JP2636417B2 - Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit - Google Patents

Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit

Info

Publication number
JP2636417B2
JP2636417B2 JP10272589A JP10272589A JP2636417B2 JP 2636417 B2 JP2636417 B2 JP 2636417B2 JP 10272589 A JP10272589 A JP 10272589A JP 10272589 A JP10272589 A JP 10272589A JP 2636417 B2 JP2636417 B2 JP 2636417B2
Authority
JP
Japan
Prior art keywords
transformer
iron core
instrument transformer
ground
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10272589A
Other languages
Japanese (ja)
Other versions
JPH02237425A (en
Inventor
幸造 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPH02237425A publication Critical patent/JPH02237425A/en
Application granted granted Critical
Publication of JP2636417B2 publication Critical patent/JP2636417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は計器用変成器の1次コイルと2次コイル、
あるいは1次コイルと鉄心との間の絶縁破壊の検出回路
およびこの検出回路を備える計器用変成器に関する。
The present invention relates to a primary coil and a secondary coil of an instrument transformer,
Alternatively, the present invention relates to a circuit for detecting insulation breakdown between a primary coil and an iron core, and an instrument transformer provided with the circuit.

〔従来の技術〕[Conventional technology]

第5図は従来の計器用変成器の1例を示す外観斜視
図、第6図は従来の計器用変成器を用いた一般的な受電
設備の回路図である。
FIG. 5 is an external perspective view showing an example of a conventional instrument transformer, and FIG. 6 is a circuit diagram of a general power receiving facility using the conventional instrument transformer.

図において、1は絶縁ケーブル等より成り負荷へ給電
する高圧側電路、2は高圧側電路の地絡電流を検出して
その2次出力を地絡継電器3へ伝える高圧側零相変流、
4は地絡電流が所定地以上になると地絡継電器3からの
出力により引外しコイル4aを介して高圧側電路1の負荷
側を遮断する遮断器、8は低圧電路に接続され高圧側電
路1にの電圧を計測している電圧計である。10は計器用
変成器であり、1次コイル11、2次コイル13、2次端子
14、鉄心15および取付けフレーム16から構成されてい
る。1次コイル11は1次側ヒューズ12を介して高圧側電
路1へ、2次コイル13は2次端子14を介して低圧電路へ
各々接続されている。鉄心15は取付けフレーム16が取り
つけられる図示しない構造物を介して大地に接続されて
いる。
In the drawing, 1 is a high-voltage side electric circuit composed of an insulated cable or the like and supplies power to a load, 2 is a high-voltage side zero-phase current transformer that detects a ground fault current of the high voltage side circuit and transmits its secondary output to a ground fault relay 3,
Reference numeral 4 denotes a circuit breaker for tripping the load side of the high-voltage side electric circuit 1 via an output from the ground-fault relay 3 when the ground-fault current exceeds a predetermined level via a coil 4a. Is a voltmeter that measures the voltage of Reference numeral 10 denotes a transformer for an instrument, a primary coil 11, a secondary coil 13, and a secondary terminal.
14, the iron core 15 and the mounting frame 16. The primary coil 11 is connected to the high voltage side electric circuit 1 via the primary side fuse 12, and the secondary coil 13 is connected to the low voltage electric path via the secondary terminal 14. The iron core 15 is connected to the ground via a structure (not shown) to which the mounting frame 16 is attached.

この構成を持つ受電設備において、高圧側電路1のA
点で地絡事故が発生した場合には、矢印Bの地絡電流が
流れ高圧側零相変流器2の出力により地絡継電器3を介
し遮断器4が作動して高圧側電路1の負荷を遮断し、回
路保護を行う。
In the power receiving equipment having this configuration, the A
When a ground fault occurs at a point, a ground fault current indicated by an arrow B flows and the circuit breaker 4 operates via the ground fault relay 3 by the output of the high-voltage zero-phase current transformer 2 to load the high-voltage side circuit 1. To protect the circuit.

上記は高圧側電路1の絶縁破壊に起因する地絡事故の
場合であるが、計器用変成器10の内部で1次コイル11と
鉄心15または2次コイル13との間の絶縁破壊が生じた場
合は、1次コイル11→鉄心15→取付けフレーム16→前記
構造物を介して大地へ、また1次コイル11→2次コイル
13→低圧電路→低圧電路の接地点へと高圧側電路1から
地絡電流が流れ、上記と同様に高圧側変流器2の出力に
より地絡継電器3を介し遮断器4が作動する。
The above is the case of the ground fault accident caused by the insulation breakdown of the high voltage side electric circuit 1, but the insulation breakdown between the primary coil 11 and the iron core 15 or the secondary coil 13 occurs inside the instrumentation transformer 10. In the case, primary coil 11 → iron core 15 → mounting frame 16 → to the ground via the above structure, and also primary coil 11 → secondary coil
The ground fault current flows from the high-voltage side electric circuit 1 to the low-voltage path 13 to the low-voltage path, and the circuit breaker 4 is activated by the output of the high-voltage current transformer 2 via the ground fault relay 3 in the same manner as described above.

一般に、地絡事故による遮断器4の作動後は、電気管
理者が高圧側電路1およびこれに接続されている構成機
器の点検を行い、異常を識別して事故要因を除去した後
に高圧側電路1の負荷への給電復旧を行う。この場合、
計器用変成器10内部での絶縁劣化による1次コイル11と
2次コイル13または鉄心15間の絶縁破壊は外観に異常が
見られないことが多く、低圧電路に接続されている電圧
計8により計器用変成器10内部における絶縁破壊を見極
めることは非常に困難である。
Generally, after the circuit breaker 4 is actuated due to a ground fault, an electric manager checks the high-voltage circuit 1 and the components connected thereto, identifies an abnormality, removes the cause of the accident, and then removes the high-voltage circuit. The power supply to the load No. 1 is restored. in this case,
Insulation breakdown between the primary coil 11 and the secondary coil 13 or the iron core 15 due to insulation deterioration inside the instrument transformer 10 often has no abnormal appearance, and the voltmeter 8 connected to the low-voltage piezoelectric path It is very difficult to determine the dielectric breakdown inside the instrument transformer 10.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、従来の受電設備回路は地絡事故に対して
は高圧側変流器2により保護がなされているが、計器用
変成器10内部での地絡事故の場合は事故個所の発見に手
間どり、給電復旧までに長時間を要し、その間の各電気
機器設備等の運転休止による損害が多大となるといった
課題があった。
As described above, the conventional power receiving equipment circuit is protected against the ground fault by the high-voltage current transformer 2, but in the case of the ground fault inside the instrument transformer 10, it is necessary to find the fault location. There is a problem that it takes a long time until the power is restored and the power supply is restored, and the damage caused by the suspension of the operation of each electric device or the like during that time is great.

この発明は上記課題を解決するためのなされたもの
で、地絡事故が計器用変成器内部での絶縁破壊によるも
のであることを容易に検出できる計器要変成器の絶縁破
壊検出回路と、この絶縁破壊検出回路を具備した計器用
変成器を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an insulation breakdown detection circuit of a transformer requiring an instrument, which can easily detect that a ground fault is caused by insulation breakdown inside the instrumentation transformer, and An object of the present invention is to provide an instrument transformer provided with a dielectric breakdown detection circuit.

〔課題を解決するための手段〕[Means for solving the problem]

この発明の請求項1にかかわる絶縁破壊検出回路は、
鉄心が大地と絶縁された計器用変成器の上記鉄心と大地
を接続する接地線、この接地線及び2次コイルに接続さ
れた電路を1次入力としてその2次出力を変成器の絶縁
破壊検出出力とする零相変成器を備えたものであり、請
求項2にかかわる変成器は、外周面が零相変成器嵌合面
として形成され外部に向かって突出する絶縁端子台を有
し、上記鉄心から接地線の少なとも一部と2次コイルの
コイル端部が上記絶縁端子台内を伸びて該絶縁端子台に
設けられた接地端子と2次端子にそれぞれ接続された構
成としたものであり、請求項3では、鉄心を絶縁スペー
サを介在して取付けフレームに固定するようにして鉄心
と大地との間の絶縁を確保している。
An insulation breakdown detection circuit according to claim 1 of the present invention comprises:
A ground wire connecting the above-mentioned iron core and the earth of the instrument transformer in which the iron core is insulated from the ground, an electric path connected to this ground wire and the secondary coil are used as a primary input, and a secondary output thereof is used to detect insulation breakdown of the transformer. The transformer according to claim 2, further comprising an insulated terminal block whose outer peripheral surface is formed as a zero-phase transformer fitting surface and protrudes outward. At least a part of the ground wire from the iron core and the coil end of the secondary coil extend in the insulating terminal block and are connected to the ground terminal and the secondary terminal provided on the insulating terminal block, respectively. According to the third aspect, insulation between the iron core and the ground is ensured by fixing the iron core to the mounting frame via an insulating spacer.

〔作用〕[Action]

この発明では、零相変成器が計器用変成器内部の絶縁
破壊時に、1次コイルから鉄心を介して接地線へ、また
は1次コイルから2次コイルを介して低圧電路へ流れる
地絡電流を検出する。
According to the present invention, when the zero-phase transformer breaks down the insulation inside the instrument transformer, a ground fault current flowing from the primary coil to the ground wire via the iron core or from the primary coil to the low piezoelectric path via the secondary coil is determined. To detect.

また、計器用変成器に設けた絶縁端子台に零相変成器
を嵌合させることにより、絶縁破壊検出回路を有する計
器用変成器が構成される。
Further, by fitting the zero-phase transformer to the insulated terminal block provided on the instrument transformer, an instrument transformer having an insulation breakdown detection circuit is configured.

〔実施例〕〔Example〕

第1図は本発明の請求項1に記載の絶縁破壊検出回路
の実施例を用いた受電設備の回路図、第2図は請求項1
記載の絶縁破壊検出回路の他の実施例を用いた受電設備
の回路図、第3図はこの発明に用いられる計器用変成器
の外観斜視図である。
FIG. 1 is a circuit diagram of a power receiving facility using the embodiment of the insulation breakdown detecting circuit according to claim 1 of the present invention, and FIG. 2 is claim 1.
FIG. 3 is a circuit diagram of a power receiving facility using another embodiment of the insulation breakdown detecting circuit described above, and FIG. 3 is an external perspective view of an instrument transformer used in the present invention.

図において、17は接地線であって、鉄心15および取付
フレーム16を接地するために設けられている。18は絶縁
板であって、鉄心15および取付けフレーム16の電位を接
地線17以外から逃さないようにするために設けられてい
る。5は零相変成器であり、2次コイル13からの低圧電
路と接地線17とを1次入力(1次側)としてその2次出
力を漏電継電器6へ入力している。漏電継電器6は零相
変成器5の2次出力を増幅して地絡継電器3と表示器7
へ送出し、地絡継電器3を介して遮断器4を作動させる
と同時に表示器7に漏電継電器6が動作したことを表示
させる。
In the figure, reference numeral 17 denotes a ground wire, which is provided to ground the iron core 15 and the mounting frame 16. Reference numeral 18 denotes an insulating plate, which is provided to prevent the electric potential of the iron core 15 and the mounting frame 16 from leaking from other than the ground wire 17. Reference numeral 5 denotes a zero-phase transformer, which uses the low-voltage path from the secondary coil 13 and the ground line 17 as primary inputs (primary side) and inputs the secondary output to the earth leakage relay 6. The earth leakage relay 6 amplifies the secondary output of the zero-phase transformer 5 so as to amplify the ground fault relay 3 and the display 7.
And the circuit breaker 4 is operated via the ground fault relay 3 and at the same time, the display 7 indicates that the earth leakage relay 6 has been operated.

この構成においては、高圧側電路1に地絡事故が発生
した場合は、高圧側零相変流器2からの出力により地絡
継電器3が作動して遮断器4が高圧側電路1の負荷を遮
断する。従って、表示器7への入力は無く、表示器7は
表示動作をしないので、発生した地絡事故が高圧側電路
1の地絡事故であることを判別することができる。
In this configuration, when a ground fault occurs in the high-voltage side electric circuit 1, the ground-fault relay 3 operates by the output from the high-voltage side zero-phase current transformer 2, and the circuit breaker 4 loads the high-side electric circuit 1. Cut off. Accordingly, there is no input to the display 7 and the display 7 does not perform the display operation, so that it is possible to determine that the generated ground fault is the ground fault of the high-voltage side electric circuit 1.

1次コイル11と鉄心15または2次コイル13との間の絶
縁が絶縁劣化して混蝕した場合には、1コイル11から接
地線17または低圧電路を伝わって地絡電流が流れる。こ
の地絡電流が零相変成器5の1次入力となるので、漏電
継電器6が動作し、表示器7が表示を行う。この表示に
より、計器用変成器10内部の地絡事故であることを知る
ことができる。
When the insulation between the primary coil 11 and the iron core 15 or the secondary coil 13 is deteriorated and mixed, the ground fault current flows from the primary coil 11 through the ground wire 17 or the low piezoelectric path. Since this ground fault current becomes the primary input of the zero-phase transformer 5, the earth leakage relay 6 operates, and the display 7 performs display. From this display, it is possible to know that a ground fault has occurred inside the instrument transformer 10.

上記実施例では、計器用変成器10個々に絶縁破壊検出
用の零相変流器5を設けているので、内部の地絡事故が
発生した計器用変成器10を識別することができる。
In the above embodiment, since the zero-phase current transformer 5 for detecting insulation breakdown is provided in each of the instrument transformers 10, the instrument transformer 10 in which an internal ground fault has occurred can be identified.

第2図は、この発明の他の実施例を示したもので、1
個の零相変流器で、全ての計器用変成器10の地絡事故を
検出するようにしてある。
FIG. 2 shows another embodiment of the present invention.
The zero-phase current transformers are configured to detect ground faults of all the transformers 10 for an instrument.

この構成では、内部の地絡事故が発生した計器用変成
器10を個別に識別することはできないが、第1図の実施
例の場合に比し、絶縁破壊検出回路の設置にかかる費用
が安価となる利点がある。
With this configuration, the instrument transformer 10 in which the internal ground fault has occurred cannot be individually identified, but the cost of installing the insulation breakdown detection circuit is lower than in the embodiment of FIG. There are advantages.

第4図は、この発明の請求項2にかかわる発明の実施
例を示したもので、20は計器用変成器である。この計器
用変成器20はコイル部21から水平向きに外部に突出する
絶縁端子台22を有し、鉄心15は、取付けフレーム16との
間に絶縁スペーサ23を介在して該取付けフレーム16に固
定されている。絶縁端子台22は零相変成器5の空間5A形
状に合う外形を持たせて、その外形面が、零相変成器5
を外挿嵌合し得る嵌合面となるようにしてあり、その端
面に2次コイル13の端子14と接地端子24が設けられてい
る。25は鉄心15と接地端子24との間を接続する接地線で
あって、鉄心15から取付けフレーム16の外側を通り絶縁
端子台22の基部から該絶縁端子台22に入り接地端子24ま
で伸びている。零相変成器5の出力端子5aには漏電継電
器6が接続される。
FIG. 4 shows an embodiment of the invention according to claim 2 of the present invention, wherein reference numeral 20 denotes an instrument transformer. This instrument transformer 20 has an insulated terminal block 22 that protrudes outward from the coil section 21 in a horizontal direction, and the iron core 15 is fixed to the mounting frame 16 with an insulating spacer 23 interposed between the core and the mounting frame 16. Have been. The insulating terminal block 22 has an outer shape that matches the shape of the space 5A of the zero-phase transformer 5, and its outer surface is
The terminal 14 of the secondary coil 13 and the ground terminal 24 are provided on the end surface thereof. Reference numeral 25 denotes a ground wire that connects between the iron core 15 and the ground terminal 24, passes through the outside of the mounting frame 16 from the iron core 15, enters the insulated terminal block 22 from the base of the insulated terminal block 22, and extends to the ground terminal 24. I have. An earth leakage relay 6 is connected to an output terminal 5a of the zero-phase transformer 5.

この計器用変成器20を第1図および第2図に示した受
電設備の回路に用いる場合は、絶縁端子台22に零相変成
器5を外挿嵌合して固定し、2次端子14に低圧電路を接
続し、接地端子24に接地線17を接続し、また、零相変成
器5の出力端子5aに漏電継電器6を接続する。
When this instrument transformer 20 is used in the circuits of the power receiving equipment shown in FIGS. 1 and 2, the zero-phase transformer 5 is extrapolated and fixed to the insulated terminal block 22, and the secondary terminal 14 is fixed. Is connected to the ground terminal 17, the ground wire 17 is connected to the ground terminal 24, and the earth leakage relay 6 is connected to the output terminal 5a of the zero-phase transformer 5.

前記第3図の計器用変成器10を用いる場合には、零相
変成器5と計器用変成器10とは配設位置が異なるので、
2次コイル13の2次端子14から低圧電路を、また、鉄心
15から接地線17を、別位置にある零相変成器5を通して
伸ばすことになるが、第4図の計器用変成器20を用いる
と、2次コイル13のコイル端部と鉄心15からの接地線25
が内部を通っている絶縁端子台22が零相変成器5を貫通
することになるので、配線の手間や、零相変成器配設の
手間が軽減されることになる。
When the instrument transformer 10 shown in FIG. 3 is used, since the zero-phase transformer 5 and the instrument transformer 10 are disposed at different positions,
A low-voltage path from the secondary terminal 14 of the secondary coil 13 to the core
The grounding wire 17 is extended from the 15 through the zero-phase transformer 5 located at another position. When the instrument transformer 20 shown in FIG. 4 is used, the grounding from the coil end of the secondary coil 13 and the iron core 15 is performed. Line 25
Since the insulating terminal block 22 passing through the inside passes through the zero-phase transformer 5, the labor for wiring and the labor for arranging the zero-phase transformer are reduced.

また、この計器用変成器20では、鉄心15と取付けフレ
ーム16とを絶縁スペーサ23で絶縁しているから、配設に
当って、第3図の計器用変成器10の場合のように、絶縁
板18を設ける必要はない。
Further, in the instrument transformer 20, since the iron core 15 and the mounting frame 16 are insulated from each other by the insulating spacers 23, as in the case of the instrument transformer 10 shown in FIG. It is not necessary to provide plate 18.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明した通り、計器用変成器の鉄心と
大地を接続する接地線及び上記2次コイルに接続される
電路を1次入力としてその2次出力を上記変成器の絶縁
破壊検出出力とする零相変成器を設けたので、計器用変
成器の内部地絡事故を他部での地絡事故と識別して検知
することが可能となる。また、計器用変成器に外部に突
出して零相変成器を外挿嵌合可能な絶縁端子台を設けた
から、零相変成器の1次入力を構成する線を計器用変成
器から引き伸ばさなくても済み、絶縁破壊検出回路を手
間をかけることなく簡単に設けることができる。
As described above, according to the present invention, the ground wire connecting the iron core of the instrument transformer and the ground and the electric circuit connected to the secondary coil are used as primary inputs, and the secondary output is used as the insulation breakdown detection output of the transformer. Since the zero-phase transformer is provided, the internal ground fault of the instrument transformer can be identified and detected as the ground fault of another part. Also, since the instrument transformer is provided with an insulated terminal block protruding to the outside and capable of extrapolating and fitting the zero-phase transformer, the line constituting the primary input of the zero-phase transformer does not have to be extended from the instrument transformer. This makes it possible to easily provide a dielectric breakdown detection circuit without any trouble.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を用いた受電設備の回路図、
第2図はこの発明の他の実施例を用いた受電設備の回路
図、第3図は上記受電設備において用いられる計器用変
成器の斜視図、第4図は上記受電設備において用いられ
る計器用変成器の斜視図、第5図は従来の計器用変成器
の斜視図、第6図は従来の計器用変成器を用いた受電設
備の回路図である。 図において、1……高圧電路、2……高圧側零相変流
器、5……零相変成器、10、20……計器用変成器、11…
…一次コイル、13……二次コイル、14……二次端子、15
……鉄心、16……取付けフレーム、17、25……接地線、
22……絶縁端子台、23……絶縁スペーサ、24……接地端
子。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram of a power receiving facility using an embodiment of the present invention,
FIG. 2 is a circuit diagram of a power receiving facility using another embodiment of the present invention, FIG. 3 is a perspective view of an instrument transformer used in the power receiving facility, and FIG. 4 is an instrument transformer used in the power receiving facility. FIG. 5 is a perspective view of a conventional transformer for an instrument, and FIG. 6 is a circuit diagram of a power receiving facility using the conventional transformer for an instrument. In the figure, 1 ... high-voltage path, 2 ... high-voltage side zero-phase current transformer, 5 ... zero-phase transformer, 10, 20 ... instrument transformer, 11 ...
... primary coil, 13 ... secondary coil, 14 ... secondary terminal, 15
... iron core, 16 ... mounting frame, 17, 25 ... ground wire,
22 ... Insulated terminal block, 23 ... Insulated spacer, 24 ... Ground terminal. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大地と絶縁された鉄心と、この鉄心を介し
て電磁的に結合された1次コイルと2次コイルとからな
る計器用変成器における上記鉄心と大地を接続する接地
線及び上記2次コイルに接続された電路を1次入力とし
てその2次出力を上記変成器の絶縁破壊検出出力とする
零相変成器を有することを特徴とする計器用変成器の絶
縁破壊検出回路。
A ground wire for connecting said iron core and the earth in an instrument transformer comprising an iron core insulated from the earth, a primary coil and a secondary coil electromagnetically coupled via said iron core; An insulation breakdown detection circuit for a transformer for an instrument, comprising: a zero-phase transformer having a primary path of an electric circuit connected to a secondary coil and a secondary output of which is an insulation breakdown detection output of the transformer.
【請求項2】1次コイルと2次コイル、両コイルを電磁
的に結合し大地と絶縁された鉄心を有する計器用変成器
において、外周面が変成器嵌合面として形成され外部に
向かって突出する絶縁端子台を有し、上記鉄心からの接
地線の少なくとも一部と2次コイルのコイル端部が上記
絶縁端子台内を伸びて該絶縁端子台に設けられた接地端
子と2次端子にそれぞれ接続され、上記絶縁端子台には
零相変流器が外挿嵌合されることを特徴とする計器用変
成器。
2. An instrument transformer having an iron core insulated from the ground by electromagnetically coupling a primary coil and a secondary coil to each other, wherein an outer peripheral surface is formed as a transformer fitting surface and is directed toward the outside. A protruding insulating terminal block, at least a part of a ground wire from the iron core and a coil end of a secondary coil extending inside the insulating terminal block, and a ground terminal and a secondary terminal provided on the insulating terminal block; And a zero-phase current transformer is extrapolated to the insulated terminal block.
JP10272589A 1988-11-02 1989-04-21 Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit Expired - Lifetime JP2636417B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-277763 1988-11-02
JP27776388 1988-11-02

Publications (2)

Publication Number Publication Date
JPH02237425A JPH02237425A (en) 1990-09-20
JP2636417B2 true JP2636417B2 (en) 1997-07-30

Family

ID=17587995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272589A Expired - Lifetime JP2636417B2 (en) 1988-11-02 1989-04-21 Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit

Country Status (1)

Country Link
JP (1) JP2636417B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760739B2 (en) 2017-02-01 2020-09-01 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
US11644150B2 (en) 2017-03-09 2023-05-09 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760739B2 (en) 2017-02-01 2020-09-01 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11473724B2 (en) 2017-02-01 2022-10-18 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11767950B2 (en) 2017-02-01 2023-09-26 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11644150B2 (en) 2017-03-09 2023-05-09 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11821584B2 (en) 2017-03-09 2023-11-21 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir

Also Published As

Publication number Publication date
JPH02237425A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
JP6560731B2 (en) Continuous non-stop AC grounding system for power system protection
US7719804B1 (en) Protective device with improved surge protection
US7619860B1 (en) Electrical wiring device
US4228475A (en) Ground monitoring system
US3930187A (en) Ground fault interrupter with means protecting against a grounded neutral condition and with a test circuit for testing performance
JP2636417B2 (en) Insulation breakdown detection circuit for instrument transformer and instrument transformer provided with the detection circuit
EP0619586A1 (en) Electrical energy-transforming equipment
KR20020041973A (en) Breaker for a leakage of electrocity
US4591941A (en) Double insulated protected system providing electrical safety and instrumentation quality power grounding
KR100594907B1 (en) Connection device of a circuit breaker
JP2007053302A (en) Transformer and its grounding method
KR100358197B1 (en) Tester For Relay
Sattari et al. High reliability electrical distribution system for industrial facilities
KR20100034828A (en) Ground fault protection system
JPH0946887A (en) Zero-phase voltage detector
TW552756B (en) Insulation diagnosis device
JPH0628485B2 (en) Discharge detection circuit of power cable transmission system
KR200345114Y1 (en) Control circuit of low voltage on line insulation monitoring system
JPS63294214A (en) Monitor system of insulation of power distribution facility
JPS6241541Y2 (en)
JPS61150614A (en) Ground-fault detector
JPS58157337A (en) Automatic changeover grounding system
JPH0382327A (en) Gas insulation type electric facility
JPH02285918A (en) Separator of potential transformer
JPS6156686B2 (en)