JP5615958B1 - Earth leakage breaker - Google Patents

Earth leakage breaker Download PDF

Info

Publication number
JP5615958B1
JP5615958B1 JP2013097303A JP2013097303A JP5615958B1 JP 5615958 B1 JP5615958 B1 JP 5615958B1 JP 2013097303 A JP2013097303 A JP 2013097303A JP 2013097303 A JP2013097303 A JP 2013097303A JP 5615958 B1 JP5615958 B1 JP 5615958B1
Authority
JP
Japan
Prior art keywords
phase current
zero
circuit
leakage
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013097303A
Other languages
Japanese (ja)
Other versions
JP2014220055A (en
Inventor
浩平 福田
浩平 福田
満洋 野々上
満洋 野々上
真治 明石
真治 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2013097303A priority Critical patent/JP5615958B1/en
Application granted granted Critical
Publication of JP5615958B1 publication Critical patent/JP5615958B1/en
Publication of JP2014220055A publication Critical patent/JP2014220055A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Breakers (AREA)

Abstract

【課題】本願発明は、監視対象回路の漏電か監視対象外の回路の漏電かを容易に且つ確実に判断することのできる漏電遮断器を提供する。【解決手段】この発明は、複数の変圧器でB種接地線5を共用している設備形態に使用される漏電遮断器1において、前記B種接地線5に外部零相変流器ZCT2を設け、前記漏電遮断器1に設けられた内部零相変流器ZCT1の二次側と、前記外部零相変流器ZCT2の二次側とを直列に接続して検出回路6を構成し、この検出回路6を流れる二次電流と、前記内部零相変流器ZCT1の二次側電圧に基づくパラメータとによって、漏電が監視対象回路の漏電か、監視対象外の漏電かを判断する。【選択図】 図1The present invention provides an earth leakage circuit breaker that can easily and reliably determine whether a leakage current of a monitoring target circuit or a non-monitoring target circuit. The present invention relates to an earth leakage breaker 1 used in a facility configuration in which a plurality of transformers share a class B grounding wire 5 with an external zero-phase current transformer ZCT2 on the class B grounding wire 5. A detection circuit 6 is configured by connecting a secondary side of the internal zero-phase current transformer ZCT1 provided in the earth leakage circuit breaker 1 and a secondary side of the external zero-phase current transformer ZCT2 in series; Based on the secondary current flowing through the detection circuit 6 and the parameter based on the secondary side voltage of the internal zero-phase current transformer ZCT1, it is determined whether the leakage is a leakage of the monitoring target circuit or a non-monitoring leakage. [Selection] Figure 1

Description

本願発明は、零相電流が一定以上となった場合に自動遮断する方式の漏電遮断器に関する。   The present invention relates to an earth leakage circuit breaker that automatically shuts off when a zero-phase current exceeds a certain level.

低圧回路に使用されている一般的な漏電遮断器は、漏電遮断器内に内蔵されている零相変流器に流れる電流が一定以上となった場合に自動遮断する方式となっており、また重要な回路に使用されている漏電遮断器にあっては、零相電圧と零相電流を配線用遮断器制御装置に取り込み当該配線用遮断器の回路で事故が発生した場合にのみ動作するようにした設備もある。   The general earth leakage breaker used in the low-voltage circuit is a system that automatically shuts off when the current flowing through the zero-phase current transformer built in the earth leakage breaker exceeds a certain level. For earth leakage circuit breakers used in important circuits, the zero-phase voltage and zero-phase current are taken into the circuit breaker control device so that they operate only when an accident occurs in the circuit breaker circuit. There are also facilities.

変電所の所内電源用変圧器や単相三線式変圧器を複数組み合わせて使用するような場合では、B種接地が共用となるため、漏電遮断器の保護対象回路で漏電が発生した場合、他の漏電遮断器の零相変流器に漏電電流が流れる場合(貰い電流)があり、正常な回路の不要停電が発生する不都合がある。また、複数の漏電遮断器が貰い電流によって同時動作した場合には、漏電箇所(漏電回路)の特定が困難になるという問題も生じる。   When multiple transformers for in-station power supply or single-phase three-wire transformers are used in combination, Class B grounding is shared, so if a leakage occurs in the circuit to be protected by the leakage breaker, etc. There is a case in which a leakage current flows through the zero-phase current transformer of the earth leakage breaker (a ugly current), which causes an inconvenience that an unnecessary power failure of a normal circuit occurs. In addition, when a plurality of earth leakage breakers are simultaneously operated by a large current, there is a problem that it is difficult to identify a leakage point (leakage circuit).

そこで、上述のような漏電遮断器の誤動作を防止するために、従来においては、特許文献1(特表2008−546149号公報)に示されるように、零相変流器によって検出されるトータル漏電電流のトータル漏電電圧によって漏電有無を判断して、電源からの電力供給を自動で遮断すると共に、同期検波器によって同期検波された純粋漏電電流の純粋漏電電圧によって漏電の有無を判断して、電源からの電力供給を自動で遮断する二重遮断方式が提案されている。   Therefore, in order to prevent the above-described malfunction of the earth leakage circuit breaker, conventionally, as disclosed in Patent Document 1 (Japanese translations of PCT publication No. 2008-546149), the total earth leakage detected by the zero-phase current transformer is known. The power supply from the power supply is automatically cut off by judging the leakage current from the total leakage voltage of the current, and the presence or absence of leakage is judged by the pure leakage voltage of the pure leakage current synchronously detected by the synchronous detector. There has been proposed a double shutoff method that automatically shuts off the power supply from the power supply.

また、特許文献2(特開2011−249042号公報)に示されるように、貰い動作の原因となる非監視電路の変圧器B種接地相とD種又はC種接地極或いはこれに接続する電気設備の接地構造物等との間に発生する電路対地間電圧を監視し、この電圧を基準にして零相変流器が検出した漏洩電流の位相判定を行い、漏洩電流が検出零相変流器の負荷側から電源側、即ち変圧器側に向かう貰い電流である場合であって、且つ、電路対地間電圧が適宜に整定した動作感度電圧整定値を超えた場合には当該漏電検出装置の出力動作を停止する出力制御回路を付加することで、漏電検出装置の高感度動作領域を阻害することなく貰い電流による不必要動作を防止するようにした構成も提案されている。   Moreover, as shown in Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-249042), the transformer B type grounding phase and the D type or C type grounding pole of the non-monitoring circuit causing the scooping operation or the electricity connected thereto The circuit-to-ground voltage generated between the equipment grounding structure and the like is monitored, and the phase of the leakage current detected by the zero-phase current transformer is determined based on this voltage, and the leakage current is detected. If the current is from the load side of the transformer to the power supply side, that is, from the transformer side, and if the voltage between the circuit and the ground exceeds the set value of the operating sensitivity voltage, the leakage detection device There has also been proposed a configuration in which an unnecessary operation due to a large current is prevented without impeding the high-sensitivity operation region of the leakage detection device by adding an output control circuit for stopping the output operation.

特開2008−546149号公報JP 2008-546149 A 特開2011−249042号公報JP 2011-249042 A

しかしながら、特許文献1では、同期検波器によって純粋漏電電圧を検出するために、電気回路に、電圧を分割して検出する分圧器を設ける必要があり、この分圧器に不具合が生じた場合に漏電の可能性が生じるという不具合を有する。   However, in Patent Document 1, in order to detect a pure earth leakage voltage using a synchronous detector, it is necessary to provide a voltage divider that divides and detects the voltage in the electric circuit, and when a malfunction occurs in this voltage divider, the earth leakage occurs. There is a problem that this possibility arises.

また、特許文献2では、従来の零相変流器からの漏洩電流の他に、変圧器B種接地相とD種又はC種接地極(或いはこれに接続する電気設備の接地構造物等)との間に発生する電路対地間電圧を検出し、この電圧を基準にして零相変流器が検出した漏洩電流の位相判定を行い、漏洩電流が貰い電流である場合であって前記電路対地間電圧が所定値以上である場合には漏電検出装置の出力を停止する出力制御回路を付加する必要がある。   Moreover, in patent document 2, in addition to the leakage current from a conventional zero-phase current transformer, a transformer type B ground phase and a type D or type C ground electrode (or a grounding structure of an electrical facility connected to this) And the phase of the leakage current detected by the zero-phase current transformer is determined based on this voltage, and the leakage current is a large current. When the inter-voltage is greater than or equal to a predetermined value, it is necessary to add an output control circuit that stops the output of the leakage detection device.

上述したように、変圧器の所内電源用変圧器や単相三線式変圧器を複数組み合わせて使用するようなケースでは、B種接地が共用となることから、漏電遮断器の保護対象回路で漏電が発生した場合に、他の漏電遮断器の零相変流器にも漏電電流が流れ、複数の正常な回路の不要停電が発生する不都合があるが、これを防止するために、上述した先行技術文献では、電路間の電圧を監視したり、B種接地と他の接地極との間に発生する電圧を監視したりするようにしており、構造や処理が複雑にあるという問題点がある。   As mentioned above, in cases where multiple transformers for on-site power supply or single-phase three-wire transformers are used in combination, Class B grounding is shared. If this occurs, the leakage current also flows through the zero-phase current transformers of other earth leakage breakers, and there is a disadvantage that unnecessary power outages occur in a plurality of normal circuits. In the technical literature, the voltage between the electric circuits is monitored, or the voltage generated between the B-type ground and the other ground electrode is monitored, and there is a problem that the structure and processing are complicated. .

そこで、本発明者は、ある回路に漏電が発生した場合に共用されるB種接地線に電流が流れることに注目し、B種接地線に変流器を取り付け、このB種接地線変流器を零相電流検出用変流器に直列(同極性)に接続し、零相電流変流器二次電流と漏電遮断器用変流器の電圧とから漏電遮断器監視対象回路の漏電事故か他回路の事故かを判定することが可能であるかどうかについて検証した。   In view of this, the present inventor noticed that a current flows in a class B grounding wire that is shared when a leak occurs in a certain circuit, and attached a current transformer to the class B grounding wire. Is connected to the zero-phase current detection current transformer in series (same polarity), and the leakage current of the monitoring circuit for the leakage breaker is determined from the secondary current of the zero-phase current transformer and the voltage of the leakage breaker current transformer. It was verified whether it was possible to determine whether the accident occurred in another circuit.

監視対象の回路が漏電した場合を想定した零相変流器検証回路は、図9(a)で示すように、定電電源Vcが接続された漏電を想定した閉回路(1次回路)C1として形成される。そして、この閉回路C1には、電路に模した線路L1に設けられる第1の零相変流器ZCT1とB種接地線に模した線路L2に設けられる第2の零相変流器ZCT2が配置され、それぞれの二次側は直列に接続されて抵抗Rと共に閉回路(2次回路)C2を形成する。尚、図示しない計測器において、回路C1を流れる電流I1はチャンネルCH1によって検出され、抵抗Rに生じる電圧VrはチャンネルCH2によって検出され、第1の零相変流器二次側電圧Vzct1はチャンネルCH3によって検出され、第2の零相変流器二次側電圧Vzct2はチャンネルCH4によって検出される。また、前記抵抗Rは、1次回路C1に0.1Aの電流を流した場合に、100mVの電圧を発生させる電流抵抗である。それぞれのチャンネルによる検出結果は、図9(b)に示される。   As shown in FIG. 9A, a zero-phase current transformer verification circuit that assumes a case where a circuit to be monitored has a leakage current is a closed circuit (primary circuit) C1 that assumes a leakage current to which a constant power supply Vc is connected. Formed as. The closed circuit C1 includes a first zero-phase current transformer ZCT1 provided on the line L1 imitating the electric circuit and a second zero-phase current transformer ZCT2 provided on the line L2 imitating the type B ground line. Each of the secondary sides is connected in series to form a closed circuit (secondary circuit) C2 together with the resistor R. In a measuring instrument (not shown), the current I1 flowing through the circuit C1 is detected by the channel CH1, the voltage Vr generated in the resistor R is detected by the channel CH2, and the first zero-phase current transformer secondary voltage Vzct1 is detected by the channel CH3. The second zero-phase current transformer secondary side voltage Vzct2 is detected by the channel CH4. The resistor R is a current resistor that generates a voltage of 100 mV when a current of 0.1 A is passed through the primary circuit C1. The detection result by each channel is shown in FIG.

以上の構成により、一次回路C1に電流I1(=I2)を流した(漏電した)場合、第1の零相変流器ZCT1に流れる電流と第2の零相変流器ZCT2に流れる電流が同一方向であることから第1の零相変流器二次側電圧Vzct1及び第2の零相変流器二次側電圧Vzct2は、ほぼゼロという検証結果となった。これによって、内部事故(監視対象回路事故)であることを判定することが可能となる。   With the above configuration, when the current I1 (= I2) flows (leakage) in the primary circuit C1, the current flowing in the first zero-phase current transformer ZCT1 and the current flowing in the second zero-phase current transformer ZCT2 are Since the direction is the same, the first zero-phase current transformer secondary side voltage Vzct1 and the second zero-phase current transformer secondary side voltage Vzct2 were verified to be substantially zero. As a result, it is possible to determine that this is an internal accident (monitored circuit fault).

監視対象外の回路が漏電した場合を想定した零相変流器検証回路は、図10(a)で示すように、定電電源Vcが接続された漏電を想定した閉回路(1次回路)C1として形成される。この場合、2次回路C2を構成する第1の零相変流器ZCT1は、漏電電流の流れない回路L3に配置されることになる。このように、監視対象外の回路が漏電した場合、第1の零相変流器ZCT1に流れる電流I1はゼロであり、第2の零相変流器ZCT2に流れる電流I2は所定の値(この実施例では、0.1A)となる。この結果、それぞれのチャンネルによる検出結果を見ると、図10(b)で示すように、CH3で示される第1の零相変流器ZCT1に生じる電圧Vzct1は負極性となることから、この電圧Vzct1が負極性である場合には、外部事故(監視対象外回路事故)であると判断することが可能となる。   As shown in FIG. 10A, the zero-phase current transformer verification circuit that assumes a case where a circuit not to be monitored has a leak is a closed circuit (primary circuit) that assumes a leak to which a constant power supply Vc is connected. Formed as C1. In this case, the first zero-phase current transformer ZCT1 constituting the secondary circuit C2 is arranged in the circuit L3 where no leakage current flows. Thus, when a circuit that is not monitored is leaked, the current I1 flowing through the first zero-phase current transformer ZCT1 is zero, and the current I2 flowing through the second zero-phase current transformer ZCT2 is a predetermined value ( In this embodiment, 0.1A). As a result, when the detection result by each channel is seen, as shown in FIG. 10B, the voltage Vzct1 generated in the first zero-phase current transformer ZCT1 indicated by CH3 has a negative polarity. When Vzct1 has a negative polarity, it is possible to determine that the accident is an external accident (a circuit fault that is not monitored).

さらに、監視対象の回路が漏電した場合を想定した別の零相変流器検証回路は、図11(a)に示すように、B種接地線L2とは別のルートL4によって電流が流れた場合、特に漏電電流の50%が第2の零相変流器ZCT2を通らなかった漏電事故の場合を想定した回路である。尚、この回路において、I1=I2+I3である。   Furthermore, in another zero-phase current transformer verification circuit that assumes a case in which a circuit to be monitored is leaked, current flows through a route L4 different from the B-type ground line L2, as shown in FIG. In this case, in particular, the circuit assumes a case of a leakage accident in which 50% of the leakage current does not pass through the second zero-phase current transformer ZCT2. In this circuit, I1 = I2 + I3.

この場合のそれぞれのチャンネルによる検出結果を見ると、図11(b)で示すように、CH3で示される第1の零相変流器ZCT1に生じる電圧Vzct1は正極性であることから、内部事故(監視対象回路事故)であると判断することが可能となる。   When the detection result by each channel in this case is seen, the voltage Vzct1 generated in the first zero-phase current transformer ZCT1 indicated by CH3 is positive as shown in FIG. It is possible to determine that this is a (monitored circuit fault).

以上の検証結果から、本願発明は、共用されるB種接地線に零相変流器を設け、この零相変流器の2次側と漏電遮断器内部の零相変流器2次側とを直列に接続し、これによって流れる零相変流器2次電流(零相電流)と、漏電遮断器用変流器の電圧から監視対象回路の漏電か監視対象外回路の漏電かを判断する漏電遮断器を提供することを主たる課題としている。   From the above verification results, the present invention is provided with a zero-phase current transformer on the shared class B ground wire, and the secondary side of this zero-phase current transformer and the secondary phase current transformer secondary side inside the earth leakage breaker Are connected in series, and the leakage current of the monitoring target circuit or the leakage current of the non-monitoring target circuit is determined from the zero-phase current transformer secondary current (zero-phase current) flowing in this way and the voltage of the current breaker current transformer. The main issue is to provide an earth leakage circuit breaker.

本願発明は、上述した課題を達成するために、複数の変圧器でB種接地線を共用している設備形態で使用される漏電遮断器において、前記B種接地線に外部零相変流器を設け、前記漏電遮断器に設けられた内部零相変流器の二次側と、前記外部零相変流器の二次側とを直列に接続して検出回路を構成すると共に、前記検出回路を流れる電流を検出する零相電流検出手段と、前記内部零相変流器の二次側電圧を検出する二次側電圧検出手段と、前記零相電流検出手段によって検出された零相電流が第1の所定値以上である場合に、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲内である場合、若しくは、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲よりも大きい第2の所定値以上である場合に、前記漏電遮断器の監視対象回路の漏電であると判断して回路を遮断する漏電処理手段と、前記零相電流検出手段によって検出された零相電流が第1の所定値以上である場合に、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲内でなく且つ前記第2の所定値以上でもない場合に、前記漏電遮断器の監視対象外の回路の漏電であると判断して回路の遮断を無効にする遮断阻止手段とを具備するようにしている。   In order to achieve the above-mentioned problem, the present invention provides an earth leakage breaker used in an equipment configuration in which a plurality of transformers share a B-type ground line, and the B-type ground line has an external zero-phase current transformer. The detection circuit is configured by connecting the secondary side of the internal zero-phase current transformer provided in the earth leakage breaker and the secondary side of the external zero-phase current transformer in series, and the detection Zero-phase current detection means for detecting current flowing in the circuit, secondary-side voltage detection means for detecting the secondary-side voltage of the internal zero-phase current transformer, and zero-phase current detected by the zero-phase current detection means When the parameter based on the secondary side voltage of the internal zero-phase current transformer detected by the secondary side voltage detecting means is within a predetermined range around zero, The secondary side voltage of the internal zero-phase current transformer detected by the secondary side voltage detection means An earth leakage processing means for judging that the circuit to be monitored of the earth leakage circuit breaker is an earth leakage when the parameter based on the second predetermined value is larger than a predetermined range around zero, and the zero phase When the zero-phase current detected by the current detection means is greater than or equal to the first predetermined value, the parameter based on the secondary-side voltage of the internal zero-phase current transformer detected by the secondary-side voltage detection means is around zero And an interruption preventing means for invalidating the interruption of the circuit by determining that the electric leakage of the circuit outside the monitoring target of the electric leakage breaker is an electric leakage when the electric leakage is not within the predetermined range and not more than the second predetermined value. Like to do.

以上のように、零相電流が所定値以上の場合には、監視対象回路若しくは監視対象外回路の漏電が発生したことが判断される。ここで内部零相変流器の二次側電圧に基づくパラメータが零若しくは零前後の所定範囲内の場合には、前述した図9で示される検証回路の検証結果からわかるように、監視対象回路の漏電と判断することができる。また、前記二次側電圧に基づくパラメータが所定値以上である場合には、上述した図11で示される検証回路の検証結果からわかるように、監視対象回路の漏電と判断することができる。しかしながら、前記二次側電圧に基づくパラメータが、前記零前後の所定範囲内でない場合且つ前記第2の所定値以上でない場合、言い換えるとマイナスである場合及び前記所定範囲よりも大きく第2の所定値よりも小さいプラスである場合には、監視対象外の回路の漏電であると判断して、この漏電遮断器の遮断を無効にすることができる。このため、漏電が発生した漏電遮断器のみを遮断することが可能となる。   As described above, when the zero-phase current is equal to or greater than the predetermined value, it is determined that a leakage current has occurred in the monitoring target circuit or the non-monitoring target circuit. Here, when the parameter based on the secondary side voltage of the internal zero-phase current transformer is zero or within a predetermined range around zero, as can be seen from the verification result of the verification circuit shown in FIG. It can be determined that there is a leak. When the parameter based on the secondary side voltage is equal to or greater than a predetermined value, it can be determined that the monitoring target circuit is leaked, as can be seen from the verification result of the verification circuit shown in FIG. However, when the parameter based on the secondary side voltage is not within the predetermined range around zero and not more than the second predetermined value, in other words, when it is negative, and the second predetermined value is larger than the predetermined range. In the case of a positive value smaller than that, it can be determined that the leakage of the circuit not to be monitored is a leakage, and the interruption of the leakage breaker can be invalidated. For this reason, it becomes possible to interrupt | block only the earth-leakage circuit breaker in which the earth leakage occurred.

また、前記二次側電圧に基づくパラメータは、零相電流検出手段によって検出された零相電流がマイナスからプラスへ極性反転した時点から所定時間内の二次側電圧の積分値、又は、零相電流検出手段によって検出された零相電流がマイナスからプラスへ極性反転した時点から所定時間内の二次側電圧の平均値であることが望ましい。なお、平均値は、前記積分値から算出するものであることが望ましく、また平均値ではなく実効値を演算するようにしても良い。   Further, the parameter based on the secondary side voltage may be an integral value of the secondary side voltage within a predetermined time from the time when the polarity of the zero phase current detected by the zero phase current detecting means is reversed from minus to plus, or the zero phase It is desirable that the average value of the secondary side voltage within a predetermined time from the time when the polarity of the zero-phase current detected by the current detecting means is reversed from minus to plus. The average value is preferably calculated from the integral value, and the effective value may be calculated instead of the average value.

これによって、零相電流の極性に対して、二次側電圧の極性がプラスであるかマイナスであるかを確実に検出できるので、上述した動作を確実に行うことできるようになる。さらに、これによって、漏電事故の瞬間に発生する電圧・電流が急変する過渡現象や、電圧のアンバランスにより生じる微小電流による誤動作、ノイズ等による誤動作を防止することが可能となる。   As a result, it is possible to reliably detect whether the polarity of the secondary voltage is positive or negative with respect to the polarity of the zero-phase current, so that the above-described operation can be performed reliably. Furthermore, this makes it possible to prevent a transient phenomenon in which the voltage / current generated at the moment of the leakage accident changes suddenly, a malfunction due to a minute current caused by voltage imbalance, a malfunction due to noise, or the like.

さらにまた、前記所定時間は、4msであることが望ましい。これは、監視対象回路で漏電が発生した場合に正極性の電圧が発生する理論時間(60Hzであれば約4.17ms、50Hzであれば5msであるため、両方を満足する4msを採用)内の電圧を積分した値、若しくは積分して平均値や実効値を算出して所定値と比較判断することで誤動作を防止することが可能となる。   Furthermore, the predetermined time is preferably 4 ms. This is within the theoretical time when positive voltage is generated when leakage occurs in the monitored circuit (approx. 4.17 ms for 60 Hz and 5 ms for 50 Hz, so 4 ms satisfying both is adopted) It is possible to prevent malfunctions by integrating a voltage obtained by integrating the voltage or calculating an average value or an effective value by integration and comparing with a predetermined value.

また、前記検出回路には、電圧が所定値以上とならないように電圧抑制素子を設けルことが望ましい。これによって、事故によって検出回路に発生する異常電圧から制御回路、特に電子部品を保護することが可能となる。   The detection circuit is preferably provided with a voltage suppression element so that the voltage does not exceed a predetermined value. As a result, it is possible to protect the control circuit, particularly the electronic component, from an abnormal voltage generated in the detection circuit due to an accident.

本願発明の漏電遮断器によれば、
1.複数の変圧器でB種接地を共用している設備形態であっても保護対象回路外の漏電事故で健全な回路が不要停電することがない(設備信頼度が向上する)、
2.単一の漏電事故で複数の漏電遮断器動作を防止できることから漏電事故箇所の特定が容易となり、事故復旧が迅速になる、
3.零相電圧を取り込む必要がないため安価な費用で保護が可能になる、
4.漏電遮断器の不要動作を避けるために動作設定値を上げる必要が無くなるため、感電の危険性をなくすことができる、
5.B種接地線に変流器を取り付けるだけで良いので既設電気設備を改造・変更することなく漏電遮断器を設置可能である
等の諸効果を奏する。
According to the earth leakage breaker of the present invention,
1. Even if it is an equipment configuration that shares Class B grounding with multiple transformers, a healthy circuit will not cause an unnecessary power failure due to a leakage accident outside the circuit to be protected (equipment reliability will be improved),
2. Since it is possible to prevent the operation of multiple earth leakage breakers with a single earth leakage accident, it is easy to identify the location of the earth leakage accident, and quick recovery from the accident.
3. Since it is not necessary to capture the zero-phase voltage, protection is possible at a low cost.
4). Since there is no need to increase the operation set value to avoid unnecessary operation of the earth leakage breaker, the risk of electric shock can be eliminated.
5. Since it is only necessary to attach a current transformer to the class B grounding wire, there are various effects such as installation of a leakage breaker without modifying or changing the existing electrical equipment.

本願発明に係る漏電遮断器の概略構成図である。It is a schematic block diagram of the earth-leakage circuit breaker which concerns on this invention. 本願発明に係る漏電遮断器で行われる制御のフローチャート図である。It is a flowchart figure of the control performed with the earth-leakage circuit breaker which concerns on this invention. 本願発明に係る漏電遮断器を単相変圧器に取り付けた状態を示す説明図である。It is explanatory drawing which shows the state which attached the earth-leakage circuit breaker which concerns on this invention to a single phase transformer. 本願発明に係る漏電遮断器を三相変圧器に取り付けた状態を示す説明図である。It is explanatory drawing which shows the state which attached the earth-leakage circuit breaker which concerns on this invention to a three-phase transformer. 図4で示す三相変圧器において、監視対象回路での第1の漏電事故の状態を示す説明図である。In the three-phase transformer shown in FIG. 4, it is explanatory drawing which shows the state of the 1st earth-leakage accident in a monitoring object circuit. 図4で示す三相変圧器において、監視対象回路での第2の漏電事故の状態を示す説明図である。In the three-phase transformer shown in FIG. 4, it is explanatory drawing which shows the state of the 2nd earth-leakage accident in a monitoring object circuit. 図5で示す第1の漏電事故が発生した場合の検出回路の各パラメータの波形を示す説明図である。It is explanatory drawing which shows the waveform of each parameter of the detection circuit when the 1st electric leakage accident shown in FIG. 5 occurs. 図6で示す第2の漏電事故が発生した場合の検出回路の各パラメータの波形を示す説明図である。It is explanatory drawing which shows the waveform of each parameter of the detection circuit at the time of the 2nd electric leakage accident shown in FIG. 図9(a)は、監視対象の回路が漏電した場合を想定した零相変流器検証回路であり、図9(b)は各パラメータの検出結果である。FIG. 9A is a zero-phase current transformer verification circuit that assumes a case where a circuit to be monitored is leaked, and FIG. 9B is a detection result of each parameter. 図10(a)は、監視対象外の回路が漏電した場合を想定した零相変流器検証回路であり、図10(b)は各パラメータの検出結果である。FIG. 10A is a zero-phase current transformer verification circuit that assumes a case where a circuit that is not monitored is leaked, and FIG. 10B is a detection result of each parameter. 図11(a)は監視対象の回路が漏電した場合を想定した別の零相変流器検証回路であり、図11(b)は各パラメータの検出結果である。FIG. 11A shows another zero-phase current transformer verification circuit that assumes a case where a circuit to be monitored is leaked. FIG. 11B shows detection results of each parameter.

以下、この発明の実施例について図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本願発明に係る漏電遮断器1は、図1に示すように、保護対象回路と接続される一対の配線3,4と、制御回路2の遮断指令によって前記配線3,4を開閉する配線用遮断器CBと、前記配線3,4に設けられる内部零相変流器ZCT1と、この内部零相変流器ZCT1の二次側と直列(同極性)に接続される二次側を有し、共用B種接地線5に設けられる外部零相変流器ZCT2とによって構成される。   As shown in FIG. 1, the earth leakage circuit breaker 1 according to the present invention includes a pair of wirings 3 and 4 connected to a circuit to be protected, and a wiring breaker that opens and closes the wirings 3 and 4 according to an interruption command from the control circuit 2. A capacitor CB, an internal zero-phase current transformer ZCT1 provided in the wirings 3 and 4, and a secondary side connected in series (with the same polarity) to the secondary side of the internal zero-phase current transformer ZCT1, It is comprised by the external zero phase current transformer ZCT2 provided in the common B class grounding wire 5. FIG.

また、前記制御回路2は、前記内部零相変流器ZCT1の二次側と前記外部零相変流器ZCT2の二次側が直列に接続された検出回路6を具備し、この検出回路6を流れる零相電流Io及び前記内部零相変流器ZCT1の二次側電圧Vzct1をデジタル信号に変換するA/D変換器21、このA/D変換器21からの信号に基づいて信号を処理するマイクロプロセッサ(MPU)22、このマイクロプロセッサ22の演算結果や処理プログラムを蓄積するメモリ(Me)23、及び前記マイクロプロセッサ22からの命令によって前記配線用遮断器CBに遮断指令を送信する入出力ポート(I/O)24によって少なくとも構成される。さらに、検出回路6には、異常電圧から電子部品を保護するために、例えばバリスタ等の非線形素子からなる電圧抑制素子(不図示)が設けられることが望ましい。   The control circuit 2 includes a detection circuit 6 in which the secondary side of the internal zero-phase current transformer ZCT1 and the secondary side of the external zero-phase current transformer ZCT2 are connected in series. The A / D converter 21 that converts the flowing zero-phase current Io and the secondary side voltage Vzct1 of the internal zero-phase current transformer ZCT1 into a digital signal, and processes the signal based on the signal from the A / D converter 21. Microprocessor (MPU) 22, memory (Me) 23 for storing calculation results and processing programs of the microprocessor 22, and input / output port for transmitting a shut-off command to the circuit breaker CB according to a command from the microprocessor 22 (I / O) 24 at least. Furthermore, the detection circuit 6 is preferably provided with a voltage suppression element (not shown) made of a non-linear element such as a varistor in order to protect the electronic component from an abnormal voltage.

図2において、前記制御装置2のマイクロプロセッサ22で実行される制御動作例がフローチャートとして示されている。
ステップ100から開始されるこの制御は、ステップ110において零相電流Ioが所定値α(この実施例では、100mA)以上であるか否かが判定される。この判定において、零相電流Ioが所定値α以上である場合には、監視対象回路若しくは監視対象外回路で漏電が発生したことがわかるので、ステップ120に進む。また零相電流Ioが所定値αより小さい場合には、漏電がないと判断するため、零相電流Ioの監視を継続することになる。
In FIG. 2, an example of a control operation executed by the microprocessor 22 of the control device 2 is shown as a flowchart.
In this control started from step 100, it is determined in step 110 whether or not the zero-phase current Io is equal to or greater than a predetermined value α (100 mA in this embodiment). In this determination, if the zero-phase current Io is equal to or greater than the predetermined value α, it is known that a leakage has occurred in the monitoring target circuit or the non-monitoring target circuit. When the zero-phase current Io is smaller than the predetermined value α, it is determined that there is no leakage, and thus the monitoring of the zero-phase current Io is continued.

ステップ120では、前記零相電流Ioが負極(マイナス)から正極(プラス)に反転した時点から所定時間(4ms)内部零相変流器ZCT1の二次側の電圧Vzct1を積分し、その積分結果から平均電圧Vaveを演算する。   In step 120, the secondary-side voltage Vzct1 of the internal zero-phase current transformer ZCT1 is integrated for a predetermined time (4 ms) from the time when the zero-phase current Io is inverted from the negative electrode (minus) to the positive electrode (plus), and the integration result is obtained. From this, the average voltage Vave is calculated.

そして、ステップ130において、平均電圧Vaveが零前後の所定範囲(−β≦Vave≦+β)内にあるか否かが判定される。この実施例では、βは0.1Vである。このように、内部零相変流器ZCT1の二次側の電圧Vzct1の平均電圧がほぼ0Vである場合には、監視対象回路の漏電であると判断できるため、ステップ150に進んで自動遮断を実行して配線用遮断器CBを開とし配線3,4の遮断を完了し、ステップ170で制御を完了する。   In step 130, it is determined whether or not the average voltage Vave is within a predetermined range around zero (−β ≦ Vave ≦ + β). In this example, β is 0.1V. Thus, when the average voltage of the secondary-side voltage Vzct1 of the internal zero-phase current transformer ZCT1 is approximately 0 V, it can be determined that the monitoring target circuit is leaking. Then, the circuit breaker CB for wiring is opened to complete the disconnection of the wirings 3 and 4, and the control is completed in step 170.

また、前記ステップ130の判定において、平均電圧Vaveが±β(±0.1V)の範囲内にない場合には、ステップ140に進んで、平均電圧Vaveが前記βよりも大きいγ(この実施例では、0.2V)以上であるか否かが判定される。この判定において、平均電圧Vaveが所定値γ以上である場合には、上述した図11で示す検証から明らかなように、監視対象回路の漏電であると判断し、ステップ150に進んで前記配線3,4を自動遮断する。   If it is determined in step 130 that the average voltage Vave is not within the range of ± β (± 0.1 V), the routine proceeds to step 140 where γ (this embodiment) where the average voltage Vave is larger than β. Then, it is determined whether or not it is 0.2V or more. In this determination, if the average voltage Vave is greater than or equal to the predetermined value γ, it is determined that the monitoring target circuit is leaking, as is clear from the verification shown in FIG. , 4 are automatically shut off.

また、前記ステップ150の判定において、平均電圧Vaveが所定値γよりも小さいと判定された場合には、平均電圧Vaveが−βより小さい値(負極)であるか、+β以上+γ以下であるかであることがわかる。特に平均電圧Vaveが負極である場合には、図10で示す検証から明らかなように、監視対象外の回路の漏電であることがわかるため、ステップ160に進んで遮断を行わない(遮断阻止)。また、平均電圧Vaveが+βよりも大きい場合であって、+γよりも小さい場合には、監視対象回路の漏電ではあるものの事故遮断させる程度には至らない漏電事故の範囲と判断し、ステップ160に進んで遮断阻止する。   If it is determined in step 150 that the average voltage Vave is smaller than the predetermined value γ, whether the average voltage Vave is a value (negative electrode) smaller than −β, or is not less than + β and not more than + γ. It can be seen that it is. In particular, when the average voltage Vave is a negative electrode, it is clear from the verification shown in FIG. 10 that the leakage of the circuit not to be monitored is detected. . If the average voltage Vave is larger than + β and smaller than + γ, it is determined that the leakage target is in the range of the leakage fault that is a leakage current of the monitored circuit but does not cut off the accident. Proceed with blocking.

図3は、本願発明に係る漏電遮断器1を装備した単相変圧器構成の設備を示したものである。この設備において、漏電遮断器1Aの配線3A,4Aは、2つの単相変圧器10,11に接続される210V母線に接続され、また漏電遮断器1Bの配線3B,3Cは、2つの単相変圧器10,11に接続される105・210V単相三線式電線に接続されるもので、それぞれの漏電遮断器1A,1Bの外部零相変流器ZCT2−2及びZCT1−2が単相変圧器10,11の共用B種接地線5に配置される。   FIG. 3 shows equipment having a single-phase transformer configuration equipped with the earth leakage circuit breaker 1 according to the present invention. In this facility, the wires 3A and 4A of the earth leakage breaker 1A are connected to the 210V bus connected to the two single-phase transformers 10 and 11, and the wires 3B and 3C of the earth leakage breaker 1B are two single-phases. Connected to 105 / 210V single-phase three-wire electric wire connected to transformers 10 and 11, external zero-phase current transformers ZCT2-2 and ZCT1-2 of each earth leakage breaker 1A and 1B are single-phase transformers. It is arranged on the common type B ground line 5 of the containers 10 and 11.

図4は、本願発明に係る漏電遮断器1を装備した三相変圧器構成の設備を示したものである。この設備において、漏電遮断器1Cの配線3C,4Cが、三相変圧器12に接続される210V母線に接続され、また漏電遮断器1Dの配線3D,4Dが、三相変圧器12に接続される105V母線に接続されるもので、それぞれの漏電遮断器1C,1Dの外部零相変流器ZCT2−2及びZCT1−2が三相変圧器12の共用B種接地線5に配される。   FIG. 4 shows the equipment of the three-phase transformer configuration equipped with the earth leakage circuit breaker 1 according to the present invention. In this facility, the wires 3C and 4C of the earth leakage breaker 1C are connected to the 210V bus connected to the three-phase transformer 12, and the wires 3D and 4D of the earth leakage breaker 1D are connected to the three-phase transformer 12. The external zero-phase current transformers ZCT2-2 and ZCT1-2 of the respective earth leakage circuit breakers 1C and 1D are arranged on the common type B ground line 5 of the three-phase transformer 12.

図5では、図4に示した三相変圧器構成の設備において漏電が発生した場合の一例が示される。この三相変圧器構成において、200V回路に漏電が発生(地絡抵抗Rgで接地)した場合、200V側の漏電遮断器(200V_ELB)1Cの配線3Cが接続される線路から、抵抗Rgを介してB種接地線5に地絡電流Ioが流れることになり、200V側の内部零相変流器ZCT2−1にはV2−1方向に起電力が発生し、外部零相変流器ZCT2−2には、V2−2方向に起電力を発生することになる。この場合、起電力の方向が同一方向となることから200V側漏電遮断器1Cの検出回路6Cは、インピーダンスの低い回路構成となることから内部零相変流器ZCT2−1の二次電圧V2−1は、ほぼゼロとなり、検出回路6Cには、io2が図中矢印方向に流れる。このように、io2がマイナス極からプラス極に極性を変える時点から所定の時間ti(本実施例では、4ms)の間の二次電圧V2−1の積分量(所定時間tiの積分値若しくはそこから演算される平均値、実効値)は、図7(a)で示すように、ほぼゼロであり、平均電圧Vaveもゼロである。   FIG. 5 shows an example of when a leakage occurs in the equipment having the three-phase transformer configuration shown in FIG. In this three-phase transformer configuration, when a leakage occurs in the 200V circuit (grounded by the ground fault resistance Rg), the line 3C of the leakage breaker (200V_ELB) 1C on the 200V side is connected via the resistor Rg. The ground fault current Io flows through the B-type grounding wire 5, and an electromotive force is generated in the internal zero-phase current transformer ZCT2-1 on the 200V side in the V2-1 direction, and the external zero-phase current transformer ZCT2-2. In this case, an electromotive force is generated in the V2-2 direction. In this case, since the direction of the electromotive force is the same direction, the detection circuit 6C of the 200V side earth leakage circuit breaker 1C has a low impedance circuit configuration, so the secondary voltage V2- of the internal zero-phase current transformer ZCT2-1. 1 becomes almost zero, and io2 flows through the detection circuit 6C in the direction of the arrow in the figure. As described above, the integration amount of the secondary voltage V2-1 during the predetermined time ti (4 ms in the present embodiment) from the time when the polarity of io2 changes from the negative pole to the positive pole (the integrated value of the predetermined time ti or there) As shown in FIG. 7A, the average value and the effective value calculated from the above are almost zero, and the average voltage Vave is also zero.

これに対して、100V側の漏電遮断器(100V_ELB)1Dでは、外部零相変流器ZCT1−2に電流Ioが流れるため、外部零相変流器ZCT1−2にはV1−2方向に起電力が発生するが、内部零相変流器ZCT1−1にはIoが流れないため、内部零相変流器ZCT1−1には起電力が発生せず高インピーダンスの状態となることから、外部零相変流器ZCT1−2で発生した起電力は、内部零相変流器ZCT1−1に電圧V1−1方向に電圧を発生させる。このため、検出回路6Dには、電流io1が図中矢印方向に流れる。ここで、電流io1と電圧V1−1の関係を見ると、200V側の検出回路6Cと異なり、電流io1がマイナス極からプラス極に極性が変わった時点から所定時間ti内の内部零相変流器ZCT1−1の電圧V1−1の積分値及びそれから演算される平均電圧Vave(若しくは実効値)を見ると、図7(b)で示すように、負極であることから監視対象外の回路の事故(外部事故)であることがわかる。   On the other hand, in the earth leakage breaker (100V_ELB) 1D on the 100V side, since the current Io flows through the external zero-phase current transformer ZCT1-2, the external zero-phase current transformer ZCT1-2 starts in the V1-2 direction. Although electric power is generated, Io does not flow through the internal zero-phase current transformer ZCT1-1. Therefore, no electromotive force is generated in the internal zero-phase current transformer ZCT1-1, and a high impedance state is obtained. The electromotive force generated by the zero-phase current transformer ZCT1-2 causes the internal zero-phase current transformer ZCT1-1 to generate a voltage in the direction of the voltage V1-1. For this reason, the current io1 flows in the detection circuit 6D in the direction of the arrow in the figure. Here, looking at the relationship between the current io1 and the voltage V1-1, unlike the detection circuit 6C on the 200V side, the internal zero-phase current transition within a predetermined time ti from the time when the polarity of the current io1 changes from the negative pole to the positive pole. When looking at the integrated value of the voltage V1-1 of the device ZCT1-1 and the average voltage Vave (or effective value) calculated therefrom, as shown in FIG. It turns out that it is an accident (external accident).

このように、図5及び図7で示す例においては、200V側漏電遮断器(200V_ELB)1Cが監視対象回路の事故(内部事故)であり、この200V側漏電遮断器1Cの漏電事故に対して、100V側漏電遮断器(100V_ELB)1Dでは監視対象外の回路の事故(外部事故)であると判断することができることがわかる。   Thus, in the example shown in FIG.5 and FIG.7, 200V side earth leakage breaker (200V_ELB) 1C is an accident (internal accident) of a monitoring object circuit, and with respect to this earth leakage accident of 200V side earth leakage breaker 1C The 100V side earth leakage breaker (100V_ELB) 1D can be determined to be an accident (external accident) of a circuit that is not monitored.

また、図7(a)(b)において、200V側検出回路6Cの内部零相変流器ZCT2−1とい外部零相変流器ZCT2−2の一次側に流れる零相電流は同方向で値も同じであることからそれぞれの零相変流器の二次側に発生する電圧はゼロとなるものである。さらに、100V側検出回路6Dにおいても、外部零相変流器ZCT1−2には零相電流Ioが流れるが、内部零相変流器ZCT1−1には流れないため、検出回路6Dのインピーダンスが高くなり、内部零相変流器ZCT1−1には高電圧V1−1が発生する。この電圧ZCT1−1と外部零相変流器ZCT1−2に発生する電圧V1−2とは図7(b)に示すように逆極性となる。   7A and 7B, the zero-phase currents flowing in the primary side of the internal zero-phase current transformer ZCT2-1 and the external zero-phase current transformer ZCT2-2 in the 200V side detection circuit 6C are values in the same direction. Therefore, the voltage generated on the secondary side of each zero-phase current transformer is zero. Furthermore, in the 100V side detection circuit 6D, the zero-phase current Io flows through the external zero-phase current transformer ZCT1-2, but does not flow through the internal zero-phase current transformer ZCT1-1. The voltage V1-1 is generated in the internal zero-phase current transformer ZCT1-1. The voltage ZCT1-1 and the voltage V1-2 generated in the external zero-phase current transformer ZCT1-2 have opposite polarities as shown in FIG.

以上、200V回路に漏電事故が発生した場合について説明したが、100V回路に漏電事故が発生した場合についても同様の作用が働き、100V回路では内部事故が、200V回路では外部事故がそれぞれ判定される。   In the above, the case where the leakage accident has occurred in the 200V circuit has been described. However, the same action also works when the leakage accident has occurred in the 100V circuit, and an internal accident is determined in the 100V circuit and an external accident is determined in the 200V circuit. .

図6では、三相変圧器構成において、200V回路に漏電が発生(地絡抵抗Rgで接地)した場合であって、零相電流の一部が別の回路に流れたケースを示している。この場合、200V側の検出回路6Cでは、流れる電流に差が生じるため(Io>Io2)、零相電流Ioによって生じる内部零相変流器ZCT2−1による起電力と分流電流Io2によって生じる外部零相変流器ZCT2−2による起電力が同じではなくなるが、極性は同方向となるため、起電力の差分だけ内部零相変流器ZCT2−1と外部零相変流器ZCT2−2に逆極性の電圧が発生することになる。しかし、内部零相変流器ZCT2−1の方が外部零相変流器ZCT2−2よりも起電力が大きいため、図8(a)で示すように、二次電流io2がマイナス極性からプラス極性に反転した時点では、内部零相変流器ZCT2−1の電圧V2−1の電圧(所定時間tiの積分値若しくはそこから演算される平均値、実効値)は正極性のため、監視対象回路の漏電事故と判断して配線3C,4Cを遮断する。   FIG. 6 shows a case where, in a three-phase transformer configuration, a leakage occurs in the 200V circuit (grounded by the ground fault resistance Rg), and a part of the zero-phase current flows to another circuit. In this case, in the detection circuit 6C on the 200V side, a difference occurs in the flowing current (Io> Io2), so that the external zero generated by the electromotive force generated by the internal zero-phase current transformer ZCT2-1 generated by the zero-phase current Io and the shunt current Io2 The electromotive force generated by the phase current transformer ZCT2-2 is not the same, but the polarity is the same direction. Therefore, the difference between the electromotive forces is reversed to the internal zero-phase current transformer ZCT2-1 and the external zero-phase current transformer ZCT2-2. Polarity voltage will be generated. However, since the internal zero-phase current transformer ZCT2-1 has a larger electromotive force than the external zero-phase current transformer ZCT2-2, the secondary current io2 increases from negative polarity to positive as shown in FIG. When the polarity is reversed, the voltage of the internal zero-phase current transformer ZCT2-1, the voltage V2-1 (the integrated value of the predetermined time ti, the average value calculated from it, or the effective value) is positive, and is monitored. The wirings 3C and 4C are cut off based on a circuit leakage accident.

また、100V側の検出回路6Dでは、内部零相変流器ZCT1−1には逆方向(負方向)に電流が流れ、B種接地線5に設けられた外部零相変流器ZCT1−2には正方向に電流が流れるため、それぞれ逆方向に流れることになる。また、検出回路6Dでは、内部零相変流器ZCT1−1の二次電流io1は、外部零相変流器ZCT1−2の一次側に流れる零相電流Io2により外部零相変流器ZCT1−2の二次側に発生する電圧V1−1よりも高いことから、二次電流io1は電圧V1−2により流れる電流となる。このため、io1がマイナス極からプラス極に反転した時点で、内部零相変流器ZCT1−1の二次電圧VZCT1−1(所定時間tiの積分値若しくはそこから演算される平均値、実効値)は負極となることから、監視対象外の回路の漏電であると判断することができる。このため、遮断は阻止される。   Further, in the detection circuit 6D on the 100V side, a current flows in the reverse direction (negative direction) through the internal zero-phase current transformer ZCT1-1, and the external zero-phase current transformer ZCT1-2 provided in the class B grounding wire 5 Since current flows in the forward direction, each flows in the opposite direction. In the detection circuit 6D, the secondary current io1 of the internal zero-phase current transformer ZCT1-1 is converted into the external zero-phase current transformer ZCT1- by the zero-phase current Io2 that flows to the primary side of the external zero-phase current transformer ZCT1-2. 2 is higher than the voltage V1-1 generated on the secondary side, the secondary current io1 is a current flowing by the voltage V1-2. For this reason, when io1 is inverted from the negative pole to the positive pole, the secondary voltage VZCT1-1 of the internal zero-phase current transformer ZCT1-1 (the integrated value of the predetermined time ti or the average value and the effective value calculated therefrom). ) Is a negative electrode, it can be determined that this is a leakage of a circuit that is not monitored. For this reason, blocking is prevented.

図8(a)において、200Vの検出回路6Cの内部零相変流器ZCT2−1に流れる電流Ioは、外部零相変流器ZCT2−2に流れる電流Io2よりも大きいため、検出回路6Cに流れる二次電流io2は、電圧V2−1と同方向となる。このため、二次電流io2がプラス極性に変化した時点の内部零相変流器ZCT2−1の電圧極性は、プラスとなる。次に、配線4Dを流れる分流されたIo1の大きさが小さくなるにつれて、100V側漏電遮断器1Dの内部零相変流器ZCT1−1に発生する電圧V1−1は図8(b)で示すように、小さくなっていき、分流しなくなると、図5及び図7で示される状態となる。   8A, since the current Io flowing through the internal zero-phase current transformer ZCT2-1 of the 200V detection circuit 6C is larger than the current Io2 flowing through the external zero-phase current transformer ZCT2-2, the detection circuit 6C The flowing secondary current io2 is in the same direction as the voltage V2-1. For this reason, the voltage polarity of the internal zero phase current transformer ZCT2-1 at the time when the secondary current io2 changes to a positive polarity is positive. Next, as the magnitude of the shunted Io1 flowing through the wiring 4D becomes smaller, the voltage V1-1 generated in the internal zero-phase current transformer ZCT1-1 of the 100V side leakage breaker 1D is shown in FIG. 8B. Thus, when it becomes small and does not divert, it will be in the state shown in FIG.5 and FIG.7.

以上のことから、本願発明に係る漏電遮断器1においては、内部零相変流器ZCT1の二次側と、共用されるB種接地線に設けられた外部零相変流器ZCT2の二次側とを直列に接続すると共に、これによって流れる二次電流と、内部零粗変流器ZCT1の二次側に発生する電圧に基づくパラメータ(二次電流がマイナス極からプラス極に変化した時点から所定時間内の前記電圧の積分量、若しくはこの積分量から演算された平均値、実効値等)に基づいて、漏電が監視対象回路の漏電事故(内部事故)か、監視対象外の回路の漏電事故(外部事故)かを、確実に判断することが可能となる。   From the above, in the earth leakage circuit breaker 1 according to the present invention, the secondary side of the internal zero-phase current transformer ZCT1 and the secondary of the external zero-phase current transformer ZCT2 provided on the shared B-type grounding wire are used. Are connected in series, and the parameter based on the secondary current flowing through this and the voltage generated on the secondary side of the internal zero coarse current transformer ZCT1 (from the time when the secondary current changes from the minus pole to the plus pole) Based on the integration amount of the voltage within a predetermined time, or the average value, effective value, etc. calculated from this integration amount), the leakage is a leakage accident (internal accident) of the monitored circuit, or the leakage of the circuit that is not monitored It is possible to reliably determine whether the accident (external accident).

1,1A,1B,1C,1D 漏電遮断器
2 制御回路
3,3A,3B,3C,3D,4,4A,4B,4C,4D 配線
5 B種接地線
6C,6D 検出回路
7 電圧抑制素子
10,11 単相変圧器
12 三相変圧器
1, 1A, 1B, 1C, 1D Leakage breaker 2 Control circuit 3, 3A, 3B, 3C, 3D, 4, 4A, 4B, 4C, 4D Wiring 5 Type B ground line 6C, 6D Detection circuit 7 Voltage suppression element 10 , 11 Single-phase transformer 12 Three-phase transformer

Claims (5)

複数の変圧器でB種接地線を共用している設備形態に使用される漏電遮断器において、
前記B種接地線に外部零相変流器を設け、
前記漏電遮断器に設けられた内部零相変流器の二次側と、前記外部零相変流器の二次側とを直列に接続して検出回路を構成すると共に、
前記検出回路を流れる電流を検出する零相電流検出手段と、
前記内部零相変流器の二次側電圧を検出する二次側電圧検出手段と、
前記零相電流検出手段によって検出された零相電流が第1の所定値以上である場合に、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲内である場合、若しくは、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲よりも大きい第2の所定値以上である場合に、前記漏電遮断器の監視対象回路の漏電であると判断して回路を遮断する漏電処理手段と、
前記零相電流検出手段によって検出された零相電流が第1の所定値以上である場合に、前記二次側電圧検出手段によって検出された内部零相変流器の二次側電圧に基づくパラメータが零前後の所定範囲内でなく且つ前記第2の所定値以上でもない場合に、前記漏電遮断器の監視対象外の回路の漏電であると判断して回路の遮断を無効にする遮断阻止手段とを具備することを特徴とする漏電遮断器。
In the earth leakage circuit breaker used for the equipment configuration sharing the B class grounding wire with multiple transformers,
An external zero-phase current transformer is provided on the B-type ground wire,
The secondary side of the internal zero phase current transformer provided in the earth leakage circuit breaker and the secondary side of the external zero phase current transformer are connected in series to constitute a detection circuit,
Zero-phase current detection means for detecting a current flowing through the detection circuit;
Secondary side voltage detecting means for detecting a secondary side voltage of the internal zero phase current transformer;
A parameter based on the secondary side voltage of the internal zero phase current transformer detected by the secondary side voltage detection means when the zero phase current detected by the zero phase current detection means is greater than or equal to a first predetermined value. Is within a predetermined range around zero, or a second parameter whose parameter based on the secondary side voltage of the internal zero-phase current transformer detected by the secondary side voltage detecting means is larger than a predetermined range around zero. When it is equal to or greater than a predetermined value, a leakage processing means that determines that the leakage of the monitoring target circuit of the leakage breaker is a leakage and interrupts the circuit;
A parameter based on the secondary side voltage of the internal zero phase current transformer detected by the secondary side voltage detection means when the zero phase current detected by the zero phase current detection means is greater than or equal to a first predetermined value. Interruption preventing means for invalidating the interruption of the circuit by judging that the leakage of the circuit not monitored by the leakage breaker is a leakage when the current is not within a predetermined range around zero and not more than the second predetermined value An earth leakage circuit breaker comprising:
前記二次側電圧に基づくパラメータは、零相電流検出手段によって検出された零相電流がマイナス極からプラス極へ極性反転した時点から所定時間内の二次側電圧の積分値であることを特徴とする請求項1記載の漏電遮断器。   The parameter based on the secondary side voltage is an integral value of the secondary side voltage within a predetermined time from the time when the polarity of the zero phase current detected by the zero phase current detecting means is reversed from the minus pole to the plus pole. The earth leakage circuit breaker according to claim 1. 前記二次側電圧に基づくパラメータは、零相電流検出手段によって検出された零相電流がマイナス極からプラス極へ極性反転した時点から所定時間内の二次側電圧の平均値であることを特徴とする請求項1記載の漏電遮断器。   The parameter based on the secondary side voltage is an average value of the secondary side voltage within a predetermined time from the time when the polarity of the zero phase current detected by the zero phase current detecting means is reversed from the negative pole to the positive pole. The earth leakage circuit breaker according to claim 1. 前記所定時間は、4msであることを特徴とする請求項2記載の漏電遮断器。   3. The earth leakage circuit breaker according to claim 2, wherein the predetermined time is 4 ms. 前記検出回路には、電圧が所定値以上とならないように電圧抑制素子を設けたことを特徴とする請求項1〜4のいずれか1つに記載の漏電遮断器。   The earth leakage circuit breaker according to any one of claims 1 to 4, wherein the detection circuit includes a voltage suppression element so that the voltage does not exceed a predetermined value.
JP2013097303A 2013-05-07 2013-05-07 Earth leakage breaker Expired - Fee Related JP5615958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097303A JP5615958B1 (en) 2013-05-07 2013-05-07 Earth leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097303A JP5615958B1 (en) 2013-05-07 2013-05-07 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP5615958B1 true JP5615958B1 (en) 2014-10-29
JP2014220055A JP2014220055A (en) 2014-11-20

Family

ID=51938346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097303A Expired - Fee Related JP5615958B1 (en) 2013-05-07 2013-05-07 Earth leakage breaker

Country Status (1)

Country Link
JP (1) JP5615958B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378418B2 (en) * 1995-10-05 2003-02-17 光商工株式会社 Leakage protection method
JPH09163584A (en) * 1995-12-04 1997-06-20 Mitsubishi Electric Corp Ground fault detection circuit and circuit breaker equipped with ground fault detection circuit
JP4873763B2 (en) * 2010-05-24 2012-02-08 有限会社 ライフテクノス Earth leakage detector with scoop lock

Also Published As

Publication number Publication date
JP2014220055A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
US8508896B2 (en) DC feeder protection system
CN1902798B (en) Method and device for fault detection in transformers or power lines
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
CA2969546C (en) Fault detection and direction determination
MX2014010385A (en) Leveraging inherent redundancy in a multifunction ied.
EP1929602B1 (en) Method and system for fault detection in electrical power devices
US8243408B2 (en) Apparatus and method for preventing reverse power flow of over current relay
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
KR20220118368A (en) Apparatus and method detecting direction of fault current
US7710698B2 (en) Distance protection relay and method
JP5821014B2 (en) Leakage determination device
RU2581607C1 (en) Method of protection from breaks of phase and neutral wires of four-wire overhead line of electric mains voltage of 380 v and device therefor
EP3830920B1 (en) A method and a device for supervision of a voltage transformer
KR100947834B1 (en) Algorism and system for detecting of a line-to-earth fault in ungrounded distribution power systems
KR20170016573A (en) Circuit breaker with informal waveform detection circuit
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP5615958B1 (en) Earth leakage breaker
Wilson et al. Detecting open phase conductors
KR102249379B1 (en) Leakage alarm relay using detection of voltage variation of electric line for motor and its relay system
CN203911463U (en) Single-phase earthing circuit protection device of power distribution network for arc-suppression coil-based neutral-point earthing system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP2019154112A (en) Secondary circuit abnormality detection device for wound-rotor induction motor, and secondary circuit protection device
KR101825891B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Phase Comparison

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees