JP3112706B2 - Ground fault detection device for distribution system - Google Patents

Ground fault detection device for distribution system

Info

Publication number
JP3112706B2
JP3112706B2 JP03177888A JP17788891A JP3112706B2 JP 3112706 B2 JP3112706 B2 JP 3112706B2 JP 03177888 A JP03177888 A JP 03177888A JP 17788891 A JP17788891 A JP 17788891A JP 3112706 B2 JP3112706 B2 JP 3112706B2
Authority
JP
Japan
Prior art keywords
ground
current
ground wire
ground fault
metal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03177888A
Other languages
Japanese (ja)
Other versions
JPH0526946A (en
Inventor
勝 飯島
博 芳賀
康夫 片岡
正 宮野
泰之 三神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Inc
Hitachi Ltd
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Meidensha Corp
Priority to JP03177888A priority Critical patent/JP3112706B2/en
Publication of JPH0526946A publication Critical patent/JPH0526946A/en
Application granted granted Critical
Publication of JP3112706B2 publication Critical patent/JP3112706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地絡検出装置に係り、
特に配電系統の地絡事故検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault detecting device,
More particularly, the present invention relates to a ground fault detection device for a distribution system.

【0002】[0002]

【従来の技術】図4は配電線の支持構造を示すもので、
1は電柱で、木製もあるが最近はほとんどコンクリート
製である。2は腕金(アーム)、3はアームタイ、4,
5,6は碍子、7は金属バンドである。8は金属導体
で、種々のタイプがあるが、ここではキャップタイプの
金属キャップで示している。9は架空地線、10,1
1,12は3相の高圧配電線で、それぞれ碍子4,5,
6を介して腕金2に絶縁支持される。13,14,15
は碍子、16,17,18は低圧電灯線で単相3線式と
なっており、このうち16は接地されていて共同地線と
なっている。19はトランス用腕木、20は絶縁体、2
1は単相トランスであり、1次巻線22が高圧電線10
〜12のうち2本に接続され、2次巻線23はセンター
タップが低圧電灯線16に接続され、他は低圧電灯線1
7,18に接続されている。24は単相トランス21の
ケースである。25a〜25eは接地線25とする。大
地26の接地インピーダンスは、通常、数十オーム程度
である。
2. Description of the Related Art FIG. 4 shows a supporting structure of a distribution line.
1 is a telephone pole, which is made of concrete, although it is made of wood. 2 is an arm (arm), 3 is an arm tie, 4,
5 and 6 are insulators, and 7 is a metal band. Reference numeral 8 denotes a metal conductor, of which there are various types. Here, a cap type metal cap is shown. 9 is an imaginary ground wire, 10, 1
Reference numerals 1 and 12 denote three-phase high-voltage distribution lines.
6 and is insulated and supported by the arm 2. 13,14,15
Is an insulator, and 16, 17, and 18 are low-voltage lighting lines of a single-phase three-wire system. Of these, 16 is grounded and serves as a common ground wire. 19 is a transformer arm, 20 is an insulator, 2
Reference numeral 1 denotes a single-phase transformer.
, The center tap of the secondary winding 23 is connected to the low-voltage wire 16, and the other windings are connected to the low-voltage wire 1.
7, 18 are connected. Reference numeral 24 denotes the case of the single-phase transformer 21. 25a to 25e are ground lines 25. The ground impedance of the ground 26 is usually on the order of tens of ohms.

【0003】電力供給信頼度の向上の一つとして、停電
時間の短縮がある。そのためには、事故を起こした場
所、機器の早期発見が重要である。そこで、事故点の発
見が困難で事故点の調査に時間を要する地絡事故を、事
故発生と同時に検出することを目的に機器単位に変流器
(CT)を設け、地絡事故を集中監視するシステムが考
えられる。しかしこれらの監視対象機材に検出用変流器
を設置する場合、トランス,開閉器,アレスタ,地中ケ
ーブルなどについては構造上容易に取付が可能である
が、碍子については、構造上及び構成員数の多い事など
より経済性をも考慮して変流器の使用数を最小とするな
ど工夫が必要である。
One of the improvements in power supply reliability is to shorten the power outage time. For that purpose, it is important to find the place where the accident occurred and the equipment early. Therefore, a current transformer (CT) is installed for each device for the purpose of detecting a ground fault that requires a long time to investigate the fault because it is difficult to find the fault. A system that does this is conceivable. However, when installing a current transformer for detection on these monitored equipment, transformers, switches, arresters, underground cables, etc. can be easily attached structurally, but for insulators, the structure and the number of members It is necessary to take measures such as minimizing the number of current transformers in consideration of economic efficiency rather than many things.

【0004】[0004]

【発明が解決しようとする課題】碍子はアームに直接取
付けられており、また碍子は他の機器よりも信頼性があ
るので、各相毎に地絡事故を検出する必要はなく3相一
括で充分である。ところがアームやアームタイに変流器
を取付けても他柱で起きた事故の地絡電流が架空地線
(GW)を流れてキャップからアームに流れ込むため誤
動作し易い。
Since the insulator is directly attached to the arm and the insulator is more reliable than other devices, it is not necessary to detect a ground fault accident for each phase, and the three phases are collectively used. Is enough. However, even if a current transformer is attached to an arm or an arm tie, a ground fault current of an accident that occurred in another pillar flows through an overhead ground wire (GW) and flows from the cap to the arm, so that a malfunction easily occurs.

【0005】それを防止するために、図5から図7に示
すような手段が考えられる。すなわち、図5に示すよう
にキャップ8に電流検出器である変流器28を設置し、
この変流器28に碍子4,5,6からアーム2とアーム
タイ3を通してアース26に通ずる接地線25を貫通さ
せる。27は接地線25の接地抵抗である。
[0005] In order to prevent this, means as shown in Figs. 5 to 7 can be considered. That is, as shown in FIG. 5, a current transformer 28 as a current detector is installed on the cap 8,
A ground wire 25 is passed through the current transformer 28 from the insulators 4, 5, 6 through the arm 2 and the arm tie 3 to a ground 26. 27 is a ground resistance of the ground line 25.

【0006】図6から図7は図5の等価回路であって、
他柱から地絡電流I1が回り込んだ場合には、図6に示
すように、変流器28の1次側でキャンセルされる。ま
た、自柱の碍子の地絡事故の場合は図7に示すように碍
子の地絡電流ILを検出可能である。しかし、図8に示
すように電柱1のリーク分抵抗29の値RPが小さくそ
のリーク電流I3が大きい場合は(I1−I2)=I3とな
り、このI3がしきい値よりも大きくなり誤動作する。
その理由としては、コンクリート柱(コン柱)のインピ
ーダンス低下はアームやアームタイをコン柱に固定する
貫通ボルトがコン柱内の鉄筋と接触しているためと推定
されるが、数10Ω以下(正規の接地線の接地抵抗とほ
ぼ同等)の柱が20から30%以上存在することが実測
の結果判明した。
FIGS. 6 and 7 are equivalent circuits of FIG.
When the ground fault current I 1 spills from another pillar, it is canceled on the primary side of the current transformer 28 as shown in FIG. Further, when the insulator ground fault of its own pillar can detect the ground fault current I L of the insulator as shown in FIG. However, the value R P is small in which case the leakage current I 3 large (I 1 -I 2) = I 3 next to the leak component resistor 29 of electric pole 1 as shown in FIG. 8, from this I 3 is the threshold Becomes large and malfunctions.
The reason for this is presumed that the lowering of the impedance of the concrete column (con column) is due to the penetration bolt that fixes the arm or arm tie to the con column coming into contact with the rebar inside the con column, As a result of actual measurement, it was found that 20 to 30% or more of the pillars (substantially equivalent to the ground resistance of the ground wire) were present.

【0007】コンクリート柱のリーク分をキャンセルさ
せる手段として図9および図10に示す方法が考えられ
る。図10は図9の等価回路である。すなわち、キャッ
プ8に変流器28bを設置すると共に、コン柱1に変流
器28cを設置し、これらの2つの変流器の2次側を差
動接続する。したがって、この方法ではコン柱1のリー
ク電流分をキャンセルすることができる。しかし、コン
柱1の下側に設ける変流器28cは、貫通径がコン柱の
径(400ミリ)以上必要であり、しかも取付けを考慮
すると変流器鉄心は分割できる構造でなければならな
い。このためコスト面と信頼性を考えると実用性がな
い。
As a means for canceling the leakage of the concrete column, a method shown in FIGS. 9 and 10 can be considered. FIG. 10 is an equivalent circuit of FIG. That is, the current transformer 28b is installed on the cap 8, and the current transformer 28c is installed on the connecting pole 1, and the secondary sides of these two current transformers are differentially connected. Therefore, in this method, the leakage current of the column 1 can be canceled. However, the current transformer 28c provided on the lower side of the connecting column 1 needs to have a penetration diameter equal to or larger than the diameter of the connecting column (400 mm). Therefore, it is not practical in view of cost and reliability.

【0008】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、配電線路の絶縁支持体である碍子及
び金属アームに取り付けられる高圧機器などの絶縁低下
により発生する高圧回路地絡事故点を、低圧回路の負荷
電流又は他柱の地絡電流に左右されることなく、高性能
に地絡事故を特定できる地絡事故検出装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide a high-voltage circuit ground fault caused by a decrease in insulation of a high-voltage device attached to an insulator or a metal arm as an insulating support of a distribution line. It is an object of the present invention to provide a ground fault detector capable of specifying a fault at a high performance without being affected by a load current of a low voltage circuit or a ground fault current of another pillar.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の地絡事故検出装置は、コンクリート柱に固
定された支持体を介して該コンクリート柱に配電線を絶
縁支持すると共に、前記コンクリート柱に取り付けられ
金属導体により架空地線を支持し、この架空地線を
記金属導体を介して接地線により大地に接地する配電系
統において、前記支持体から前記金属導体を介して架空
地線に流れる電流を検出する第1の電流検出器と、 電流
が前記支持体から前記金属導体を介して前記架空地線に
流れるときにはこの電流と接地線を流れる電流とが和動
となり、電流が架空地線より前記金属導体を介して前記
コンクリート柱と接地線に流れるときには前記金属導体
を流れる電流と接地線を流れる電流とが差動となるよう
に配設された第2の電流検出器を備え、前記第1及び第
2の電流検出器の検出信号を比較して前記配電線の地絡
を検出することを特徴とする。また、本発明の地絡事故
検出装置は、高圧配電線と低圧配電線とをそれぞれコン
クリート柱に固定された支持体を介して該コンクリート
柱に絶縁支持すると共に、前記コンクリート柱に取り付
けられた金属導体により架空地線を支持し、この架空地
線を前記金属導体を介して接地線により大地に接地する
と共に、低圧配電線の共同地線を接地線により大地に接
地する配電系統において、前記金属導体に流れる電流を
検出する第1の電流検出器と、前記架空地線より前記金
属導体を介して共同地線と接地線との接続部に流れる電
流を検出する第2の電流検出器を備え、前記第1及び第
2の電流検出器の電気信号を比較して前記配電線の地絡
を検出することを特徴とする。
In order to achieve the above object, a ground fault detection apparatus according to the present invention insulates and supports a distribution line on a concrete column via a support fixed to the column. supporting the ground wire by a metal conductor which is attached to the concrete column, before the ground wire
In a power distribution system grounded to the ground by a ground wire via the metal conductor, an imaginary
A first current detector for detecting a current flowing to the ground line, the current
When flowing from the support to the overhead ground wire via the metal conductor, this current and the current flowing through the ground wire become a harmonic, and the current flows from the overhead ground wire via the metal conductor to the ground wire.
When flowing to concrete columns and ground lines
A second current detector disposed so that the current flowing through the power line and the current flowing through the ground line become differential, and comparing the detection signals of the first and second current detectors with the distribution line. Is detected. In addition, the ground fault detection device of the present invention insulates and supports the high-voltage distribution line and the low-voltage distribution line on the concrete column via supports respectively fixed to the concrete column, and also mounts the metal mounted on the concrete column. supporting the ground wire by a conductor, the overhead ground
Ground the wire to ground via the ground conductor via the metal conductor
At the same time, connect the common ground wire of the low-voltage distribution line to the ground with a ground wire.
In the distribution system to the earth, a first current detector for detecting a current flowing through the metal conductor, the gold from the ground wire
A second current detector for detecting a current flowing through a connection between the common ground wire and the ground wire via the metal conductor, and comparing the electric signals of the first and second current detectors with the distribution line. Is detected.

【0010】また本発明の配電系統の地絡事故検出装置
は、高圧配電線と低圧配電線とをそれぞれコンクリート
柱に固定された支持体を介して該コンクリート柱に絶縁
支持すると共に、前記コンクリート柱に取り付けられた
金属導体により架空地線を支持し、この架空地線を前記
金属導体と接地線を介して大地に接地すると共に、低圧
配電線の共同地線を接地線大地に接地する配電系統にお
いて、前記金属導体に流れる電流を検出する第1の電流
検出器と、前記架空地線より前記金属導体を介して共同
地線と接地線との接続部に流れる電流を検出する第2の
電流検出器を備え、前記第1及び第2の電流検出器の電
気信号を比較して前記配電線の地絡を検出することを特
徴とする。
[0010] The ground fault detection device for a power distribution system according to the present invention further comprises insulatingly supporting the high-voltage distribution line and the low-voltage distribution line on the concrete column via support members fixed to the concrete column, respectively. supporting the ground wire by a metal conductor which is attached to the the ground wire
Ground to the ground via a metal conductor and ground wire, and
In the distribution system for grounding the joint ground wire distribution lines to the ground line ground, a first current detector for detecting a current flowing through the metal conductor, and co bare wire through the metal conductor from the ground wire grounded A second current detector for detecting a current flowing through a connection portion with a line, and comparing an electric signal of the first and second current detectors to detect a ground fault of the distribution line. I do.

【0011】さらにまた、本発明の配電系統の地落事故
検出装置は、第1及び第2の電流検出器の電気信号の変
化分について比較して配電線の地絡を検出し、配電系の
地絡を検出するようにしたものである。
Further, the ground fault detection device for a power distribution system according to the present invention detects a ground fault in a distribution line by comparing changes in electric signals of the first and second current detectors and detects a ground fault in the power distribution system. This is to detect a ground fault.

【0012】[0012]

【作用】支持体と架空地線間に流れる電流のみを検出す
る第1の電流検出器の検出信号S4と、支持体と架空地
線間に流れる電流と支持体からを接地線介して大地側に
流れる電流の双方を検出する第2の電流検出器の検出信
号S5とを比較演算し、S5<S4のときは、他柱の地
絡事故と判定する。
The detection signal S4 of the first current detector for detecting only the current flowing between the support and the overhead ground line, and the current flowing between the support and the overhead ground line and the ground from the support via the ground line are connected to the ground side. Is compared with a detection signal S5 of a second current detector for detecting both currents flowing through the second column.

【0013】検出信号S5がしきい値を越えかつS5<
S4のときは自柱の事故なし他柱で事故と判断し、信号
S5がしきい値を越えかつS5≧S4のときは自柱の碍
子の事故と判断すると共に、信号S5がしきい値を越え
ない場合は自柱の事故なしと判断する。
When the detection signal S5 exceeds the threshold value and S5 <
When S4, there is no accident on the own pillar, it is judged that there is an accident on the other pillar. When the signal S5 exceeds the threshold value and S5 ≧ S4, it is judged that the accident on the insulator of the own pillar has occurred. If it does not exceed it, it is judged that there is no accident of its own pillar.

【0014】また検出信号S4,S5を式(1)により
演算し S5/S4≧K …(1) この演算結果S5/S4が検出感度定数K以上の時自柱
の碍子の事故と判断する。
Further, the detection signals S4 and S5 are calculated by the equation (1). S5 / S4 ≧ K (1) When the calculation result S5 / S4 is equal to or more than the detection sensitivity constant K, it is determined that the insulator of the own pole is an accident.

【0015】支持体と架空地線間に流れる電流の検出信
号S4と支持体から接地線を介して大地側に流れる電流
の検出信号S5を比較演算し(S4−S5)<S4の時
は他柱の事故と判定する。(S4−S5)がしきい値を
越えかつ(S4−S5)<S4のとき自柱の事故なし他
柱事故と判断し、(S4−S5)がしきい値を越えかつ
(S4−S5)≧S4のときは、自柱の碍子の事故と判
断すると共に信号(S4−S5)がしきい値を越えな
い場合は自柱の事故なしと判断する。さらに、検出信号
S4の変化分を△S4,検出信号S5の変化分を△S5
としこれを演算比較し△S4>△S5の時は、他柱の地
絡事故と判定する。
The detection signal S4 of the current flowing between the support and the overhead ground wire is compared with the detection signal S5 of the current flowing from the support to the ground via the ground wire (S4-S5). Judge as a pillar accident. When (S4-S5) exceeds the threshold value and (S4-S5) <S4, it is determined that there is no accident on the own pillar and another pillar accident, and (S4-S5) exceeds the threshold value and (S4-S5). When ≧ S4, it is determined that the insulator of the own pillar has an accident, and when the signal (S4-S5) does not exceed the threshold value, it is determined that there is no accident of the own pillar. Further, the change of the detection signal S4 is represented by △ S4, and the change of the detection signal S5 is represented by △ S5.
When 演算 S4> △ S5, it is determined that another pillar has a ground fault.

【0016】[0016]

【実施例】以下に本発明の実施例を図1から図3を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0017】図1および図2は本発明の実施例による配
電系統の地絡事故検出装置を示すもので、金属キャップ
8に第1の電流検出器である変流器28aと第2の電流
検出器である変流器28bを設置し、これらの出力を演
算処理部30で比較処理して他柱からの回り込みか自柱
の事故かを判断するものである。
FIGS. 1 and 2 show an apparatus for detecting a ground fault in a power distribution system according to an embodiment of the present invention. A current transformer 28a as a first current detector and a second current detector are provided on a metal cap 8. A current transformer 28b is installed, and the output of the current transformer 28b is compared by an arithmetic processing unit 30 to judge whether the current comes from another pillar or the accident of the own pillar.

【0018】図2に示すように、他柱の地絡事故による
回り込み電流I1は架空地線9を通してキャップ8に流
入する。キャップ8に流入した回り込み電流I1はコン
柱1と接地線25にそれぞれI2,I3として分流し、抵
抗27,29を通してアース26に流入する。
As shown in FIG. 2, a sneak current I 1 due to a ground fault at another pillar flows into the cap 8 through an overhead ground wire 9. The sneak current I 1 flowing into the cap 8 is shunted to the column 1 and the ground line 25 as I 2 and I 3 , respectively, and flows into the ground 26 through the resistors 27 and 29.

【0019】変流器28aは回り込み電流I1を検出
し、その検出出力信号S1を演算処理部30に入力す
る。また、変流器28bは回り込み電流I1と接地線2
5に流れる電流I3=I1−I2とを差動的に検出して検
出出力信号S2を演算処理部30に入力する。前述のよ
うに接地線25の正規の接地抵抗REとコンクリート
柱1のリーク分等価抵抗RP間ではRE》RPとなること
は有り得ないからS2<S1となり、演算処理部30
はこのS2<S1を判断して、他柱での地絡事故信号S
3を出力する。
The current transformer 28a detects the sneak current I 1 and inputs the detection output signal S1 to the arithmetic processing unit 30. Further, current transformer 28b is sneak current I 1 and the ground line 2
5 is differentially detected as I 3 = I 1 −I 2, and a detection output signal S 2 is input to the arithmetic processing unit 30. As described above, since there can be no be a R E "R P is leak component equivalent resistance R P of the ground resistance of the normal of the ground line 25 R E and concrete columns 1, S2 <becomes S1, the arithmetic processing unit 30
Determines that S2 <S1, and determines the ground fault signal S at another pillar.
3 is output.

【0020】自柱における碍子の地絡事故の場合は、図
1に示すように、碍子4(5,6)からの地絡電流IL
はキャップ8を通して架空地線9に流入する電流I5
コン柱1を通してアース26に流入する電流I6および
接地線25を通してアース26に流入する電流I7に分
流される。したがって、変流器28aは電流I5を検出
しその検出出力信号S4を演算処理部30に入力する。
変流器28bは電流I5と電流I7=IL−(I5+I6
とを和動的に検出してその検出出力信号S5を演算処理
部30に入力する。
[0020] In the case of ground fault of the insulator in its own column, as shown in FIG. 1, the ground fault current I L from the insulator 4 (5,6)
Is the current I 5 flowing into the overhead ground wire 9 through the cap 8,
The current I 6 flows into the ground 26 through the connecting post 1 and the current I 7 flows into the ground 26 through the ground wire 25. Therefore, current transformer 28a inputs the detection output signal S4 to detect a current I 5 to the processing unit 30.
Current transformer 28b current I 5 and the current I 7 = I L - (I 5 + I 6)
And a detection output signal S5 is input to the arithmetic processing unit 30.

【0021】しかるに、通常はS5≧S4であり、
E,RPが大きく他柱への回り込み電流I5が大きいと
きはS5≒S4となる。したがって、信号S5が絶対値
レベルを越えかつS5<S4のときは演算処理部30
は、自柱の事故なし、他柱での事故と判断する。また、
信号S5が絶対値レベルを越えかつS5≧S4の場合
は、演算処理部30は自柱の碍子事故と判断する。さら
に、信号S5が絶対値レベルを越えないときは、演算処
理部30は自柱の事故なしと判断する。
However, normally, S5 ≧ S4,
When R E and R P are large and the sneak current I 5 to the other pillar is large, S5 ≒ S4. Therefore, when the signal S5 exceeds the absolute value level and S5 <S4 , the arithmetic processing unit 30
Judge that there is no accident on the own pillar and accident on the other pillar. Also,
When the signal S5 exceeds the absolute value level and S5 ≧ S4, the arithmetic processing unit 30 determines that the insulator accident has occurred on the pillar. Further, when the signal S5 does not exceed the absolute value level, the arithmetic processing unit 30 determines that there is no accident of its own pillar.

【0022】演算処理部30は演算処理信号S3または
S6を子局の信号として送出する。配電系統の各機器に
設置された変流器で検出された地絡電流は、しきい値を
越えると、子局の記憶装置に保持される。親局は各子局
を呼び出し、事故情報を検出すると配電用テレコンを介
して支社,営業所に事故情報を伝送する。
The arithmetic processing section 30 sends out the arithmetic processing signal S3 or S6 as a signal of the slave station. When a ground fault current detected by a current transformer installed in each device of the distribution system exceeds a threshold, it is held in a storage device of the slave station. The master station calls each slave station, and upon detecting the accident information, transmits the accident information to the branch office and the sales office via the power distribution teleconverter.

【0023】上述の実施例によれば、金属キャップに流
れる電流を検出する第1の電流検出器の検出信号と該金
属キャップと接地線の双方に流れる電流の双方を検出す
る第2の電流検出器の検出信号とを比較演算して地絡事
故を検出することにより、コンクリート柱のリークによ
る検出誤動作を防止することができると共に、使用する
2つの変流器は、キャップ部分に通すため貫通径も比較
的に小さくて良く、取付けに際しても架空地線をキャッ
プ頂点から外して横にづらすことにより、キャップの上
から嵌挿すれば良いので、分割型鉄心にする必要がなく
コスト低減ができ、高信頼性の検出装置が得られる。
According to the above-described embodiment, the second current detection for detecting both the detection signal of the first current detector for detecting the current flowing through the metal cap and the current flowing to both the metal cap and the ground line. By detecting the ground fault by comparing with the detection signal of the detector, it is possible to prevent the detection malfunction due to the leakage of the concrete column, and the two current transformers used have a penetration diameter to pass through the cap part. The overhead ground wire can be removed from the top of the cap and laid sideways, so that it can be inserted from the top of the cap, eliminating the need for a split iron core and reducing costs. Thus, a highly reliable detection device can be obtained.

【0024】図3は本発明の他の実施例による地絡事故
検出装置を示すもので、本実施例の地絡事故検出装置は
架空地線9に接続された接地線25aに流れる電流I1
を第1の電流検出器28aで検出すると共に、碍子4
(5,6)と低圧共同地線16とを接続する接地線25
bに流れる電流を第2の電流検出器28bで検出するよ
うにして構成されている。
FIG. 3 shows a ground fault detecting apparatus according to another embodiment of the present invention. The ground fault detecting apparatus according to the present embodiment is configured to supply a current I 1 flowing to a ground wire 25 a connected to the overhead ground wire 9.
Is detected by the first current detector 28a, and the insulator 4
Ground wire 25 connecting (5, 6) and low-voltage common ground wire 16
The second current detector 28b detects the current flowing through the second current detector b.

【0025】図3の地絡事故検出装置によれば、架空地
線9と高圧配電線10(11,12)を支持する碍子4
(5,6)間で接地線25aに流れる電流I1は第1の
電流検出器28aで検出され、その検出信号S1は演算
処理部30に入力される。また、碍子4(5,6)と共
同地線16間で接地線25bに流れる電流I3は第2の
電流検出器28bによって検出され、その検出信号S2
は演算処理部30に入力される。ここで、電流I3は電
流I1とI2の差I3=(I1−I2)であり、演算処理部
30はこれらの電流関係を基に地絡事故を検出する。
According to the ground fault detecting device shown in FIG. 3, the insulator 4 supporting the overhead ground wire 9 and the high voltage distribution lines 10 (11, 12) is provided.
The current I 1 flowing through the ground line 25a between (5, 6) is detected by the first current detector 28a, and the detection signal S 1 is input to the arithmetic processing unit 30. Further, a current I 3 flowing through the ground line 25b between the insulator 4 (5, 6) and the common ground line 16 is detected by the second current detector 28b, and a detection signal S 2
Is input to the arithmetic processing unit 30. Here, the current I 3 is a difference I 3 between the currents I 1 and I 2 = (I 1 −I 2 ), and the arithmetic processing unit 30 detects a ground fault accident based on the current relationship.

【0026】[0026]

【発明の効果】以上のように本発明によれば、配電線を
支持する支持体と架空地線間に流れる電流を検出する第
1の電流検出器と、前記支持体と大地間に流れる電流を
検出する第2の電流検出器を備え、これらの第1及び第
2の電流検出器の検出信号を有効に比較演算して地絡事
故を検出するものであるから、配電線路の絶縁支持体で
ある碍子及び金属アームに取り付けられる高圧機器など
の絶縁低下により発生する高圧回路地絡事故点を低圧
回路の負荷電流又は他柱の地絡電流に左右されることな
高性能に地絡事故を特定できる地絡事故検出装置を
得ることができる。
As described above, according to the present invention, a first current detector for detecting a current flowing between a support supporting a distribution line and an overhead ground wire, and a current flowing between the support and the ground are provided. And a second current detector for detecting the ground fault is detected by effectively comparing and calculating the detection signals of the first and second current detectors. the high-voltage circuit ground fault point caused by reduced insulation, such as insulators and high pressure equipment to be attached to the metal arm is, without being influenced by the ground fault current in the load current or other pillars of low-voltage circuit, high performance ground It is possible to obtain a ground fault detection device that can specify a fault.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による配電系統の地絡事故検出
装置を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an apparatus for detecting a ground fault in a distribution system according to an embodiment of the present invention.

【図2】本発明の実施例による配電系統の地絡事故検出
装置を示す概略構成図。
FIG. 2 is a schematic configuration diagram illustrating a ground fault detection apparatus for a distribution system according to an embodiment of the present invention.

【図3】本発明の他の実施例による配電系統の地絡事故
検出装置を示す概略構成図。
FIG. 3 is a schematic configuration diagram showing a ground fault detection device for a distribution system according to another embodiment of the present invention.

【図4】支持体である電柱の接続例を示す説明図。FIG. 4 is an explanatory view showing a connection example of a utility pole as a support.

【図5】従来の配電系統の地絡事故検出装置を示す説明
図。
FIG. 5 is an explanatory diagram showing a conventional ground fault detection device for a power distribution system.

【図6】図4の地絡事故検出装置の等価回路図。FIG. 6 is an equivalent circuit diagram of the ground fault detection device of FIG. 4;

【図7】図4の地絡事故検出装置の等価回路図。FIG. 7 is an equivalent circuit diagram of the ground fault detection device of FIG. 4;

【図8】図4の地絡事故検出装置の等価回路図。FIG. 8 is an equivalent circuit diagram of the ground fault detection device of FIG. 4;

【図9】従来の配電系統の地絡事故検出装置の構成図。FIG. 9 is a configuration diagram of a conventional ground fault detection device for a power distribution system.

【図10】図8の配電系統の地絡事故検出装置の等価回
路図。
FIG. 10 is an equivalent circuit diagram of the ground fault detection device for the distribution system of FIG. 8;

【符号の説明】[Explanation of symbols]

1…コンクリート柱 4,5,6…碍子 8…金属キャップ 9…架空地線 16…低圧共同地線 25,25a,25b,25e…接地線 26…アース 27…接地抵抗 28a…第1の電流検出器である変流器 28b…第2の電流検出器である変流器 29…コンクリート柱の接地抵抗 30…演算処理部 DESCRIPTION OF SYMBOLS 1 ... Concrete pillar 4,5,6 ... Insulator 8 ... Metal cap 9 ... Aerial ground wire 16 ... Low voltage joint ground wire 25,25a, 25b, 25e ... Ground wire 26 ... Ground 27 ... Ground resistance 28a ... First current detection Current transformer 28b current transformer as second current detector 29 ground resistance of concrete column 30 arithmetic processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芳賀 博 茨城県日立市国分町1−1−1 株式会 社日立製作所国分工場内 (72)発明者 片岡 康夫 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 宮野 正 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (72)発明者 三神 泰之 東京都品川区大崎2丁目1番17号 株式 会社明電舎内 (56)参考文献 特開 平4−74971(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/08 G01R 31/02 H02H 3/16 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Hiroshi Haga 1-1-1 Kokubuncho, Hitachi City, Ibaraki Prefecture Inside Kokubu Plant, Hitachi, Ltd. (72) Yasuo Kataoka 2-1-1, Osaki 2-chome, Shinagawa-ku, Tokyo No. Inside the Meidensha Co., Ltd. (72) Tadashi Miyano, 2-1-1-17 Osaki, Shinagawa-ku, Tokyo, Japan Inside the Meidensha Co., Ltd. (72) Inventor Yasuyuki Migami 2-1-1, Osaki, Shinagawa-ku, Tokyo, Japan Inside the Meidensha Co., Ltd. (56) References JP-A-4-74971 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 31/08 G01R 31/02 H02H 3/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コンクリート柱に固定された支持体を介
して該コンクリート柱に配電線を絶縁支持すると共に、
前記コンクリート柱に取り付けられた金属導体により
空地線を支持し、この架空地線を前記金属導体を介して
接地線により大地に接地する配電系統において、前記支持体から前記金属導体を介して架空地線に流れる
電流を検出する第1の電流検出器と、 電流が前記支持体から前記金属導体を介して 前記架空地
線に流れるときにはこの電流と接地線を流れる電流とが
和動となり、電流が架空地線より前記金属導体を介して
前記コンクリート柱と接地線に流れるときには前記金属
導体を流れる電流と接地線を流れる電流とが差動となる
ように配設された第2の電流検出器を備え、 前記第1及び第2の電流検出器の検出信号を比較して前
記配電線の地絡を検出することを特徴とする配電系統の
地絡事故検出装置。
1. A distribution line is insulated and supported on a concrete column via a support fixed to the concrete column.
An overhead ground wire is supported by a metal conductor attached to the concrete pillar, and the overhead ground wire is supported through the metal conductor.
In a power distribution system that is grounded to the ground by a ground wire, the power flows from the support to the overhead ground wire via the metal conductor.
A first current detector for detecting a current, and when the current flows from the support through the metal conductor to the overhead ground wire, the current and the current flowing through the ground wire become a summation, and the current flows through the overhead ground wire. Through the metal conductor
When flowing to the concrete column and the ground line, the metal
A second current detector disposed so that a current flowing through the conductor and a current flowing through the ground line become differential; and comparing the detection signals of the first and second current detectors, A ground fault detection device for a distribution system, which detects a ground fault of an electric wire.
【請求項2】 高圧配電線と低圧配電線とをそれぞれコ
ンクリート柱に固定された支持体を介して該コンクリー
ト柱に絶縁支持すると共に、前記コンクリート柱に取り
付けられた金属導体により架空地線を支持し、この架空
地線を前記金属導体を介して接地線により大地に接地す
ると共に、低圧配電線の共同地線を接地線により大地に
接地する配電系統において、前記金属導体 に流れる電流を検出する第1の電流検出器
と、前記架空地線より前記金属導体を介して 共同地線と接地
線との接続部に流れる電流を検出する第2の電流検出器
を備え、 前記第1及び第2の電流検出器の電気信号を比較して前
記配電線の地絡を検出することを特徴とする配電系統の
地絡検出装置。
2. A high-voltage distribution line and a low-voltage distribution line are respectively insulated and supported on a concrete column via a support fixed to the concrete column, and an overhead ground wire is supported by a metal conductor attached to the concrete column. And this fictional
Ground the ground wire to the ground via the ground conductor through the metal conductor
And the common ground wire of the low-voltage distribution line
A first current detector for detecting a current flowing through the metal conductor in a distribution system to be grounded, and a current flowing from the overhead ground wire to a connection between the common ground wire and a ground wire via the metal conductor ; A ground fault detecting device for a distribution system, comprising: a second current detector, and detecting a ground fault of the distribution line by comparing electric signals of the first and second current detectors.
【請求項3】 前記請求項1又は2において、前記第1
及び第2の電流検出器の電気信号の変化分について比較
して配電線の地絡を検出することを特徴とする配電系地
絡の地絡事故検出装置
3. The method according to claim 1, wherein
And a second current detector of the power distribution system ground fault of ground fault detection device and detects a ground fault of the comparison to the distribution line for variation of the electrical signal.
JP03177888A 1991-07-18 1991-07-18 Ground fault detection device for distribution system Expired - Fee Related JP3112706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03177888A JP3112706B2 (en) 1991-07-18 1991-07-18 Ground fault detection device for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03177888A JP3112706B2 (en) 1991-07-18 1991-07-18 Ground fault detection device for distribution system

Publications (2)

Publication Number Publication Date
JPH0526946A JPH0526946A (en) 1993-02-05
JP3112706B2 true JP3112706B2 (en) 2000-11-27

Family

ID=16038816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03177888A Expired - Fee Related JP3112706B2 (en) 1991-07-18 1991-07-18 Ground fault detection device for distribution system

Country Status (1)

Country Link
JP (1) JP3112706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560484A (en) * 2013-11-02 2014-02-05 国家电网公司 Multipoint ground-connection current control device for three current transformers to monitor transformer clamping parts in online mode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293443B (en) * 2013-05-20 2016-01-06 国家电网公司 A kind of distribution network overhead line Earth design method
CN103558449B (en) * 2013-11-02 2016-01-20 国家电网公司 Two mutual inductor on-Line Monitor Device of apparatus for fixing transformer ground current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560484A (en) * 2013-11-02 2014-02-05 国家电网公司 Multipoint ground-connection current control device for three current transformers to monitor transformer clamping parts in online mode
CN103560484B (en) * 2013-11-02 2015-11-25 国家电网公司 Three current transformer on-line monitoring multipoint earthing of clamping piece of transformer current control devices

Also Published As

Publication number Publication date
JPH0526946A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
US4228475A (en) Ground monitoring system
KR100690092B1 (en) Detecting Device of faulted section for Underground Distribution Line
JPH061964B2 (en) Equipment for three-phase generators
US3930187A (en) Ground fault interrupter with means protecting against a grounded neutral condition and with a test circuit for testing performance
JP3112706B2 (en) Ground fault detection device for distribution system
JPH073448B2 (en) Ground fault detector for distribution system
JPH05133993A (en) Contactless electric field/magnetic field sensor
JP2636417B2 (en) Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit
Hou Comparing Fault Resistance Coverage of Different Distribution System Grounding Methods
West Grounding for emergency and standby power systems
KR20100034828A (en) Ground fault protection system
JP3378418B2 (en) Leakage protection method
Cooley et al. Guide to substation grounding and bonding for mine power systems
JP2001050997A (en) Measuring device for capacitance to ground and measuring method thereof
JPS63294214A (en) Monitor system of insulation of power distribution facility
JPS5843962B2 (en) Soubun Limits Peigatabo Senno
JPS60233574A (en) Accident point detecting device of single core metallic sheath cable
JPH11295379A (en) Method of detecting ground trouble in underground wiring
Soares Clearing Ground Fault Currents on Distribution Systems---600 Volts or Less
Castenschiold et al. Proper grounding of on-site electric power systems
Regotti et al. Changing concepts and equipment applied on grounded low-voltage systems
JPH0442779Y2 (en)
JPS63201572A (en) Accident point detection system
JPS5843963B2 (en) Soubun Limits Peigatabosenno Koshiyoukenshiyutsusouchi
GB1455845A (en) Ground fault protection system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees