JP2001352663A - Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit - Google Patents

Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit

Info

Publication number
JP2001352663A
JP2001352663A JP2000171438A JP2000171438A JP2001352663A JP 2001352663 A JP2001352663 A JP 2001352663A JP 2000171438 A JP2000171438 A JP 2000171438A JP 2000171438 A JP2000171438 A JP 2000171438A JP 2001352663 A JP2001352663 A JP 2001352663A
Authority
JP
Japan
Prior art keywords
ground
voltage
phase
current
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000171438A
Other languages
Japanese (ja)
Other versions
JP3652584B2 (en
Inventor
Masahiko Fujii
正彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Trading Co Ltd
Original Assignee
Hikari Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Trading Co Ltd filed Critical Hikari Trading Co Ltd
Priority to JP2000171438A priority Critical patent/JP3652584B2/en
Publication of JP2001352663A publication Critical patent/JP2001352663A/en
Application granted granted Critical
Publication of JP3652584B2 publication Critical patent/JP3652584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of the conventional apparatuses that it is required to prevent the unessential operation of a relay in another transformer room when a ground fault accident is generated on the secondary side of a transformer in the other transformer room, when secondary-side grounds of transformers installed in a plurality of transformer rooms in a high-rise building or the like are formed to be of a common ground system. SOLUTION: A voltage Vo applied across the neutral point of an electric circuit in the ground fault accident and a ground is found, and a voltage Ve across a ground phase and the ground is found. A charging-phase current Io at this time is divided into a charging current Ico at the advance component of 90 deg. of the voltage Vo across the neutral point and the ground and a resistance component current Igr whose phase portion is identical to that of a voltage Vuo across a charging phase signal in the ground fault accident and the ground. When the current Igr becomes a set value or larger, a protective operation is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低圧接地電路にお
ける一線接地電路の漏電検出保護技術に関し、特に、複
数変電室の変圧器の二次接地を共通接地とした場合の、
他の変電室での過地絡事故時に不必要な動作を行わない
ようにした漏電検出保護方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth leakage detection and protection technique for a single-line ground circuit in a low-voltage ground circuit, and more particularly, to a technique in which a secondary ground of transformers in a plurality of substation rooms is set to a common ground.
The present invention relates to an earth leakage detection protection method and apparatus that prevents unnecessary operations in the event of a ground fault in another substation room.

【0002】[0002]

【従来の技術】近年、高層ビルなどのように、多数の変
電室(変電所)(例えば、各階に)が設けられ、各変電
室の変圧器の二次接地を共通の接地線で接地する共通接
地方式がとられている場合が多い。その際、他の変電室
の変圧器の二次側で地絡事故が生じたとき、別の健全な
変電室の漏電検出器が不必要な動作をする事例が多発し
ている。
2. Description of the Related Art In recent years, a large number of substations (substations) (for example, on each floor) such as high-rise buildings are provided, and the secondary grounding of transformers in each substation is grounded by a common ground line. In many cases, a common grounding system is used. At that time, when a ground fault occurs on the secondary side of the transformer in another substation room, there are many cases where the leakage detector in another sound substation room operates unnecessarily.

【0003】その原因は、共通接地のB種接地の接地抵
抗に事故電流が流れ、B種接地の接地抵抗により電圧が
発生し、その発生した電圧上昇分により充電々流が増加
し、漏電リレーの設定値を超えて不必要な動作をするも
のである。
The cause is that an accident current flows through the grounding resistance of the class B grounding of the common ground, a voltage is generated by the grounding resistance of the class B grounding, and the amount of the generated voltage increases the charging current, thereby causing a leakage relay. Unnecessary operation exceeding the set value of.

【0004】この現象を図13および図14によって詳
細に説明する。図13は高層ビルに複数の変電室が設置
され、各変電室に設置されている変圧器の二次側の一線
は共通接地線で接地した場合の模式図で、高層ビル10
0内にA変電室〜D変電室の複数の変電室が設けられ、
各変電室の変圧器の二次側の一線は共通接地線101で
B種接地されている。EBはこのB種接地を示してい
る。
[0004] This phenomenon will be described in detail with reference to FIGS. FIG. 13 is a schematic diagram showing a case where a plurality of substations are installed in a high-rise building, and a secondary line of a transformer installed in each substation is grounded by a common grounding line.
A plurality of substations from A substation to D substation are provided in 0,
One line of the secondary side of the transformer in each substation is grounded to the class B by the common ground line 101. E B shows this B species ground.

【0005】図14は図13中のC変電室内の変圧器の
二次側が△結線され、A変電室内の変圧器の二次側が単
相3線により配電され、△結線のv相と単相3線の中性
点とを共通接地線101でB種接地した場合の例で、こ
のように共通接地された場合においてA変電室の電路w
のF点で過地絡事故が発生したとき、C変電室内の漏電
リレーが不必要な動作をする場合がある。
[0005] Fig. 14 shows that the secondary side of the transformer in the substation C in Fig. 13 is △ connected, the secondary side of the transformer in the substation A is distributed by single-phase three-wire, and the △ -connected v-phase and single-phase are connected. This is an example of a case where the neutral point of the three lines is grounded to the class B by the common grounding line 101.
When an over-ground fault occurs at point F, the earth leakage relay in the substation C may operate unnecessarily.

【0006】その理由は、A変電室の配電線の電路wで
過地絡事故が発生すると、接地電流Igは、地絡点Fか
ら点線で示すようにB種接地EB−共通接地線101−
中性点N−電路wを通して流れる。
[0006] This is because, when the over-earth fault in path w of distribution lines A transformer chamber occurs, ground current Ig is ground絡点F B species ground as indicated by the dotted line from E B - common grounding line 101 −
Flow through neutral point N-circuit w.

【0007】この地絡電流Igが大きいと(過地絡)、
B種接地EBの接地抵抗RBにより高い電圧が発生する。
例えば、接地抵抗10Ωで地絡電流10Aの場合は、1
00Vが発生する。この電圧はC変電室の接地点の電圧
を上昇させ、その電圧上昇分により、対地静電容量C
w,Cuに流れる電流が増加し、また事故が無い状態で
は流れていなかった接地相(v相)の対地静電容量Cv
にも電流が流れ、零相変流器ZCTはこれらを検出して
C変電室内に設置されている漏電リレーの設定値を超え
ると当該漏電リレーは動作し、遮断器を遮断することに
なる。この動作はC変電室内が健全時の動作であるから
不必要動作となる。
If this ground fault current Ig is large (over ground fault),
High voltage is generated by the ground resistance R B of the B type grounding E B.
For example, when the ground resistance is 10Ω and the ground fault current is 10A, 1
00V is generated. This voltage raises the voltage at the grounding point of the C substation, and the amount of the voltage rise causes the capacitance to ground C to rise.
The current flowing through w and Cu increases, and the ground capacitance (v phase) to ground Cv that did not flow in the absence of an accident.
Also, the zero-phase current transformer ZCT detects these, and if the current exceeds the set value of the earth leakage relay installed in the C substation, the earth leakage relay operates and the circuit breaker is cut off. This operation is an unnecessary operation because the operation in the C substation is normal.

【0008】このような不必要動作は、共通接地方式で
あれば、同一変電室内に複数の変圧器が設置されていて
他の変圧器の二次側で過地絡事故が発生した場合にも起
こり得る。
[0008] Such unnecessary operation can be performed even when a plurality of transformers are installed in the same substation and a ground fault occurs on the secondary side of another transformer if the common grounding system is used. It can happen.

【0009】従来、このような現象に対応した不必要動
作を防止する手段は知られていない。
Conventionally, there is no known means for preventing unnecessary operation corresponding to such a phenomenon.

【0010】[0010]

【発明が解決しようとする課題】本願の発明者は、上記
のような不必要動作を防止するために種々の手段を試み
た。
The inventor of the present application has tried various measures to prevent the unnecessary operation as described above.

【0011】Y結線の中性点接地電路の場合も、充電々
流が増加すると不必要動作を起こすおそれがあるが、Y
結線の場合は中性点と大地間の電圧Veと、事故時に流
れる零相電流Ioとの位相比較で負荷側事故か否かを比
較的簡単に判別することができる。
[0011] In the case of the neutral grounding circuit of the Y connection, unnecessary operation may occur if the charging current increases.
In the case of a connection, it is relatively easy to determine whether or not a load-side fault has occurred by comparing the phase of the voltage Ve between the neutral point and the ground with the zero-phase current Io flowing at the time of the fault.

【0012】即ち、他の電路の地絡事故の場合、自回路
の(又は負荷側の)零相電流Ioは充電々流であるから
事故時の中性点と大地間の電圧Veに対して進み90°
位相となり、負荷側の事故の場合は、VeとIoはほぼ
180°逆位相となる。
In other words, in the case of a ground fault in another electric circuit, the zero-phase current Io of the own circuit (or on the load side) is a charging current, so that the voltage Ve between the neutral point and the ground at the time of the fault is different. Advance 90 °
In the case of a load-side accident, Ve and Io are almost 180 ° out of phase.

【0013】従って、中性点と大地間の電圧を検出する
ようにしておき、この電圧と零相変流器に流れる電流と
を位相を比較することで不必要動作を防止することがで
きた。
Therefore, by detecting the voltage between the neutral point and the ground and comparing the phase of this voltage with the current flowing through the zero-phase current transformer, unnecessary operation can be prevented. .

【0014】しかし、△結線および単相の一線接地電路
ではY結線のように中性点は無く、接地点はu、v、w
相の何れかとなり、他の電路の過地絡時に接地点と大地
間の電圧と零相電流を位相比較しても充電々流は進み9
0°位相とはならず、他の電路の事故をおこした相によ
り変化し不定となる。
However, there is no neutral point in the △ connection and the single-phase single-wire ground circuit as in the Y connection, and the ground points are u, v, w.
Phase and the voltage between the ground point and the ground and the zero-phase current are compared when the other electric circuit is over-grounded.
The phase does not become 0 °, but changes and becomes undefined depending on the phase in which an accident occurred in another electric circuit.

【0015】また、何等かの方法で中性点を作りその中
性点と大地間の電圧と零相電流とを位相比較する方法も
考えられるが、他の電路の事故相によっては充電々流と
事故電流が同相となる場合があり位相比較だけでは判別
できないことが判明した。
It is also conceivable to create a neutral point by any method and compare the phase between the neutral point and the voltage between the ground and the zero-phase current. And the fault current may have the same phase, and it was found that it was not possible to discriminate only by phase comparison.

【0016】図15および図16は、作り出した中性点
と大地間の電圧Voと零相電流Ioの位相比較により判
別する場合の説明図で、図15は三相三線△結線の2つ
の変圧器があって、△結線の一方がv相を一線接地した
電路Aと、他方がw相を一線接地した電路Bの各接地相
を共通接地線101でB種接地した場合を示し、図16
はその位相比較のベクトル図を示す。
FIG. 15 and FIG. 16 are explanatory diagrams in the case where the phase difference between the created neutral point and the ground voltage Vo and the zero-phase current Io is compared, and FIG. 15 shows two transformers of three-phase three-wire △ connection. FIG. 16 shows a case in which each of the grounding phases of an electric circuit A in which one of the △ connections is grounded to a single line of the v phase and an electric circuit B in which the other is grounded to a single line of the w phase are grounded with a common grounding line 101.
Shows a vector diagram of the phase comparison.

【0017】今、電路Bのv相のF点で過地絡事故が発
生すると、図16に示すように、事故時の大地電位が、
事故無し時の大地電位イからg点に移動し、健全側電路
Aでは中性点と大地間の電圧Voaの90°進みの充電
々流Ioaが流れる。この充電々流Ioaは健全時の零
相電流Ioに比べて大きくなる。
Now, if an over-ground fault occurs at the F-point of the v-phase of the electric circuit B, as shown in FIG.
The ground potential A moves to the point g when there is no accident. In the sound side electric circuit A, the charging current Ioa, which is 90 degrees ahead of the voltage Voa between the neutral point and the ground, flows. This charge current Ioa is larger than the zero-phase current Io in a normal state.

【0018】このとき、事故側電路Bではw→uの方向
の事故電流Ig(Iobを含む)が流れ、Vobの進み
90°位相に近い事故電流Igが流れる。従って、中性
点と大地間の電圧Voとの位相比較で判断することはで
きない。
At this time, the fault current Ig (including Iob) flows in the direction of w → u in the fault side electric circuit B, and the fault current Ig near the 90 ° leading phase of Vob flows. Therefore, it cannot be determined by comparing the phase of the voltage Vo between the neutral point and the ground.

【0019】図17,18は、三相三線△結線のv相を
一線接地した電路Aと他の三相三線△結線の一線接地を
u相で接地した電路Bの場合で、今、電路Bのw相で過
地絡が生じたとき大地電位がg点に移動し、電路Aでは
Voaの90°進みの充電々流Ioaが流れ、この電流
はVeに対し180°進みに近い位相で現れかつ健全時
のIoに比べ大きくなる。
FIGS. 17 and 18 show a circuit A in which the v-phase of the three-phase three-wire 三 connection is grounded by one line and a circuit B in which the other three-phase three-wire △ connection is grounded by the u-phase. When an over-ground fault occurs in the w-phase, the ground potential moves to the point g, and in the circuit A, the charging current Ioa, which leads Voa by 90 °, flows, and this current appears at a phase close to that of Ve by 180 °. And it is larger than Io in a healthy state.

【0020】この時、事故側電路Bではu→wの方向の
事故電流Ig(Iobを含む)が流れVeの進み180
°位相に近いIgが流れる。従って、Veとの位相比較
で判断することはできない。
At this time, the fault current Ig (including Iob) in the direction u → w flows on the fault side electric circuit B, and
° Ig close to the phase flows. Therefore, it cannot be determined by comparing the phase with Ve.

【0021】また、接地線に挿入した零相変流器の信号
を基準にした場合、この零相変流器に流れる電流の位相
はVeと逆相となるだけで同様の信号であるから判別は
不能となる。
When the signal of the zero-phase current transformer inserted into the ground line is used as a reference, the phase of the current flowing through this zero-phase current transformer is the same as that of Ve, but is determined to be the same signal. Becomes impossible.

【0022】また、電路の中性点と大地間の電圧をVo
として取り出し、この電圧Voと同相分の電流Ioを算
出して抵抗成分電流Igrを求め、この抵抗成分電流I
gr分で漏電リレーを動作させることも試みたが、過地
絡事故でないときは問題はないが、過地絡事故時におい
てはB種接地抵抗により接地相と大地間に電圧Veが発
生するため、正確な値ではなくなる。
Further, the voltage between the neutral point of the electric circuit and the ground is Vo
And a current Io in the same phase as the voltage Vo is calculated to obtain a resistance component current Igr.
We tried to operate the earth leakage relay for gr, but there is no problem when it is not an over-ground fault, but at the time of over-ground fault, the voltage Ve is generated between the ground phase and the ground by the class B ground resistance. Will not be accurate.

【0023】即ち、真の抵抗成分電流Igrの値は、地
絡した相と大地間とに発生した絶縁抵抗分による電流分
であるから、地絡した相と大地間の電圧と同相の電流と
なり、過地絡事故時は、中性点と大地間の電圧Voとの
同相分を求めてもそれは真の抵抗成分電流Igrの値で
はなく、実際のIgr分より小さくなり、検出できない
場合がある。
That is, since the value of the true resistance component current Igr is a current component due to the insulation resistance generated between the grounded phase and the ground, it becomes a current having the same phase as the voltage between the grounded phase and the ground. In the event of an over-ground fault, even if the in-phase component between the neutral point and the voltage Vo between the ground and the ground is obtained, it is not the value of the true resistance component current Igr, but smaller than the actual Igr, and may not be detected. .

【0024】以上の点に鑑み本発明は、△結線および単
相の一線接地電路の共通接地でも不必要動作の無い漏電
検出保護装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a leakage detection and protection device which does not require unnecessary operation even when a common ground is used for a △ connection and a single-phase single-wire ground circuit.

【0025】[0025]

【課題を解決するための手段】本発明は過地絡事故時の
地絡電流は、過地絡時に地絡事故相と大地間とに発生す
る電圧により絶縁抵抗分として流れる電流であることに
着目してなされたものである。
According to the present invention, a ground fault current at the time of an over ground fault is a current flowing as an insulation resistance due to a voltage generated between the ground fault phase and the ground at the time of an over ground fault. It was done with attention.

【0026】即ち、低圧電路における一線接地電路の漏
電検出方法において、接地事故時の電路の中性点と大地
間の電圧および接地相と大地間の電圧を求め、そのとき
の零相電流を、前記中性点と大地間の電圧Voの90°
進み成分の充電々流と地絡事故時に変化した充電相と大
地間の電圧と同相分の抵抗成分電流に分割し、該抵抗成
分電流があらかじめ設定した設定レベルを超えたとき所
定の保護動作をするようにするものである。
That is, in the method of detecting leakage of a single-wire ground circuit on a low-voltage piezoelectric circuit, the voltage between the neutral point and the ground and the voltage between the ground phase and the ground at the time of the ground fault are determined, and the zero-phase current at that time is calculated as 90 ° of the voltage Vo between the neutral point and the ground
The voltage is divided into a resistance component current of the same phase as the voltage between the charge phase of the lead component and the charging phase and the ground changed at the time of the ground fault, and a predetermined protection operation is performed when the resistance component current exceeds a preset level. It is something to do.

【0027】上記の中性点と大地間の電圧を、地絡事故
時に変化した充電相と大地間の電圧と接地相と大地間の
電圧から線間電圧を求め、単相の一線接地電路では線間
電圧Vuの1/2の点を、△結線の一線接地電路では各
充電相の中間位相で1/√3の点を電路の中性点Nと
し、この中性点Nと大地間の電圧により求めることがで
きる。
The voltage between the neutral point and the ground is determined from the voltage between the charging phase and the ground, and the voltage between the ground phase and the ground which are changed at the time of the ground fault. The half point of the line voltage Vu is defined as the neutral point N of the electrical circuit, and the point of 1 / √3 is defined as the neutral point N of the intermediate phase of each charging phase in the 線 connection single line ground circuit. It can be obtained from the voltage.

【0028】また、装置としては、低圧電路における一
線接地電路の漏電検出保護装置において、単相一線接地
電路の充電相と大地間の電圧を検出する充電相−大地間
電圧検出手段と、B種接地の接地抵抗に生ずる電圧を検
出する接地相−大地間電圧検出手段と、零相電流を検出
するための零相電流検出手段と、これら各検出手段の検
出信号を入力して自回路の事故か否かを判別する漏電リ
レーを備えた構成とする。
In addition, as a device, there is provided a leakage detection and protection device for a single-wire grounding circuit on a low-voltage circuit, a charging-phase-to-ground voltage detecting means for detecting a voltage between a charging phase and a ground of a single-phase single-grounding circuit, Ground phase-to-ground voltage detecting means for detecting the voltage generated at the grounding resistance of the ground, zero-phase current detecting means for detecting the zero-phase current, and inputting a detection signal from each of these detecting means to cause a fault in the own circuit. It is configured to have an earth leakage relay for judging whether or not it is.

【0029】そして、上記の漏電リレーは、地絡事故時
の充電相−大地間検出手段で検出した電圧をVuo、接
地相−大地間電圧検出手段で検出した電圧をVe、その
とき零相電流検出手段で検出した零相電流をIoとし
て、VuoとVeから線間電圧Vuを求め、該線間電圧
Vuの1/2の点を地絡事故時の電路の中性点Nとし、
この中性点Nと大地間電圧をVoとし、零相電流Ioを
Voに対し90°進み位相の充電々流分Icoと、Vu
oと同相成分の抵抗成分電流Igrに分割し、抵抗成分
電流Igrがあらかじめ設定した検出レベルを超えたと
き動作するようにすることが望ましい。
In the above-mentioned earth leakage relay, the voltage detected by the charging phase-to-ground detecting means at the time of a ground fault is Vuo, the voltage detected by the grounding phase-to-ground voltage detecting means is Ve, and the zero-phase current The line voltage Vu is obtained from Vuo and Ve with the zero-phase current detected by the detection means as Io, and a half of the line voltage Vu is set as the neutral point N of the electric circuit at the time of the ground fault.
The neutral point N and the ground-to-ground voltage are set to Vo, and the zero-phase current Io is advanced by 90 ° with respect to Vo, and the charged charge current Ico of the phase and Vu
It is desirable to divide the current into a resistance component current Igr having the same phase as that of o and to operate when the resistance component current Igr exceeds a preset detection level.

【0030】三相三線の△結線、若しくは単相電路の一
線接地電路の場合は、中性点と大地間の電圧を検出する
中性点−大地間電圧検出手段と、B種接地の接地抵抗に
生ずる電圧を検出する接地相−大地間電圧検出手段と、
零相電流を検出する零相電流検出手段と、これら各検出
手段の検出信号を入力して各検出信号から自回路の事故
か否かを判別する漏電リレーとを備えた構成とする。
In the case of a three-phase three-wire △ connection or a single-phase single-circuit grounding circuit, a neutral point-to-ground voltage detecting means for detecting a voltage between the neutral point and the ground, and a class B grounding resistance Ground phase-to-ground voltage detecting means for detecting the voltage generated at
The configuration includes a zero-phase current detecting means for detecting a zero-sequence current, and an earth leakage relay for inputting detection signals of each of these detecting means and determining from each detection signal whether or not an accident has occurred in its own circuit.

【0031】そして、上記の漏電リレーは、地絡事故時
に中性点−大地間電圧検出手段で検出した電圧をVo、
接地相−大地間電圧検出手段で検出した電圧をVe、そ
のとき零相電流検出手段で検出した電流をIo、Veが
零のときの中性点と大地間の電圧をVn、零相電流検出
手段で検出される電流で対地静電容量に流れる充電々流
をInとしたとき、地絡事故が発生していない時点のI
nを求めてこれを記憶しておき、地絡事故が発生したと
きのVoとVeからVnを、VoとVnの比率から地絡
時の充電々流分Icoを求め、零相電流IoからこのI
coを差し引いて抵抗成分電流Igrを求め、該電流I
grがあらかじめ設定した設定レベルを超えたとき動作
するようにすることが望ましい。
The above-mentioned earth leakage relay uses the voltage detected by the neutral point-to-ground voltage detecting means at the time of a ground fault to Vo,
The voltage detected by the ground phase-to-ground voltage detecting means is Ve, the current detected by the zero-phase current detecting means is Io, the voltage between the neutral point and ground when Ve is zero is Vn, and the zero-phase current is detected. Where In is the charging current flowing to the ground capacitance with the current detected by the means, I at the time when the ground fault does not occur
n is obtained and stored, Vn is calculated from Vo and Ve when a ground fault occurs, and the charging current Ico during a ground fault is calculated from the ratio of Vo and Vn, and this is calculated from the zero-phase current Io. I
co is subtracted to obtain a resistance component current Igr.
It is desirable to operate when gr exceeds a preset level.

【0032】また、他の手段として、三相三線の一線接
地電路の中性点と大地間の電圧を検出する中性点−大地
間電圧検出手段と、充電相の各相と大地間の電圧を検出
する充電相−大地間電圧検出手段と、零相電流を検出す
る零相電流検出手段と、これら各検出手段の検出信号を
入力して各信号から自回路の事故か否かを判別する漏電
リレーとを備えた構成とする。
As another means, a neutral point-to-ground voltage detecting means for detecting a voltage between the neutral point and the ground, and a voltage between each phase of the charging phase and the ground are provided. Phase-to-ground voltage detecting means for detecting the zero-phase current, zero-phase current detecting means for detecting the zero-phase current, and inputting the detection signals of these detecting means to determine from each signal whether or not the circuit is faulty. It is configured to have an earth leakage relay.

【0033】この場合の漏電リレーは、地絡事故時に中
性点−大地間電圧検出手段で検出した電圧をVo、各充
電相−大地間電圧検出手段で検出した電圧をVuo,V
wo、そのときの零相電流検出手段で検出した零相電流
Ioとし、この零相電流Ioを零相電流Ioの充電々流
分IcoをVoに対し90°進み位相としてとり、Vu
o,Vwoの各同相成分として流れる事故電流に分割し
て抵抗成分電流Igrを求め、該抵抗成分電流Igrが
あらかじめ設定した設定レベルを超えたとき動作するよ
うにすることが望ましい。
In this case, the earth leakage relay is such that the voltage detected by the neutral point-to-ground voltage detecting means at the time of a ground fault is Vo, and the voltages detected by the respective charging phase-ground voltage detecting means are Vuo, V
wo, the zero-phase current Io detected by the zero-phase current detection means at that time, and this zero-phase current Io is taken as a 90 ° leading phase with respect to Vo, and the charging current Ico of the zero-phase current Io is taken as Vu.
It is desirable that the resistance component current Igr be obtained by dividing into fault currents flowing as common-mode components of o and Vwo, and to operate when the resistance component current Igr exceeds a preset level.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を図面
によって説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】図1は本発明の第1の実施の形態で、単相
変圧器Trの二次側の一線vを接地した場合である。こ
の第1の実施の形態は、充電相uと大地間の電圧Vuを
取り出す充電相−大地間電圧検出手段10と、接地相v
と大地間の電圧Veを取り出す接地相−大地間電圧検出
手段20と、電路の零相電流Ioを検出する零相電流検
出手段30と、これら各検出手段で検出した検出信号を
入力して演算処理し、絶縁劣化に伴って流れる地絡電流
を算出して保護動作を行う漏電リレー40により構成さ
れている。
FIG. 1 shows a first embodiment of the present invention, in which a line v on the secondary side of the single-phase transformer Tr is grounded. In the first embodiment, a charging phase-ground voltage detecting means 10 for extracting a voltage Vu between the charging phase u and the ground, a ground phase v
And a ground phase-to-ground voltage detecting means 20 for extracting a voltage Ve between the ground and the ground, a zero-phase current detecting means 30 for detecting a zero-phase current Io of the electric circuit, and a detection signal detected by each of these detecting means. It is configured by an earth leakage relay 40 that performs processing and calculates a ground fault current flowing with insulation deterioration to perform a protection operation.

【0036】充電相−大地間電圧検出手段10は、充電
相uとアース(大地)E間にコンデンサ10C1,10
2を接続してコンテンサ分圧により充電相uと大地間
の電圧(以下、充電相・大地間電圧と称す)Vuを取り
出す。この充電相・大地間電圧Vu(地絡電流によりV
uoに変化する)の検出はコンデンサ分圧に限らずトラ
ンス又は抵抗を使用しても良い。
The charging phase-to-ground voltage detecting means 10 includes capacitors 10C 1 , 10C between the charging phase u and the ground (ground) E.
The voltage between the charging phase u and the earth by Kontensa partial pressure by connecting the C 2 (hereinafter, referred to as the charging phase-ground voltage) is taken out of Vu. This charge phase / ground voltage Vu (V
The detection of the change in uo) is not limited to the capacitor voltage division, and a transformer or a resistor may be used.

【0037】接地相−大地間電圧検出手段20も同様に
接地相vとアースE間の電圧(以下、接地相・大地間電
圧と称す)Veをコンデンサ20C1,20C2により分
圧して取り出す。
Similarly, the ground phase-to-ground voltage detecting means 20 extracts a voltage Ve between the ground phase v and the ground E (hereinafter, referred to as a ground phase-to-ground voltage) by dividing the voltage with the capacitors 20C 1 and 20C 2 .

【0038】零相電流検出手段30は、零相変流器を使
用して零相電流Ioを取り出す。そして、これらの各検
出手段により検出した検出信号は、漏電リレー40に取
り込まれ後述する演算手段42により地絡電流の抵抗成
分電流Igrを算出(演算)して求める。
The zero-phase current detecting means 30 extracts a zero-phase current Io using a zero-phase current transformer. The detection signal detected by each of these detecting means is taken into the earth leakage relay 40 and is calculated (calculated) by the calculating means 42 to calculate the resistance component current Igr of the ground fault current.

【0039】漏電リレー40には、零相電流を取り込む
端子Z1,Z2と、接地相・大地間電圧Veを取り込む
端子Leと、充電相・大地間電圧Vuを取り込む端子L
uと、接地端子Eとを有する。
The earth leakage relay 40 has terminals Z1 and Z2 for receiving a zero-phase current, a terminal Le for receiving a ground phase / ground voltage Ve, and a terminal L for receiving a charging phase / ground voltage Vu.
u and a ground terminal E.

【0040】図2は漏電リレー40の概念図で、端子Z
1,Z2から入力した零相電流Ioを増巾器31で増巾
してA/D変換部41に入力する。同様に端子LeとE
から入力した接地相・大地間電圧Ve、端子LuとEか
ら入力した充電相・大地間電圧Vu(地絡事故時にはV
uoに変化)を夫々の増巾器21および31で増巾し、
これをA/D変換部41に入力する。該A/D変換部4
1に入力された各検出信号は、ここでA/D変換され演
算手段42に入力される。
FIG. 2 is a conceptual diagram of the earth leakage relay 40.
1 and Z2, the zero-phase current Io is amplified by the amplifier 31 and input to the A / D converter 41. Similarly, terminals Le and E
Phase-to-ground voltage Ve input from the terminal, and charging phase-to-ground voltage Vu input from terminals Lu and E.
uo) with the respective amplifiers 21 and 31,
This is input to the A / D converter 41. A / D converter 4
Each of the detection signals input to 1 is A / D converted here and input to the calculating means 42.

【0041】演算手段42では、A/D変換されたI
o,Ve,Vuの各信号はディジタルフィルタ42aを
介して夫々の絶対値と位相を検出して演算処理部42b
に入力される。演算処理部42bでは、図3に示すベク
トル演算処理を図4に示すフローチャートに従って行
い、抵抗成分電流Igrを求める。
In the arithmetic means 42, the A / D converted I
The respective signals of o, Ve, and Vu are detected through a digital filter 42a to detect their absolute values and phases, and are processed by an arithmetic processing unit 42b.
Is input to The arithmetic processing unit 42b performs the vector arithmetic processing shown in FIG. 3 according to the flowchart shown in FIG. 4 to obtain the resistance component current Igr.

【0042】なお、漏電リレー40には動作感度・時限
設定部43と動作出力リレー44を有している。
The earth leakage relay 40 has an operation sensitivity / time limit setting unit 43 and an operation output relay 44.

【0043】地絡事故が無い状態の充電相uと大地間電
圧をVuとし、過地絡によりB種接地EBの接地抵抗RB
に電流が流れて生ずる電圧が大地電位に対して上昇する
が、このときVeの上昇により変化した充電相・大地間
電圧をVuoとし、このとき零相変流器により検出した
零相電流をIoとすると、図1のF点で過地絡事故が発
生した場合、地絡電流がB種接地EBの接地抵抗RBに流
れ、この電流により、接地点の電位が上昇しVuoとな
る。このとき、接地相vの対地静電容量Cvにも充電電
流Icoが流れる。この充電電流Icoは、図3に示す
ように変化した充電相・大地間電圧Vuoの進み90゜
位相の電流Iucoと、接地相uと大地間電圧Veの進
み90゜位相で流れる電流Iecoのベクトル合成とな
る。
[0043] The charging phase u and the ground voltage of the ground fault there is no state and Vu, ground resistance R B of Class B ground E B by over-ground fault
In this case, the voltage generated by the current flowing to the power supply rises with respect to the ground potential. At this time, the voltage between the charging phase and the ground changed by the rise of Ve is Vuo, and the zero-phase current detected by the zero-phase current transformer is Io. when, if over-ground fault occurs at point F of Figure 1, the ground fault current flows to the ground resistance R B of the B type grounding E B, by this current, the potential of the ground point is elevated Vuo. At this time, the charging current Ico also flows to the ground capacitance Cv of the ground phase v. This charging current Ico is, as shown in FIG. 3, a vector of a current Iuco having a leading 90 ° phase of the charging phase-to-ground voltage Vuo and a current Ieco flowing at a leading 90 ° phase of the grounding phase u and the ground voltage Ve. It becomes a composition.

【0044】一方、絶縁劣化により流れる抵抗成分電流
Igrとは、充電相uとアースEに対しての絶縁劣化に
より流れる電流であることから、変化した充電相・大地
間電圧Vuoと同相となる。よって、零相電流検出手段
30で検出した零相電流Ioから充電電流Icoを差し
引いた電流が抵抗成分電流Igrとなる。すなわち、充
電々流Icoは中性点Nと大地間電圧Voに対し90゜
進み位相にあるから、零相電流Ioを充電電流Icoの
位相成分と変化した充電相電圧Vuoと同相成分の電流
に分けることで抵抗成分電流Igrが求められる。
On the other hand, the resistance component current Igr flowing due to insulation deterioration is a current flowing due to insulation deterioration with respect to the charging phase u and the ground E, and therefore has the same phase as the changed charging phase / ground voltage Vuo. Therefore, the current obtained by subtracting the charging current Ico from the zero-phase current Io detected by the zero-phase current detection means 30 becomes the resistance component current Igr. That is, since the charging current Ico is in a phase leading by 90 ° with respect to the neutral point N and the ground-to-ground voltage Vo, the zero-phase current Io is changed to a phase component of the charging current Ico and a current having the same phase component as the charging phase voltage Vuo. By dividing, the resistance component current Igr is obtained.

【0045】この抵抗成分電流Igrが動作感度・時限
設定部43で設定された設定レベルを超えたとき、設定
時間後に動作出力リレー44を動作させ、遮断器を遮断
したり、また警報を発する等の手段により必要な保護動
作を行わせる。
When the resistance component current Igr exceeds the set level set by the operation sensitivity / time limit setting unit 43, the operation output relay 44 is operated after the set time to shut off the circuit breaker or to issue an alarm. The necessary protection operation is performed by means of (1).

【0046】図4は演算処理部42bにおける上記の図
3のベクトル演算を行うフローチャートで、まず、ステ
ップS1,S2で最初に電路の中性点Nを求める。この
中性点Nは、地絡時に変化した充電相・大地間電圧Vu
oと接地相・大地間電圧Ve(B種接地抵抗に生じる電
圧)から線間電圧Vu(地絡事故が無いときの充電相・
大地間電圧と等しい)を求め(ステップS1)、この線
間電圧Vuの1/2点を電路の中性点Nとし、この中性
点Nと接地相v間の電圧Vn(Veが零のときの電圧)
を求める(ステップS2)。次に、中性点Nと接地相V
間電圧Vnと接地相・大地間電圧Veから中性点・大地
間電圧Voを求める(ステップS3)。次に、この中性
点・大地間電圧Voの進み90゜位相を求める(ステッ
プS4)。次にステップS5で、零相電流Ioを中性点
・大地間電圧Voの進み90゜と同相成分の電流Ico
と、充電相・大地間電圧Vuoと同成分の抵抗成分電流
Igrに分割する。
FIG. 4 is a flowchart for performing the above-described vector calculation of FIG. 3 in the arithmetic processing unit 42b. First, in steps S1 and S2, the neutral point N of the electric circuit is first obtained. This neutral point N is determined by the voltage Vu between the charged phase and the ground changed during the ground fault.
o and the ground phase / ground voltage Ve (the voltage generated in the class B ground resistance) to the line voltage Vu (the charging phase when there is no ground fault)
(Equal to the ground-to-ground voltage) (step S1), and a half point of this line voltage Vu is set as the neutral point N of the electric circuit, and the voltage Vn between this neutral point N and the ground phase v (Ve is zero) When the voltage)
Is obtained (step S2). Next, the neutral point N and the ground phase V
A neutral point / ground voltage Vo is obtained from the ground voltage Vn and the ground phase / ground voltage Ve (step S3). Next, the leading 90 ° phase of the neutral point / ground voltage Vo is determined (step S4). Next, in step S5, the zero-phase current Io is set to a current Ico having the same phase component as the advance 90 ° of the neutral point / ground voltage Vo.
And a resistance component current Igr having the same component as the charging phase / ground voltage Vuo.

【0047】そして、この抵抗成分電流Igrをあらか
じめ設定した動作感度設定レベル(検出レベル)と比較
し(ステップS6)、設定レベルを超えたときは、あら
かじめ設定した時限タイムを超えたか否かを判定して
(ステップS7)、超えたとき動作出力リレー44をオ
ンさせ(ステップS8)、必要な保護動作を行わせる。
Then, the resistance component current Igr is compared with a preset operation sensitivity setting level (detection level) (step S6), and if it exceeds the preset level, it is determined whether or not a preset time period has passed. Then, when it exceeds (step S7), the operation output relay 44 is turned on (step S8), and a necessary protection operation is performed.

【0048】ステップS6で設定レベルに達しないとき
はステップS9で時限タイマをプリセットする。これら
の動作を所定時間繰り返し、監視する。
If the set level is not reached in step S6, the timer is preset in step S9. These operations are repeated for a predetermined time and monitored.

【0049】以上は中性点・大地間電圧Voを演算によ
って求めた場合であるが、これを計測によって求めるこ
とも出来る。
The above is the case where the neutral point-to-ground voltage Vo is obtained by calculation, but this can also be obtained by measurement.

【0050】即ち、図5に示すように、充電相−大地間
電圧検出手段10に代え、中性点−大地間電圧検出手段
50(以下、Vo検出手段と略称する)を設ける。この
Vo検出手段50は、充電相uと接地相vを夫々に設け
たコンデンサ50C1,50C2を介して接続して中性点
Nを形成し、この中性点Nとアース(大地)E間に分圧
コンデンサ50C3を設けて、該コンデンサ50C3の両
端から中性点・大地間電圧Voを取り出す。そして、こ
の取り出(計測)した中性点・大地間電圧Voを使用し
て図6のフローチャートに示す演算処理を行う。
That is, as shown in FIG. 5, a neutral point-to-ground voltage detecting means 50 (hereinafter abbreviated as Vo detecting means) is provided in place of the charging phase-to-ground voltage detecting means 10. The Vo detecting means 50 forms a neutral point N by connecting a charging phase u and a grounding phase v via capacitors 50C 1 and 50C 2 provided respectively, and forms the neutral point N, and the neutral point N and the earth (ground) E. the dividing capacitors 50C 3 arranged between, take out the voltage Vo-neutral-ground from both ends of the capacitor 50C 3. Then, using the extracted (measured) neutral point / ground voltage Vo, the arithmetic processing shown in the flowchart of FIG. 6 is performed.

【0051】この場合は、中性点・大地間電圧Voは計
測ですでに求められているので、図4に示すステップ3
までの演算が変わる。即ち、過地絡事故時の中性点・大
地間電圧Vo、接地相・大地間電圧Ve、この接地相・
大地間電圧Veが零の時の中性点・大地間電圧をVn、
事故なし時の充電相と大地間電圧Vu(線間電圧)とし
たとき、ステップS1でVoとVeからVnを求め(図
3参照)、このVnを2倍してVuを求め(ステップS
2)、このVuとVeから過地絡事故時の充電相・大地
間電圧Vuoを求める。(ステップS3)。ステップS
4以降は図4のステップS4以降と同じ演算処理とな
る。
In this case, since the neutral point-to-ground voltage Vo has already been obtained by measurement, step 3 shown in FIG.
The calculation up to changes. That is, the neutral point / ground voltage Vo, the ground phase / ground voltage Ve,
The neutral-to-ground voltage when the ground-to-ground voltage Ve is zero is Vn,
Assuming that the charged phase and the ground voltage Vu (line voltage) when there is no accident, Vn is obtained from Vo and Ve in step S1 (see FIG. 3), and Vn is obtained by doubling Vn (step S1).
2) The voltage Vuo between the charging phase and the ground at the time of the ground fault is determined from Vu and Ve. (Step S3). Step S
4 and thereafter are the same as those in step S4 in FIG.

【0052】上記は過地絡事故時の場合について説明し
たが、微地絡時にも接地相・大地間電圧Veが小さくな
るだけで、Vo=Vnとなり上記の演算は成り立つ。
The above description has been given of the case of an over-ground fault. However, even at the time of a micro-ground fault, only the ground-phase / ground voltage Ve is reduced, and Vo = Vn, and the above-mentioned calculation is established.

【0053】以上のように、絶縁抵抗の劣化により流れ
る電流を動作感度の設定値とすることができるので高感
度に設定することができるとともに絶縁抵抗の劣化(事
故)の無い電路では、抵抗成分電流は存在しないので不
必要動作をすることはない。
As described above, since the current flowing due to the deterioration of the insulation resistance can be used as the set value of the operation sensitivity, it is possible to set the sensitivity to a high level, and in the circuit without the deterioration (accident) of the insulation resistance, Since there is no current, there is no unnecessary operation.

【0054】図7は本発明の第2の実施の形態の説明図
で三相三線の一線接地の場合である。接地相−大地間電
圧検出手段20と、中性点−大地間電圧検出器60、零
相電流検出手段30および漏電リレー40とからなる。
なお、図1,図5と同じ機能を有する部分には、これと
同じ符号を付し、詳細な説明を省略する。
FIG. 7 is an explanatory view of the second embodiment of the present invention, in which a three-phase three-wire single-wire ground is used. It comprises a ground phase-to-ground voltage detecting means 20, a neutral point-to-ground voltage detector 60, a zero-phase current detecting means 30, and an earth leakage relay 40.
Parts having the same functions as those in FIGS. 1 and 5 are denoted by the same reference numerals, and detailed description is omitted.

【0055】中性点−大地間電圧検出手段60は、三相
のu,v,w相の各相にコンデンサCu,Cv,Cwの
一方の電極を接続し、他方の電極を共通接続して中性点
Nを形成し、該中性点Nとアース(大地)E間にコンデ
ンサCoを挿入して、このコンデンサCoの両端から三
相における中性点・大地間電圧Voを取り出す。これら
各検出手段で検出された検出信号は漏電リレー40に入
力される。即ち、零相検出手段30で検出した零相電流
Ioは、漏電リレー40のZ1,Z2端子に、中性点・大
地間電圧Voは、端子N−Eに、接地相・大地間電圧V
eは端子Le−Eに夫々入力され、図2と同様に漏電リ
レー40の演算手段42の演算処理部42bで演算処理
される。図8は演算するベクトル図、図9は演算処理の
フローチャートを示す。
The neutral point-to-ground voltage detecting means 60 connects one electrode of capacitors Cu, Cv and Cw to each of the three phases u, v and w and connects the other electrode in common. A neutral point N is formed, a capacitor Co is inserted between the neutral point N and the earth (ground) E, and a neutral-point / ground voltage Vo in three phases is extracted from both ends of the capacitor Co. The detection signal detected by each of these detecting means is input to the earth leakage relay 40. That is, the zero-phase current Io detected by the zero-phase detecting means 30 is supplied to the Z 1 and Z 2 terminals of the earth leakage relay 40, the neutral point / ground voltage Vo is supplied to the terminal NE, and the ground phase / ground voltage is outputted. V
e is input to the terminals Le-E, respectively, and is subjected to arithmetic processing by the arithmetic processing unit 42b of the arithmetic means 42 of the earth leakage relay 40 as in FIG. FIG. 8 shows a vector diagram to be calculated, and FIG. 9 shows a flowchart of the calculation process.

【0056】今、上記と同様に接地相・大地間電圧V
e、この電圧Veが零の時の中性点と大地間電圧Vn、
中性点・大地間電圧をVo、零相電流をIoとすると、
一線接地電路では、接地事故が発生していない状態で
も、図8に示すような充電電流Icoが負荷側の対地静
電容量を介して流れている。この充電電流IcoはVo
に対し90゜進みとなり、事故が発生していないことの
判断が可能で、そのとき、接地相・大地間電圧Veが零
であればVo=Vnとなり、Veがあれば、そのときの
VoからVnを求める(ステップS1)。次に、ステッ
プS2でVoとVnの比率Vo/Vnを求める。
Now, similarly to the above, the ground phase / ground voltage V
e, the neutral point and ground voltage Vn when this voltage Ve is zero,
Assuming that the neutral point / ground voltage is Vo and the zero-phase current is Io,
In the single-line grounding circuit, the charging current Ico as shown in FIG. 8 flows through the load-side capacitance to the ground even when the grounding accident does not occur. This charging current Ico is Vo
It is possible to determine that no accident has occurred. At that time, if the ground-phase / ground voltage Ve is zero, Vo = Vn. If Ve is present, Vo = Vn. Vn is obtained (step S1). Next, in step S2, the ratio Vo / Vn between Vo and Vn is determined.

【0057】ステップS3でIoの90゜進みか否かを
判断し、90゜進みのときはIo÷(Vo/Vn)を求
め、Veが零の場合(事故が無いとき)の充電電流In
を求めて記憶しておく(ステップS4,S5)。
In step S3, it is determined whether or not Io is advanced by 90 °. If it is advanced by 90 °, Io ÷ (Vo / Vn) is obtained, and charging current In when Ve is zero (when there is no accident) is obtained.
Is obtained and stored (steps S4 and S5).

【0058】次にステップS6で、過地絡時のIoから
Icoを差し引き抵抗成分電流Igrを求める。この抵
抗成分電流Igrは、事故の無い電路では零である。
Next, at step S6, Ico is subtracted from Io at the time of the ground fault to obtain a resistance component current Igr. This resistance component current Igr is zero in a circuit without an accident.

【0059】算出した抵抗成分電流Igrは図4と同様
にステップS7で設定レベルと比較し、設定レベルを超
えたとき、設定された時限後(ステップS8)動作出力
リレーを動作させる(ステップS9)。
The calculated resistance component current Igr is compared with the set level in step S7, as in FIG. 4, and when it exceeds the set level, the operation output relay is operated after the set time limit (step S8) (step S9). .

【0060】また、Igrが設定レベルより小さいとき
は、時限タイマをリセットして(ステップ11)処理を
終了し、これを繰り返す。
If Igr is smaller than the set level, the timer is reset (step 11), the process is terminated, and the process is repeated.

【0061】次に、ステップS3でIoがVoの90゜
進みでない場合は、地絡事故の発生がある場合で、ステ
ップS10ではVoおよびVeが変化したとき、そのと
きのVoとVeからVnを求め、過地絡時におけるVo
/Vnの比率を、記憶しておいたInに乗じて過地絡時
の充電電流Icoを求め、ステップS6に移行する。
Next, if Io is not 90 ° ahead of Vo in step S3, a ground fault has occurred. In step S10, when Vo and Ve change, Vn is changed from Vo and Ve at that time. And Vo at the time of over ground fault
The ratio of / Vn is multiplied by the stored In to obtain the charging current Ico at the time of the ground fault, and the process proceeds to step S6.

【0062】共通接地方法で他の電路の充電電流の影響
で接地相・大地間電圧Veが発生していても、自回路の
負荷側で事故が無い限り、零相電流Ioは中性点・大地
間電圧Voに対して90゜進みで現われるため、上記の
演算は成り立つ。
Even if the ground phase / ground voltage Ve is generated due to the influence of the charging current of the other electric circuit by the common grounding method, the zero-phase current Io is maintained at the neutral point, unless there is an accident on the load side of the own circuit. Since the voltage appears 90 ° ahead of the ground voltage Vo, the above calculation is valid.

【0063】図7は三相三線の一線接地の場合である
が、図5の単相の一線接地電路でも、同様の処理を行う
ことで実現できる。この実施の形態においても、第1の
実施の形態同様に、絶縁抵抗の劣化により流れる電流を
動作感度の設定値とすることができ、高感度に設定する
ことができる。
FIG. 7 shows the case of three-phase three-wire single-wire grounding. However, the same processing can also be realized with the single-phase single-wire grounding circuit of FIG. In this embodiment, similarly to the first embodiment, the current flowing due to the deterioration of the insulation resistance can be used as the set value of the operation sensitivity, and the sensitivity can be set high.

【0064】図10は本発明の第3の実施の形態の説明
図で、基本的には、第1の実施の形態の方式と同じであ
るが、三相三線の一線接地の場合、充電相はU相とV相
とがあり、どちらの相が地絡しているか、また従来の技
術で述べたように、負荷側か他の電路の地絡かの判断が
できない。
FIG. 10 is an explanatory view of the third embodiment of the present invention, which is basically the same as the method of the first embodiment, except that in the case of three-phase three-wire single-line grounding, the charging phase There is a U-phase and a V-phase, and it is not possible to determine which phase has a ground fault, or as described in the related art, whether it is on the load side or a ground fault on another electric circuit.

【0065】そこで、図7と同様の三相用の中性点−大
地間電圧検出手段60と、充電相のu相とw相の夫々
に、充電相−大地間電圧検出手段10u,10wおよび
零相電圧検出手段30を設け、これら各検出手段の検出
信号を漏電リレー40に入力してベクトル演算処理を行
い、抵抗成分電流Igrを求めるものである。
Therefore, the neutral point-to-ground voltage detecting means 60 for the three phases as shown in FIG. 7 and the charging phase-to-ground voltage detecting means 10u, 10w and A zero-phase voltage detecting means 30 is provided, and a detection signal of each of these detecting means is input to the earth leakage relay 40 to perform a vector calculation process to obtain a resistance component current Igr.

【0066】過地絡事故時の中性点と大地間の電圧をV
o、各充電相と大地間の電圧をVuoとおよびVwo、
その時、零相変流器で検出した零相電流をIoとする
と、一線接地電路では、前記のように接地事故が発生し
ていない状態でも、充電電流Icoが負荷側の対地静電
容量を介して流れている。この充電電流IcoはVoに
対し90゜進みとなり、上述の通り事故発生の判断とす
ることができる。
The voltage between the neutral point and the ground at the time of
o, the voltage between each charging phase and ground is Vuo and Vwo,
At this time, assuming that the zero-phase current detected by the zero-phase current transformer is Io, the charging current Ico passes through the load-side ground capacitance on the load-side ground line even in a state where the grounding accident does not occur as described above. Flowing. This charging current Ico advances by 90 ° with respect to Vo, and as described above, it can be determined that an accident has occurred.

【0067】図11は、この第3の実施の形態における
演算処理のフローチャートを示す。同図において、ステ
ップS1でVoの進み90゜位相を求め、次にVo/V
nを求める(ステップS2)。ステップS3でIoがV
oの90゜進みか否かを判断し、90゜進みの場合は事
故が無い状態であるから、この事故がないときの充電電
流InをIn=Io÷(Vo/Vn)で求め、これをス
テップS5で記憶しておく。次に、ステップS6でIo
からIcoを差し引いてIgrを求め、設定した検出レ
ベルと比較する。以下の処理は図4と同様に行う。
FIG. 11 shows a flowchart of the calculation processing according to the third embodiment. In FIG. 5, a leading 90 ° phase of Vo is obtained in step S1, and then Vo / V
n is obtained (step S2). Io is V in step S3
It is determined whether or not o is advanced by 90 °. If the vehicle is advanced by 90 °, there is no accident. Therefore, the charging current In when there is no accident is obtained by In = Io ÷ (Vo / Vn). It is stored in step S5. Next, at step S6, Io
Is subtracted from Ico to obtain Igr and compare it with the set detection level. The following processing is performed in the same manner as in FIG.

【0068】ステップS3でIoがVoの90゜進みで
ないときは、ステップS5で先に事故が無いときの充電
電流Inが記憶されているか否かを判断し、記憶されて
いるときは、図9と同様に充電電流IcoをIco=I
n×(Vo/Vn)で求める(ステップS12)。ステ
ップS6〜ステップS10までは、図9と同じ処理とな
る。ステップS11でInが記憶されていないときは、
ステップS13〜S15で処理される。即ち、過地絡事
故があったとき、事故電流は事故相のVuo又はVwo
と同相であり、零相電流Ioの充電電流分IcoをVo
に対し90゜進み位相にとり、VuoとVwoの各同相
成分に分割してIgrを求める。
If Io is not 90 ° ahead of Vo in step S3, it is determined in step S5 whether or not the charging current In when there is no accident is stored beforehand. Similarly, the charging current Ico is set to Ico = I
It is determined by n × (Vo / Vn) (step S12). Steps S6 to S10 are the same as those in FIG. When In is not stored in step S11,
The processing is performed in steps S13 to S15. That is, when there is a ground fault, the fault current is Vuo or Vwo of the fault phase.
And the charging current component Ico of the zero-phase current Io is Vo
, The phase is advanced by 90 °, and divided into in-phase components of Vuo and Vwo to obtain Igr.

【0069】ステップS13で図12(a)のベクトル
演算を行い、VuoのIgrを求める。即ち、IoをV
oの進み90゜と同相成分(Ico)と、Vuoとの同
相成分(Igr)に分割する。
In step S13, the vector operation shown in FIG. 12A is performed to obtain Vgr Igr. That is, Io is V
The phase is divided into an in-phase component (Ico) of 90 ° and an in-phase component (Igr) of Vuo.

【0070】次にステップS14で、図12(b)のベ
クトル演算を行いVwoのIgrを求める。即ち、Io
をVoの進み90゜と同相成分(Ico)と、Vuoと
の同相成分(Igr)に分割する。
Next, in step S14, the vector operation shown in FIG. 12B is performed to obtain Igr of Vwo. That is, Io
Is divided into an in-phase component (Ico) with the lead 90 ° of Vo and an in-phase component (Igr) with Vuo.

【0071】次のステップS15で各々のIgrの絶対
値の平均を求め、この平均値とIgrの設定レベルと比
較し(ステップS7)、設定レベルより大きい場合に設
定時限後、動作リレーをオンする。
In the next step S15, the average of the absolute values of the respective Igrs is obtained, and the average is compared with the set level of the Igr (step S7). If the average is larger than the set level, the operation relay is turned on after the set time limit. .

【0072】上記の場合、過地絡時には、動作設定感度
よりはるかに大きい電流が流れるため、各相の平均値を
取らずにIgrのうち大きい方の値で動作させるように
してもよい。
In the above case, at the time of an over-ground fault, a current much larger than the operation setting sensitivity flows. Therefore, the operation may be performed with the larger value of Igr without taking the average value of each phase.

【0073】過地絡に至らない通常の絶縁劣化事故で、
他の電路の充電電流の影響により接地相・大地電圧がV
eが発生していた場合、Vuo,Vwoの各相分のIg
rの値は異なり充電電流分Icoが不明の時、どちらの
相で絶縁劣化しているか判断できない。よって次のよう
に考え対処する。事故無し状態の充電電流Inが第2の
実施の形態の検出方法で求められているときは、Ioか
らIcoを差引き求められた電流と等しいか、近い値の
Igrを用いる。絶縁の悪い負荷が投入され、上記の検
出方法ではInが求められていない場合およびどちらと
も判断できないときは、各Igrの平均値を求めこれを
Igr値として用いる。平均値で求めたIgrの誤差は
差ほど大きくなく実使用上問題ない程度で漏電継電器の
許容範囲で納まる。
In a normal insulation deterioration accident that does not lead to an overground fault,
Ground phase / ground voltage is V due to the influence of charging current of other circuits.
e, Ig of each phase of Vuo, Vwo
When the value of r is different and the charge current Ico is unknown, it cannot be determined which phase has insulation deterioration. Therefore, the following is considered. When the charging current In in the no-accident state is obtained by the detection method of the second embodiment, Igr having a value equal to or close to the current obtained by subtracting Ico from Io is used. When a load with poor insulation is applied, and In is not determined by the above detection method, or when neither can be determined, the average value of each Igr is obtained and used as the Igr value. The error of the Igr obtained by the average value is not so large as the difference and is within a range that does not cause a problem in practical use within the allowable range of the earth leakage relay.

【0074】また、Veが小さい場合はVo≒Vnとな
り、各Igrも等しくなり誤差は小さくなる。
When Ve is small, Vo ≒ Vn, and each Igr becomes equal, and the error becomes small.

【0075】[0075]

【発明の効果】本発明は以上のように地絡時の抵抗成分
電流を演算して求め、この抵抗成分電流により、自回路
の地絡事故か否かを判断するようにしたので、次の効果
を奏する。 (1)△結線および単相の一線接地電路の共通接地でも
不要動作の無い漏電継電器を供給できる。 (2)対地静電容量が大きい電路では、充電電流の影響
により低抵抗にならないと漏洩電流が増加しない問題が
あるが抵抗分電流で検出するため絶縁劣化が初期の段階
で検出でき高感度の設定が可能である。 (3)別の検出信号を重畳させる必要が無く、電路に影
響を及ぼす事が無く、かつ重畳信号発生器も必要なく安
価で経済てきである。
As described above, according to the present invention, the resistance component current at the time of a ground fault is calculated and obtained, and it is determined whether or not a ground fault has occurred in the own circuit based on the resistance component current. It works. (1) It is possible to supply an earth leakage relay without unnecessary operation even with a common grounding of the connection and single-phase single-wire grounding circuit. (2) There is a problem that the leakage current does not increase unless the resistance becomes low due to the influence of the charging current in an electric circuit having a large capacitance to the ground. Can be set. (3) There is no need to superimpose another detection signal, there is no effect on the electric circuit, and there is no need for a superposition signal generator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の説明図。FIG. 1 is an explanatory diagram of a first embodiment of the present invention.

【図2】本発明の概念図。FIG. 2 is a conceptual diagram of the present invention.

【図3】本発明の第1の実施の形態のベクトル図。FIG. 3 is a vector diagram according to the first embodiment of the present invention.

【図4】図2の演算手段のフローチャートFIG. 4 is a flowchart of the calculation means of FIG. 2;

【図5】本発明の第2の実施の形態の説明図。FIG. 5 is an explanatory view of a second embodiment of the present invention.

【図6】第2の実施の形態のフローチャートFIG. 6 is a flowchart according to a second embodiment;

【図7】本発明の第3の実施の形態の説明図。FIG. 7 is an explanatory view of a third embodiment of the present invention.

【図8】第3の実施の形態のベクトル図。FIG. 8 is a vector diagram according to the third embodiment.

【図9】第3の実施の形態のフローチャートFIG. 9 is a flowchart of a third embodiment.

【図10】本発明の第4の実施の形態の説明図。FIG. 10 is an explanatory diagram of a fourth embodiment of the present invention.

【図11】第4の実施の形態のフローチャート。FIG. 11 is a flowchart of the fourth embodiment.

【図12】第4に実施の形態のベクトル図。FIG. 12 is a vector diagram of the fourth embodiment.

【図13】高層ビルにおける共通接地方式の説明図。FIG. 13 is an explanatory diagram of a common grounding method in a high-rise building.

【図14】共通接地方式の説明図。FIG. 14 is an explanatory diagram of a common grounding system.

【図15】三相三線△結線時の共通接地方式の説明図。FIG. 15 is an explanatory diagram of a common grounding method in a three-phase three-wire △ connection.

【図16】図15のベクトル説明図。FIG. 16 is an explanatory diagram of the vector in FIG. 15;

【図17】三相三線△結線時の共通接地方式の他の例に
おける説明図。
FIG. 17 is an explanatory diagram of another example of the common grounding method when three-phase three-wire connection is performed.

【図18】図17のベクトル説明図。18 is an explanatory diagram of the vector in FIG. 17;

【符号の説明】[Explanation of symbols]

10…充電相−大地間電圧検出手段 20…接地相−大地間電圧検出手段 30…零相電流検出手段 40…漏電リレー 41…A/D変換部 42…演算手段 43…動作感度・時限設定部 44…動作出力リレー 50・60…中性点・大地間電圧検出手段 DESCRIPTION OF SYMBOLS 10 ... Charge phase-ground voltage detection means 20 ... Ground phase-ground voltage detection means 30 ... Zero-phase current detection means 40 ... Earth leakage relay 41 ... A / D conversion part 42 ... Calculation means 43 ... Operation sensitivity and time limit setting part 44: operation output relay 50, 60: neutral point / ground voltage detecting means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 低圧電路における一線接地電路の漏電検
出方法において、接地事故時の電路の中性点と大地間の
電圧および接地相と大地間の電圧を求め、そのときの零
相電流を、前記中性点と大地間の電圧の90°進み成分
の充電々流と地絡事故時に変化した充電相と大地間の電
圧と同相分の抵抗成分電流に分割し、該抵抗成分電流が
あらかじめ設定した設定レベルを超えたとき所定の保護
動作をするようにしたことを特徴とする低圧接地電路の
漏電検出保護方法。
In a method for detecting a short-circuit of a single-wire ground circuit on a low-voltage circuit, a voltage between a neutral point and a ground and a voltage between a ground phase and a ground at the time of a ground fault are obtained, and a zero-phase current at that time is determined. The voltage between the neutral point and the ground is divided into a charging current of a 90 ° lead component and a resistance component current of the same phase as the voltage between the charging phase and the ground changed during the ground fault, and the resistance component current is set in advance. A predetermined protection operation when the set level is exceeded.
【請求項2】 中性点と大地間の電圧を、地絡事故時に
変化した充電相と大地間の電圧と充電相と大地間の電圧
から線間電圧を求め、該線間電圧から中性点Nを求め、
この中性点Nと大地間の電圧により求めるようにしたこ
とを特徴とする請求項1記載の低圧接地電路の漏電検出
保護方法。
2. The voltage between the neutral point and the ground is determined from the voltage between the charging phase and the ground, and the voltage between the charging phase and the ground changed at the time of the ground fault, and the neutral voltage is calculated from the line voltage. Find point N,
2. The method according to claim 1, wherein the voltage is obtained from the voltage between the neutral point N and the ground.
【請求項3】 低圧電路における一線接地電路の漏電検
出保護装置において、単相一線接地電路の充電相と大地
間の電圧を検出する充電相−大地間電圧検出手段と、B
種接地の接地抵抗に生ずる電圧を検出する接地相−大地
間電圧検出手段と、零相電流を検出するための零相電流
検出手段と、これら各検出手段の検出信号を入力して自
回路の事故か否かを判別する漏電リレーを備えたことを
特徴とする漏電検出保護装置。
3. A leakage detecting and protecting device for a single-wire grounding circuit in a low-voltage circuit, comprising: a charging phase-ground voltage detecting means for detecting a voltage between a charging phase of a single-phase single-grounding circuit and ground;
Ground phase-to-ground voltage detecting means for detecting the voltage generated at the ground resistance of the seed ground, zero-phase current detecting means for detecting the zero-phase current, and inputting the detection signals of these detecting means to the own circuit. An earth leakage detection protection device comprising an earth leakage relay for judging whether or not an accident has occurred.
【請求項4】 漏電リレーは、地絡事故時の充電相−大
地間検出手段で検出した電圧をVuo、接地相−大地間
電圧検出手段で検出した電圧をVe、そのとき零相電流
検出手段で検出した零相電流をIoとして、VuoとV
eから線間電圧Vuを求め、該線間電圧Vuの1/2の
点を地絡事故時の電路の中性点Nとし、この中性点Nと
大地間電圧をVoとし、零相電流IoをVoに対し90
°進み位相の充電々流分Icoと、Vuoと同相成分の
抵抗成分電流Igrに分割し、抵抗成分電流Igrがあ
らかじめ設定した検出レベルを超えたとき動作するよう
にしたことを特徴とする請求項3記載の漏電検出保護装
置。
4. The earth leakage relay comprises a voltage Vuo detected by the charging phase-to-ground detecting means at the time of a ground fault, a voltage Ve detected by the grounding phase-to-ground voltage detecting means, and a zero-phase current detecting means at that time. Let Vuo and V
e, a line voltage Vu is obtained, a half point of the line voltage Vu is defined as a neutral point N of an electric circuit at the time of a ground fault, and the neutral point N and the ground-to-ground voltage are defined as Vo. Io is 90 to Vo
15. The method according to claim 14, wherein the charge is divided into a charge component Ico having an advanced phase and a resistance component current Igr having the same phase component as Vuo, and is operated when the resistance component current Igr exceeds a preset detection level. 3. The leakage detection and protection device according to 3.
【請求項5】 低圧電路における一線接地電路の漏電検
出保護装置において、三相三線の△結線、若しくは単相
電路の一線接地電路で、中性点と大地間の電圧を検出す
る中性点−大地間電圧検出手段と、B種接地の接地抵抗
に生ずる電圧を検出する接地相−大地間電圧検出手段
と、零相電流を検出する零相電流検出手段と、これら各
検出手段の検出信号を入力して各検出信号から自回路の
事故か否かを判別する漏電リレーとを備えたことを特徴
とする漏電検出保護装置。
5. A leakage detecting and protecting device for a single-wire ground circuit on a low-voltage circuit, wherein a neutral point for detecting a voltage between a neutral point and the ground is detected by a three-phase three-wire △ connection or a single-phase circuit on a single-wire ground circuit. Ground-to-ground voltage detecting means, ground phase-to-ground voltage detecting means for detecting a voltage generated at the grounding resistance of class B grounding, zero-phase current detecting means for detecting zero-phase current, and detecting signals of these detecting means. An earth leakage detection and protection device comprising: an earth leakage relay that inputs and detects from each detection signal whether or not the circuit is an accident.
【請求項6】 漏電リレーは、地絡事故時に中性点−大
地間電圧検出手段で検出した電圧をVo、接地相−大地
間電圧検出手段で検出した電圧をVe、そのとき零相電
流検出手段で検出した電流をIo、Veが零のときの中
性点と大地間の電圧をVn、零相電流検出手段で検出さ
れる電流で対地静電容量に流れる充電々流をInとした
とき、地絡事故が発生していない時点のInを求めてこ
れを記憶しておき、地絡事故が発生したときのVoとV
eからVnを、VoとVnの比率から地絡時の充電々流
分Icoを求め、零相電流IoからこのIcoを差し引
いて抵抗成分電流Igrを求め、該電流Igrがあらか
じめ設定した設定レベルを超えたとき動作するようにし
たことを特徴とする請求項5記載の漏電検出保護装置。
6. The earth leakage relay detects a voltage detected by the neutral point-to-ground voltage detecting means at the time of a ground fault, Vo, a voltage detected by the grounding phase-ground voltage detecting means to Ve, and then detects a zero-phase current. When the current detected by the means is Io, the voltage between the neutral point and the ground when Ve is zero is Vn, and the charging current flowing through the ground capacitance with the current detected by the zero-phase current detecting means is In. The In at the time when the ground fault does not occur is obtained and stored, and Vo and V at the time when the ground fault occurs are obtained.
e, Vn is calculated from the ratio of Vo and Vn, and the charging current Ico at the time of ground fault is obtained. This Ico is subtracted from the zero-phase current Io to obtain the resistance component current Igr, and the current Igr is set to a preset level. 6. The leakage detection protection device according to claim 5, wherein the leakage detection protection device operates when it exceeds.
【請求項7】 低圧電路における一線接地電路の漏電検
出保護装置において、三相三線の一線接地電路の中性点
と大地間の電圧を検出する中性点−大地間電圧検出手段
と、充電相の各相と大地間の電圧を検出する充電相−大
地間電圧検出手段と、零相電流を検出する零相電流検出
手段と、これら各検出手段の検出信号を入力して各信号
から自回路の事故か否かを判別する漏電リレーとを備え
たことを特徴とする漏電検出保護装置。
7. A neutral point-to-ground voltage detecting means for detecting a voltage between a neutral point and the ground of a three-phase three-wire single-line grounding circuit, and a charging phase. Charging phase-to-ground voltage detecting means for detecting the voltage between each phase and the ground, zero-phase current detecting means for detecting the zero-phase current, and a detection signal of each of these detecting means is inputted, and the respective circuits receive An earth leakage detection and protection device comprising: an earth leakage relay that determines whether or not an accident has occurred.
【請求項8】 漏電リレーは、地絡事故時に中性点−大
地間電圧検出手段で検出した電圧をVo、各充電相−大
地間電圧検出手段で検出した電圧をVuo,Vwo、そ
のときの零相電流検出手段で検出した零相電流Ioと
し、この零相電流Ioを零相電流Ioの充電々流分Ic
oをVoに対し90°進み位相としてとり、Vuo,V
woの各同相成分として流れる事故電流に分割して抵抗
成分電流Igrを求め、該抵抗成分電流Igrがあらか
じめ設定した設定レベルを超えたとき動作するようにし
たことを特徴とする請求項7記載の漏電検出保護装置。
8. The earth leakage relay has a voltage Vo detected by the neutral point-to-ground voltage detecting means and a voltage Vuo, Vwo detected by each charging phase-to-ground voltage detecting means at the time of a ground fault. The zero-phase current Io detected by the zero-phase current detection means is defined as the zero-phase current Io.
o is taken as 90 ° ahead of Vo, and Vuo, V
8. The method according to claim 7, wherein the resistance component current Igr is determined by dividing the fault current flowing as each in-phase component of wo into a fault current, and the resistance component current Igr is operated when the resistance component current Igr exceeds a preset level. Leakage detection protection device.
JP2000171438A 2000-06-08 2000-06-08 Leakage detection protection method and apparatus for low-voltage ground circuit Expired - Fee Related JP3652584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000171438A JP3652584B2 (en) 2000-06-08 2000-06-08 Leakage detection protection method and apparatus for low-voltage ground circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000171438A JP3652584B2 (en) 2000-06-08 2000-06-08 Leakage detection protection method and apparatus for low-voltage ground circuit

Publications (2)

Publication Number Publication Date
JP2001352663A true JP2001352663A (en) 2001-12-21
JP3652584B2 JP3652584B2 (en) 2005-05-25

Family

ID=18673987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000171438A Expired - Fee Related JP3652584B2 (en) 2000-06-08 2000-06-08 Leakage detection protection method and apparatus for low-voltage ground circuit

Country Status (1)

Country Link
JP (1) JP3652584B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157838A (en) * 2006-12-26 2008-07-10 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
JP2011149959A (en) * 2011-04-25 2011-08-04 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
JP2014182060A (en) * 2013-03-21 2014-09-29 Osaki Electric Co Ltd Low-voltage measuring device using probe for measuring conductor voltage of electric wire
WO2016047057A1 (en) * 2014-09-26 2016-03-31 タナシン電機株式会社 Leakage current calculation device and leakage current calculation method
US10782359B2 (en) 2016-03-09 2020-09-22 Omron Corporation Leakage current calculation device and leakage current calculation method
CN113447705A (en) * 2021-06-21 2021-09-28 深圳供电局有限公司 Device and method for keeping secondary neutral point of voltage transformer grounded
WO2024022030A1 (en) * 2022-07-28 2024-02-01 比亚迪股份有限公司 Electric leakage detection device and method, and vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157838A (en) * 2006-12-26 2008-07-10 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
JP2011149959A (en) * 2011-04-25 2011-08-04 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
JP2014182060A (en) * 2013-03-21 2014-09-29 Osaki Electric Co Ltd Low-voltage measuring device using probe for measuring conductor voltage of electric wire
WO2016047057A1 (en) * 2014-09-26 2016-03-31 タナシン電機株式会社 Leakage current calculation device and leakage current calculation method
CN107209217A (en) * 2014-09-26 2017-09-26 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method
EP3199959A4 (en) * 2014-09-26 2018-06-06 Tanashin Denki Co., Ltd. Leakage current calculation device and leakage current calculation method
CN107209217B (en) * 2014-09-26 2018-11-30 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method
US10145886B2 (en) 2014-09-26 2018-12-04 Tanashin Denki Co., Ltd. Leakage current calculation device and leakage current calculation method
US10782359B2 (en) 2016-03-09 2020-09-22 Omron Corporation Leakage current calculation device and leakage current calculation method
CN113447705A (en) * 2021-06-21 2021-09-28 深圳供电局有限公司 Device and method for keeping secondary neutral point of voltage transformer grounded
WO2024022030A1 (en) * 2022-07-28 2024-02-01 比亚迪股份有限公司 Electric leakage detection device and method, and vehicle

Also Published As

Publication number Publication date
JP3652584B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
EP2730023B1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP3359973B1 (en) Method and system for locating ground faults in a network of drives
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
US4366474A (en) Identification of electric power network phases experiencing disturbances
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
JPS5893422A (en) Protecting device for high voltage transmission line
JPH027248B2 (en)
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
JP2002027661A (en) Leakage detection/protection method and apparatus for commonly grounded circuit
Blánquez et al. Consideration of multi-phase criterion in the differential protection algorithm for high-impedance grounded synchronous generators
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JP3378418B2 (en) Leakage protection method
US20220181865A1 (en) Method and system for detecting faults in a low voltage three-phase network
Elsherbeiny et al. Instantaneous Power-Based Busbar Protection for Multi-terminal HVDC Network
Roberts et al. Obtaining a reliable polarizing source for ground directional elements in multisource, isolated-neutral distribution systems
JPH0442726A (en) Ground fault indicator for distribution line
JP3331867B2 (en) Capacitor abnormality detection device in capacitor equipment
JP2001050997A (en) Measuring device for capacitance to ground and measuring method thereof
JP2741752B2 (en) Directional grounding relay for ungrounded high-voltage distribution lines
Abd Allah Protection scheme for transmission lines based on correlation coefficients
Das et al. A Call to Action: Say YES to Restricted Earth Fault Protection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees