漏電
電流は流れないので、第三種接地間電圧E3は発生しな
いので、貰い動作することはない。
On the other hand, since no leakage current flows through the third-type grounding electrode of the sound line, the third-type grounding voltage E 3 is not generated, so that no operation is performed.

【0026】また、この電極間電圧E2,E3と、漏電電
流および健全回線に対地静電容量を通して流れる漏れ電
流との間には、一定の位相関係がある。第2の実施の形
態は、この位相を判別して漏電事故回線を検出するもの
である。
Further, there is a constant phase relationship between the inter-electrode voltages E 2 and E 3 and the leakage current and the leakage current flowing through the electrostatic capacitance to the sound line. In the second embodiment, this phase is discriminated to detect an earth leakage accident line.

【0027】即ち、漏電が発生した回線Cに設置されて
いる零相変流器5Cに流れる電流iRと、接地極間電圧
(E2+E3)との位相関係は、接地極間電圧を基準とす
ると同相であり、一方、このときの健全回線A,Bの零
相変流器5A,5に流れる電流iCA,iCBは、接
地極間電圧を基準として90゜遅れとなる。
That is, the phase relationship between the current iR flowing through the zero-phase current transformer 5C installed in the line C where the leakage occurs and the ground electrode voltage (E 2 + E 3 ) is based on the ground electrode voltage. when in phase, whereas, healthy line a of this time, the current flowing through the zero-phase current transformer 5A, 5 B of B ICA, iCB becomes 90 ° lag relative to the ground inter-electrode voltage.

【0028】16A,16B,16Cは、この方向性を
もたせた漏電リレーを示し、接地極間電圧E2+E2と自
己回線の零相変流器5A,5B,5Cからの零相電流を
入力する。
Reference numerals 16A, 16B and 16C denote earth leakage relays having this directivity, and input the ground inter-electrode voltage E 2 + E 2 and the zero phase current from the zero phase current transformers 5A, 5B and 5C of the self line. To do.

【0029】これら各漏電リレー16A,16B,16
Cは、入力した零相電流および接地極間電圧を夫々、フ
ィルタ回路で基本波成分を取り出してこれを増幅し、波
形整形して、入力信号が所定レベルに達していることを
条件に接地極間電圧と零相電流の位相比較を行い。動作
位相範囲内のときに自己回線漏電故障と判別して動作
し、不動作位相範囲のときは他回線故障と判別して不動
作とするものである。
Each of the earth leakage relays 16A, 16B, 16
C is for inputting the zero-phase current and the voltage between the grounding poles, respectively, and extracting the fundamental wave component with a filter circuit, amplifying it, shaping the waveform, and grounding the grounding signal on the condition that the input signal has reached a predetermined level. Phase comparison between voltage and zero-phase current. When it is within the operating phase range, it is determined that it is a self-line leakage fault and operates, and when it is in the inactive phase range, it is determined as another line fault and is inoperative.

【0030】以上は完全地絡に相当する漏電故障の場合
であるが、漏電故障時の地絡(漏電)抵抗Rgが大き
く、地絡抵抗間の電圧Vgが地絡極間電圧E2+E3より
極めて高くなり、漏電電流は漏電リレーの動作設定値程
度流れていても、電極間電圧は電圧リレー10の動作設
定値に達しない場合がある。第3の実施の形態は、かか
る場合漏電電流のみで動作するようにしたものである。
The above is the case of a ground fault corresponding to a complete ground fault. The ground fault (leakage) resistance Rg at the time of the ground fault is large, and the voltage Vg between the ground fault resistors is the ground fault voltage E 2 + E 3 Even if the leakage current becomes extremely high and the leakage current flows to about the operation setting value of the leakage relay, the inter-electrode voltage may not reach the operation setting value of the voltage relay 10. In such a case, the third embodiment is designed to operate only with a leakage current.

【0031】図2はかかる機能を備えた漏電リレーの回
路図を示し、同図において、21は零相変流器の出力端
子Z1,Z2から零相電流を入力して基本波成分を取り出
すフィルタ、22はフィルタ21の出力を増幅する増幅
器、23はレベル検出回路、24は波形整形回路、25
は第1のアンド回路を示し、検出した零相電流が所定の
レベル以上となったとき、波形整形回路24の出力を第
1のアンド回路25から出力する。
FIG. 2 shows a circuit diagram of an earth leakage relay having such a function. In FIG. 2, 21 is a zero-phase current input from the output terminals Z 1 and Z 2 of the zero-phase current transformer to generate a fundamental wave component. Filter to be taken out, 22 is an amplifier for amplifying the output of the filter 21, 23 is a level detection circuit, 24 is a waveform shaping circuit, 25
Indicates a first AND circuit, and when the detected zero-phase current exceeds a predetermined level, the output of the waveform shaping circuit 24 is output from the first AND circuit 25.

【0032】31は接地極間電圧E2,E3を入力し、基
本波成分を取り出すフィルタ、32は増幅器、33はレ
ベル検出回路、34は波形整形回路、35は第2のアン
ド回路を示し、接地極間電圧が所定レベル以上となった
とき、波形整形回路34の出力を第2のアンド回路35
から出力する。
Reference numeral 31 is a filter for inputting the ground electrode voltages E 2 and E 3 and extracting the fundamental wave component, 32 is an amplifier, 33 is a level detection circuit, 34 is a waveform shaping circuit, and 35 is a second AND circuit. , When the voltage between the ground electrodes becomes equal to or higher than a predetermined level, the output of the waveform shaping circuit 34 is changed to the second AND circuit 35.
Output from.

【0033】40は位相判別回路で、第1および第2の
アンド回路25,35の出力を入力して位相比較し、設
定した動作位相のとき出力信号をオア回路41に出力
し、該オア回路41を介して時限回路42に入力し、所
定時限後、リレー接点4を作動させる。
Reference numeral 40 denotes a phase discriminating circuit, which inputs the outputs of the first and second AND circuits 25 and 35, compares the phases, and outputs an output signal to the OR circuit 41 when the operation phase is set, and the OR circuit 41 input to timing circuit 42 through 41, after a predetermined time period, actuating the relay contacts 4 3.

【0034】44はインバータ回路で、接地極間電圧側
のレベル検出回路33の出力を入力し、その出力は第3
のアンド回路45に入力される。また、第3のアンド回
路45には、零相電流側のレベル検出回路23の出力を
入力する。そして、この第3のアンド回路45の出力は
オア回路41に入力される。
An inverter circuit 44 receives the output of the level detection circuit 33 on the side of the voltage between the ground electrodes, and outputs the third output.
Of the AND circuit 45. Further, the output of the zero-phase current side level detection circuit 23 is input to the third AND circuit 45. The output of the third AND circuit 45 is input to the OR circuit 41.

【0035】従って、インバータ44は通常状態におい
ては、接地極間電圧側のレベル検出回路33の出力が無
いので(所定レベルに達していない)、第3のアンド回
路45に出力信号を入力するが、零相電流側のレベル検
出回路23の出力がなければ第3のアンド回路45から
は出力信号は出力しない。
Therefore, in the normal state, the inverter 44 does not output the level detection circuit 33 on the side of the voltage between the ground electrodes (has not reached the predetermined level), so the output signal is input to the third AND circuit 45. If there is no output from the level detection circuit 23 on the zero-phase current side, no output signal is output from the third AND circuit 45.

【0036】しかし、接地極間電圧E2+E3がレベル検
出回路33の設定レベルに達しない場合でも、零相電流
がレベル検出回路23の設定レベル以上のときは、第3
のアンド回路45から出力を出し、リレー接点43を作
動させる。
However, even when the voltage between the ground electrodes E 2 + E 3 does not reach the level set by the level detection circuit 33, if the zero-phase current is higher than the level set by the level detection circuit 23, the third
An output is output from the AND circuit 45 and the relay contact 43 is operated.

【0037】このように、上記の地絡抵抗Rgが大き
く、接地極間電圧が設定レベルに達していない場合で
も、零相電流が設定レベルに達していれば動作し、遮断
器を遮断する等の動作を行う。
As described above, even when the ground fault resistance Rg is large and the voltage between the ground electrodes does not reach the set level, the zero-phase current operates if the set level is reached and the breaker is cut off. The operation of.

【0038】この場合、健全回線への対地静電容量を通
して流れる漏れ電流iCは、極端に小さいので、健全回
線に設けた漏電リレーは貰い動作することがない。よっ
て、漏電リレーとして方向性をもたせる必要がない。
In this case, since the leakage current iC flowing through the electrostatic capacitance to the healthy line is extremely small, the leakage relay provided in the healthy line will not operate properly. Therefore, it is not necessary to provide the leakage relay with directivity.

【0039】一方、接地極間電圧が設定レベル以上とな
ったときは、インバータ回路44は出力を出さないの
で、第3のアンド回路45からも出力を出すことはな
い。接地極間電圧が設定レベル以上で零相電流が設定レ
ベル以上となったときは、位相判別回路40に両出力信
号は入力され、位相判別され、漏電リレーとしての本来
の機能を発揮する。
On the other hand, when the voltage between the ground electrodes exceeds the set level, the inverter circuit 44 does not output, so that the third AND circuit 45 also does not output. When the voltage between ground electrodes is equal to or higher than the set level and the zero-phase current is equal to or higher than the set level, both output signals are input to the phase determination circuit 40, the phases are determined, and the original function as an earth leakage relay is exhibited.

【0040】以上は、接地極間電圧を使用した本発明の
実施の形態について説明したが、必ずしも接地極間電圧
を利用しなくとも貰い動作を防止する手段があることが
わかった。図3にかかる第4の実施の形態を示す。
Although the embodiment of the present invention using the voltage between ground electrodes has been described above, it has been found that there is a means for preventing a desired operation without necessarily using the voltage between ground electrodes. 4th Embodiment concerning FIG. 3 is shown.

【0041】漏電故障回線に流れる漏電電流は、他の健
全回線に対地静電容量を通して流れる漏れ電流より大き
い。図3の回線Cの電路に漏電故障が発生すると漏電電
流iRは矢印のように、第三種接地極9,第二種接地極
4,接地母線3,接地線2C,変圧器1Cを通して流れ
る。
The leakage current flowing through the faulty leakage line is larger than the leakage current flowing through another healthy line through the ground capacitance. When a leakage fault occurs in the electric circuit of the line C in FIG. 3, the leakage current iR flows through the third type ground electrode 9, the second type ground electrode 4, the ground bus bar 3, the ground line 2C, and the transformer 1C as indicated by arrows.

【0042】一方、健全回線A,Bには、対地静電容量
CA,CBを介して漏れ電流iCA,iCBをが夫々接
地線2A,2Bを通して矢印の方向に流れ、更に、接地
母線3を介して接地線2Cに流れ込む。この漏れ電流i
CA,iCBは接地線2C内を漏電電流iRと同方向に
流れるため、接地線2Cには、iR+iCA+iCBの
電流が流れることになる。他方、健全回線AおよびBの
接地線2Aおよび2Bには夫々漏れ電流iCAおよびi
CBのみが流れるので、最も大きい零相電流の流れる回
線を検出するようにする。
On the other hand, in the sound lines A and B, leakage currents iCA and iCB flow through the ground capacitances CA and CB in the directions of the arrows through the ground lines 2A and 2B, respectively, and further through the ground bus 3. Flows into the ground wire 2C. This leakage current i
Since CA and iCB flow in the ground line 2C in the same direction as the leakage current iR, a current of iR + iCA + iCB flows in the ground line 2C. On the other hand, the ground lines 2A and 2B of the sound lines A and B have leakage currents iCA and i, respectively.
Since only CB flows, the line in which the largest zero-phase current flows is detected.

【0043】即ち、図3に示すように、漏電電流を検出
する零相変流器5A,5B,5Cの出力を比較判別回路
15に入力し、該比較判別回路15で、一番電流値の大
きい回線を判別し、該当する回線の出力信号OA,O
B,OCの一つを出力する。
That is, as shown in FIG. 3, the outputs of the zero-phase current transformers 5A, 5B, and 5C for detecting the leakage current are input to the comparison / discrimination circuit 15, and the comparison / discrimination circuit 15 outputs the most current value. The large line is discriminated and the output signal OA, O of the corresponding line is detected.
Output one of B and OC.

【0044】比較判別回路15による比較判別は、例え
ば、零相変流器5Aと5Bの出力電流を比較し、その大
きい方と零相変流器5Cの出力とを比較して、最も大き
い電流の回線を判別する方法、又は零相変流器5A,5
B,5Cの出力を同時に比較し、一番大きい電流を出力
する最大値選択回路を使用し、この出力から漏電故障回
線を判別する方法によって判別する。
The comparison / determination by the comparison / determination circuit 15 is, for example, comparing the output currents of the zero-phase current transformers 5A and 5B, comparing the larger one with the output of the zero-phase current transformer 5C, and determining the largest current. Method for discriminating the line, or zero-phase current transformers 5A, 5
The outputs of B and 5C are compared at the same time, the maximum value selection circuit that outputs the largest current is used, and the leakage fault circuit is determined from this output.

【0045】以上説明した図1〜図3の実施の形態は、
複数台の変圧器1A〜1Cの2次側を共通の接地極で接
地した場合についての適用例であるが、図4に示すよう
な1台の変圧器Trの2次側を第二種接地工事を施し、
2次側を、複数の回線A〜Nに分岐し、各回線の負荷機
器を第三種接地した場合にも適用でき、同様の作用効果
が得られる。なお、この場合の零相電流を検出する手段
は、各回線に設けた零相変流器ZCTによって検出す
る。
The embodiment of FIGS. 1 to 3 described above is
This is an application example in which the secondary sides of a plurality of transformers 1A to 1C are grounded by a common grounding electrode, but the secondary side of one transformer Tr as shown in FIG. Construction work,
It can also be applied to the case where the secondary side is branched into a plurality of lines A to N and the load device of each line is grounded by the third type, and the same effect can be obtained. The means for detecting the zero-phase current in this case is the zero-phase current transformer ZCT provided in each line.

【0046】[0046]

【発明の効果】従来、完全地絡事故に相当する漏電故障
が発生したときに、故障の無い健全回線に設置した漏電
リレーが貰い動作をすることがあったが、本発明におい
ては、漏電故障の回線を設置した電圧リレー又は漏電リ
レーのみが動作するので、事故回線の発見に時間を要す
ることなく、即座に知ることができる。よって故障回線
発見のための無駄な時間をはぶき、且つ信頼性が向上す
る等の効果を奏する。
In the past, when an earth leakage fault corresponding to a complete ground fault occurred, an earth leakage relay installed in a sound line with no trouble sometimes operated. However, in the present invention, the earth leakage fault occurs. Since only the voltage relay or the earth leakage relay in which the line is installed operates, it is possible to immediately know the faulty line without requiring time to find it. Therefore, there is an effect that wasteful time for finding a failed line is eliminated and reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した受変電設備の等価回路図。FIG. 1 is an equivalent circuit diagram of a power receiving and transforming facility to which the present invention is applied.

【図2】本発明に使用する漏電リレーの回路図。FIG. 2 is a circuit diagram of an earth leakage relay used in the present invention.

【図3】本発明を適用した受変電設備の回路図。FIG. 3 is a circuit diagram of a power receiving and transforming facility to which the present invention is applied.

【図4】本発明を適用した他の受変電設備の回路図。FIG. 4 is a circuit diagram of another substation equipment to which the present invention is applied.

【図5】従来の受変電設備の回路図。FIG. 5 is a circuit diagram of a conventional power receiving and transforming facility.

【図6】図5の等価回路図。6 is an equivalent circuit diagram of FIG.

【符号の説明】[Explanation of symbols]

1A,1B,1C…変圧器 2A,2B,2C…接地線 3…接地母線 4…第二種接地極 5A,5B,5C…零相変流器 6A,6B,6C…漏電リレー 7…負荷機器 8…接地母線 9…第三種接地極 10…電圧リレー 15…比較判別回路 16A,16B,16C…漏電リレー 21,31…フィルタ 22,32…増幅器 23,33…レベル検出回路 24,33…波形整形回路 25,35…アンド回路 40…位相判別回路 41…オア回路 42…時限回路 43…リレー接点 44…インバータ回路 45…アンド回路 1A, 1B, 1C ... Transformer 2A, 2B, 2C ... Ground wire 3 ... Ground bus 4 type 2 grounding electrode 5A, 5B, 5C ... Zero-phase current transformer 6A, 6B, 6C ... earth leakage relay 7 ... Load equipment 8 ... Ground bus 9 ... Third-type grounding electrode 10 ... Voltage relay 15 ... Comparison discrimination circuit 16A, 16B, 16C ... earth leakage relay 21, 31 ... Filter 22, 32 ... Amplifier 23, 33 ... Level detection circuit 24, 33 ... Waveform shaping circuit 25, 35 ... AND circuit 40 ... Phase discriminating circuit 41 ... OR circuit 42 ... Timer circuit 43 ... Relay contact 44 ... Inverter circuit 45 ... AND circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−19576(JP,A) 特開 平4−1579(JP,A) 特開 昭61−45977(JP,A) 特開 昭53−99440(JP,A) 実開 平5−45578(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02H 3/00 - 3/52 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-4-19576 (JP, A) JP-A-4-1579 (JP, A) JP-A 61-45977 (JP, A) JP-A 53- 99440 (JP, A) Actual Kaihei 5-45578 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H02H 3/00-3/52

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1台又は複数台の変圧器によって複数の
回線により負荷機器に電力を供給するとともに、前記変
圧器の2次側の1線又は中性線を接地極により第二種接
地を施し、各回線に接続された負荷機器を接地極により
第三種接地を施してなる受変電設備の漏電保護方式にお
いて、 前記第二種接地と第三種接地の接地極間に接地極間電圧
を検出する検出手段を設け、該接地極間電圧が所定値を
超えたときに保護動作を行わせるようにしたことを特徴
とする漏電保護方式。
1. A power supply is supplied to a load device through a plurality of lines by one or a plurality of transformers, and a secondary wire of the transformer, one wire or a neutral wire, is grounded by a grounding electrode. In the earth leakage protection method of the power receiving and transforming equipment, in which the load equipment connected to each line is grounded by the grounding electrode, the voltage between the grounding electrodes is between the grounding electrodes of the second type grounding and the third type grounding. A leakage protection method, characterized in that a detection means for detecting is provided, and a protection operation is performed when the voltage between the ground electrodes exceeds a predetermined value.
【請求項2】 前記各回線に各回線を流れる零相電流を
検出する手段を設け、これら各手段により検出した零相
電流と前記接地極間電圧との位相を比較して動作位相を
判別する判別手段を設け、零相電流と接地極間電圧が動
作位相のとき保護動作を行わせるようにしたことを特徴
とする請求項1記載の漏電保護方式。
2. A means for detecting a zero-phase current flowing through each line is provided in each of the lines, and the operating phase is determined by comparing the phases of the zero-phase current detected by these means and the ground voltage. The earth leakage protection system according to claim 1, wherein a determining means is provided to perform a protection operation when the zero-phase current and the voltage between the ground electrodes are in the operating phase.
【請求項3】 前記接地極間電圧が所定レベルに達した
とき出力信号を停止し、所定レベルに達しないときに出
力信号を出し、該出力信号を零相電流が所定レベルを超
えたことを条件に出力する手段を設け、接地極間電圧が
所定レベル以下でも零相電流が所定レベルを超えたとき
に保護動作を行わせるようにしたことを特徴とする請求
項2記載の漏電保護方式。
3. An output signal is stopped when the voltage between the ground electrodes reaches a predetermined level, an output signal is output when the voltage does not reach a predetermined level, and the output signal is output when the zero-phase current exceeds a predetermined level. 3. The earth leakage protection method according to claim 2, further comprising means for outputting the condition so that the protection operation is performed when the zero-phase current exceeds the predetermined level even when the voltage between the ground electrodes is below the predetermined level.
【請求項4】 1台又は複数台の変圧器によって複数の
回線により負荷機器に電力を供給するとともに、前記変
圧器の2次側の1線又は中性線を共通の接地極により第
二種接地を施し、各回線に接続された負荷機器を接地極
により第三種接地を施してなる受変電設備の漏電保護方
式において、 前記各回線に、各回線を流れる零相電流検出する検出
手段を設け、且つこれら各検出手段で検出した零相電流
を比較して漏電回線を判別する判別手段に入力し、該判
別手段は、回線の漏電事故時に、該故障回線に流れる漏
電電流と健全回線に対地静電容量を介して流れる漏れ電
流とが加わり電流値がもっとも大となる回線を漏電回線
と判別し、判別された回線について保護動作を行わせる
ようにしたことを特徴とする漏電保護方式。
4. The electric power is supplied to the load device by a plurality of lines by one or a plurality of transformers, and the secondary side one wire or neutral wire is a second type by a common ground electrode. In a leakage protection system for power receiving and transforming equipment, in which grounding is performed and load equipment connected to each line is grounded by a grounding electrode, detection means for detecting a zero-phase current flowing through each line in each line And the zero-phase current detected by each of these detecting means is compared with each other to be inputted to the judging means for judging the leakage line.
The other means is that in the event of a line leakage accident, the leakage that flows to the faulty line.
Current and leakage current flowing through a healthy line via capacitance to ground
Current leakage is the line with the highest current value
The leakage protection method is characterized in that the protection operation is performed on the determined line.
JP25836595A 1995-10-05 1995-10-05 Leakage protection method Expired - Lifetime JP3378418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25836595A JP3378418B2 (en) 1995-10-05 1995-10-05 Leakage protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25836595A JP3378418B2 (en) 1995-10-05 1995-10-05 Leakage protection method

Publications (2)

Publication Number Publication Date
JPH09103025A JPH09103025A (en) 1997-04-15
JP3378418B2 true JP3378418B2 (en) 2003-02-17

Family

ID=17319235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25836595A Expired - Lifetime JP3378418B2 (en) 1995-10-05 1995-10-05 Leakage protection method

Country Status (1)

Country Link
JP (1) JP3378418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233809A (en) * 2011-05-05 2012-11-29 Life Technos:Kk Incidental operation alarming device of leakage detection device
JP5615958B1 (en) * 2013-05-07 2014-10-29 中国電力株式会社 Earth leakage breaker

Also Published As

Publication number Publication date
JPH09103025A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
US3515943A (en) Electrical fault detector
US4228475A (en) Ground monitoring system
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
JP2000511400A (en) Ground fault protection circuit for multi-power system
GB2352891A (en) Fault protection in multi-phase power systems
JPH027248B2 (en)
JP3378418B2 (en) Leakage protection method
WO2004008600A3 (en) Electrical network protection system
JP3517737B2 (en) Ground fault directional relay for low voltage road
JP4114929B2 (en) Distribution system ground fault detector
JP3841248B2 (en) Ground fault suppression system and ground fault suppression method
JP2013113632A (en) Ground fault detecting method
JP2002027660A (en) Ground fault detector for low-voltage circuit
JP3407133B2 (en) Ground fault directional relay for low voltage road
JP3515345B2 (en) Directional distance relay
KR102444837B1 (en) Outlet device and operation method therefor
JP2002118954A (en) Directional ground relay
JPH0919047A (en) Ground-fault-line selection relay system by comparison of zero-phase current in distribution line
JPH01114324A (en) Selective ground-fault relay
WO2020255440A1 (en) General-purpose leakage detection device
JPH05103417A (en) Directional-ground relay
JP3400365B2 (en) Ground fault directional relay
JP2002027661A (en) Leakage detection/protection method and apparatus for commonly grounded circuit
JP2002101549A (en) Ground directional relay
JPH0591647A (en) Ground-fault protection relaying system for power distribution line

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141206

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term