JP3080307B2 - How to prevent accidents caused by earth leakage breakers - Google Patents

How to prevent accidents caused by earth leakage breakers

Info

Publication number
JP3080307B2
JP3080307B2 JP10286202A JP28620298A JP3080307B2 JP 3080307 B2 JP3080307 B2 JP 3080307B2 JP 10286202 A JP10286202 A JP 10286202A JP 28620298 A JP28620298 A JP 28620298A JP 3080307 B2 JP3080307 B2 JP 3080307B2
Authority
JP
Japan
Prior art keywords
ground
transformer
resistance
earth leakage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10286202A
Other languages
Japanese (ja)
Other versions
JP2000115990A (en
Inventor
陸宏 油井
隆宏 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10286202A priority Critical patent/JP3080307B2/en
Publication of JP2000115990A publication Critical patent/JP2000115990A/en
Application granted granted Critical
Publication of JP3080307B2 publication Critical patent/JP3080307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は、漏電しゃ断器の
もらい事故防止方法に関する。特に、それぞれ個別の漏
電しゃ断器を介して電源へ接続した複数の接地されてい
る機器(以下、被接地機器という。)中の何れかの機器
が地絡した時に、並列静電容量を有する健全機器の漏電
遮断器が不必要にトリップ(引き外し)する現象である
「もらい事故」の防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing a leakage accident of a ground fault circuit breaker. In particular, when any one of a plurality of grounded devices (hereinafter referred to as grounded devices) connected to a power supply via individual earth leakage breakers is grounded, a sound having parallel capacitance is provided. The present invention relates to a method for preventing a "receive accident", which is a phenomenon in which an earth leakage breaker of a device unnecessarily trips (trips).

【0002】[0002]

【従来の技術】研究所、工場その他の設備では安全及び
火災防止などのため、生産装置その他の機器に漏電しゃ
断器(Earth Leakage Circuit Breaker、ELB)を取付け
て地絡事故の早期分離を確保する場合が多い。図5は、
配電用変圧器(以下、変圧器という場合がある。)1A及
び1Bに接続した機器5A及び5Bに、それぞれ漏電しゃ断器
4A及び4Bを取付けた例を示す。この例では一方の機器5A
と漏電しゃ断器4Aとが、接地した金属製外箱6Aに収めら
れ、対応する生産盤12Aの配線用しゃ断器8Aを介して単
相変圧器1Aの低圧巻線2Aの出力電圧Vaに接続される。同
様に他方の機器1Bと漏電しゃ断器4Bも、接地した金属製
外箱6Bに収められ、対応する生産盤12Bの配線用しゃ断
器8Bを介して変圧器1Bの低圧巻線2Bの出力電圧Vbに接続
される。
2. Description of the Related Art At research laboratories, factories and other facilities, an earth leakage circuit breaker (ELB) is attached to production equipment and other equipment to ensure early separation of a ground fault for safety and fire prevention. Often. FIG.
Distribution transformers (hereinafter sometimes referred to as transformers) Equipment 5A and 5B connected to 1A and 1B, respectively,
An example in which 4A and 4B are attached is shown. In this example, one device 5A
And the earth leakage circuit breaker 4A are housed in a grounded metal outer box 6A and connected to the output voltage Va of the low-voltage winding 2A of the single-phase transformer 1A via the corresponding wiring circuit breaker 8A of the production panel 12A. You. Similarly, the other device 1B and the earth leakage breaker 4B are also housed in the grounded metal outer box 6B, and output voltage Vb of the low voltage winding 2B of the transformer 1B via the corresponding wiring breaker 8B of the production panel 12B. Connected to.

【0003】変圧器1A、1Bの低圧巻線2A、2Bは共通の
統アース抵抗3(以下、系統アースということがあ
る。)を介して接地され、外箱6A、6Bも共通の機器アー
抵抗7(以下、機器アースということがある。)を介
して接地される。以下の説明において、低圧巻線2が接
地された変圧器1を被接地変圧器という。
[0003] The low-voltage windings 2A and 2B of the transformers 1A and 1B share a common system.
Ground resistance 3 (hereinafter sometimes referred to as system ground)
You. ) , And the outer casings 6A and 6B are also grounded via a common equipment grounding resistor 7 (hereinafter, also referred to as equipment grounding) . In the following description, the low-voltage winding 2
The grounded transformer 1 is referred to as a grounded transformer 1 .

【0004】漏電しゃ断器4Aの動作を、機器5Aと漏電し
ゃ断器4Aとの間における非接地側電線上の点5fから外箱
6A上の点6fへの地絡事故が生じた場合について説明す
る。
[0004] The operation of the earth leakage breaker 4A is changed from the point 5f on the ungrounded side electric wire between the equipment 5A and the earth leakage breaker 4A to the outer box.
A case where a ground fault has occurred at point 6f on 6A will be described.

【0005】図6を参照するに、地絡発生前には、上記
点5fと点6fとの間には、実質上変圧器1Aの二次電圧Vaが
存在する。ただし、変圧器1AのインピーダンスZtaが、
機器5Aの内部インピーダンスに比して無視できるほど小
さいとする。この時の地絡電流Igは、テブナンの定理に
より、点6fと5fとの間に変圧器1Aの二次電圧Vaを加えた
時に、機器アース7の接地抵抗Rpと系統アース3の接地
抵抗Rtとからなる直列回路に流れる電流として近似でき
る。ただし、変圧器1Aの電源側の高圧配電線20が実質上
無限大母線であるとし、変圧器1AのインピーダンスZta
が、接地抵抗Rt及びRpに比し無視できるほど小さいと
し、機器5Aの内部インピーダンスが接地抵抗Rt及びRpに
比して非常に大きいとする。ここに接地抵抗とは、接地
電極と大地との間の電気抵抗である。例えば、接地抵抗
RtとRpがそれぞれ3(Ω)と6(Ω)であり、変圧器1Aの二
次電圧Vaが105(V)であるとすると、地絡電流Igは約11.
6(=105/(3+6))(A)となる。
Referring to FIG. 6, before the occurrence of the ground fault, the secondary voltage Va of the transformer 1A substantially exists between the points 5f and 6f. However, the impedance Zta of the transformer 1A is
Assume that it is negligibly small compared to the internal impedance of the device 5A. According to Thevenin's theorem, when the secondary voltage Va of the transformer 1A is applied between the points 6f and 5f, the ground fault current Ig at this time is the ground resistance Rp of the equipment ground 7 and the ground resistance Rt of the system ground 3 It can be approximated as a current flowing through a series circuit consisting of However, it is assumed that the high-voltage distribution line 20 on the power supply side of the transformer 1A is a substantially infinite bus, and the impedance Zta of the transformer 1A is
Is negligibly small compared to the ground resistances Rt and Rp, and the internal impedance of the device 5A is extremely large compared to the ground resistances Rt and Rp. Here, the ground resistance is an electric resistance between the ground electrode and the ground. For example, ground resistance
Assuming that Rt and Rp are 3 (Ω) and 6 (Ω), respectively, and the secondary voltage Va of the transformer 1A is 105 (V), the ground fault current Ig is about 11.
6 (= 105 / (3 + 6)) (A).

【0006】配線用しゃ断器8Aは、例えば1(KW)以上の
大きな電力の機器5Aに対するものである場合、約11.6
(A)の地絡電流Igではトリップしない。しかし、漏電し
ゃ断器4Aの零相変圧器11Aの一次側にはこの地絡電流Ig
が加わる。漏電しゃ断器4の定格感度電流は、零相変圧
器11の一次側電流で定義されるが、図5の例における漏
電しゃ断器4Aの定格感度電流が数十mAないし数Aのオー
ダーであれば、約11.6(A)の地絡電流に対してその漏電
しゃ断器4Aは確実にトリップする。
[0006] For example, when the wiring circuit breaker 8A is for a device 5A having a large power of 1 (KW) or more, about 11.6
No trip occurs with the ground fault current Ig of (A). However, the ground fault current Ig is connected to the primary side of the zero-phase transformer 11A of the earth leakage breaker 4A.
Is added. The rated sensitivity current of the earth leakage circuit breaker 4 is defined by the primary side current of the zero-phase transformer 11, but if the rated sensitivity current of the earth leakage circuit breaker 4A in the example of FIG. , For a ground fault current of about 11.6 (A), the earth leakage breaker 4A surely trips.

【0007】このように、漏電しゃ断器4を用いれば、
過電流防止用の配線用しゃ断器8が動作しない程に小さ
な地絡電流をも確実に遮断し、設備の安全を確保すると
共に火災防止を図ることができる。
As described above, if the earth leakage breaker 4 is used,
Even a ground fault current small enough to prevent the operation of the circuit breaker 8 for preventing overcurrent can be surely cut off, ensuring the safety of the equipment and preventing fire.

【0008】[0008]

【発明が解決しようとする課題】しかし、複数の機器に
それぞれ漏電しゃ断器を接続した場合、ある機器に地絡
事故が発生した時に、地絡が生じた機器の漏電しゃ断器
だけでなく、健全な機器の漏電しゃ断器に不所望のトリ
ップを誘発させる現象としていわゆる「もらい事故」の
問題が生じている。
However, when a ground fault circuit breaker is connected to each of a plurality of devices, when a ground fault occurs in a certain device, not only the ground fault circuit breaker of the device in which the ground fault occurred but also the A so-called “receipt accident” has arisen as a phenomenon that induces an undesired trip in an earth leakage breaker of a complicated device.

【0009】もらい事故を防止する対策として、従来
は、健全回路の漏電しゃ断器の感度をにぶくすることが
試みられた。この対策には、にぶくした感度以上のまわ
り込み漏洩電流が流入すれば、やはりトリップしてしま
うので、地絡電流が増加する傾向にあるシステムでの
「もらい事故」の確実な防止が困難であるという問題点
が残る。また、感度をにぶくすれば、その回路自体でそ
の感度以下の地絡電流の事故が生じても、漏電しゃ断器
がトリップしないこととなるので、安全性や火災防止の
確実性に欠ける問題点もある。
As a countermeasure to prevent the accidents, attempts have been made to reduce the sensitivity of the earth leakage breaker in a sound circuit. In order to prevent this, it is difficult to reliably prevent a "receipt accident" in a system that tends to increase the ground fault current, because if a leakage current more than the sensitivity of the dust flows in, it trips again. The problem remains. In addition, if the sensitivity is increased, even if a ground fault current below the sensitivity occurs in the circuit itself, the earth leakage breaker will not trip, so there is also a problem of lack of safety and certainty of fire prevention. is there.

【0010】従って、本発明の目的は、上記問題点を解
決するため、変圧器接地抵抗の調整による漏電しゃ断器
のもらい事故防止方法を提供するにある。
[0010] Accordingly, an object of the present invention is to provide a method for preventing an accident of a leakage breaker by adjusting a grounding resistance of a transformer in order to solve the above problems.

【0011】[0011]

【課題を解決するための手段】従来技術の問題点を解決
し上記目的を達成するため、本発明者は、機器がノイズ
フィルタ等の並列静電容量を有する場合に、もらい事故
が生じている事実に着目した。再び図5を参照して、機
器5Bに静電容量(以下、ノイズフィルタという場合があ
る。)9が並列接続されている場合のもらい事故につき
解析を試みる。
SUMMARY OF THE INVENTION In order to solve the problems of the prior art and achieve the above object, the present inventor has encountered an accident when a device has a parallel capacitance such as a noise filter. We paid attention to the facts. Referring to FIG. 5 again, an attempt is made to analyze a possible accident when capacitance (hereinafter, sometimes referred to as a noise filter) 9 is connected in parallel to device 5B.

【0012】機器5Bが、変圧器1Aの二次電圧Vaと120度
位相差がある変圧器1Bの二次電圧Vbへ配線用しゃ断器8B
及び漏電しゃ断器4Bによって接続される。上記のよう
に、機器5Aの非接地側電源線上の点5fから外箱上の点6f
への地絡事故が生じると、その時健全である機器5Bの漏
電しゃ断器4Bが次のようにして誤動作する。
The equipment 5B is connected to the secondary voltage Vb of the transformer 1B, which has a phase difference of 120 degrees from the secondary voltage Va of the transformer 1A, to the circuit breaker 8B for wiring.
And the earth leakage breaker 4B . As described above, the point 5f on the ungrounded power line of the device 5A is connected to the point 6f on the outer case.
When a ground fault accident occurs, the earth leakage breaker 4B of the healthy device 5B malfunctions as follows.

【0013】機器5Aで地絡が発生する。 地絡電流Igがアース線や金属製外箱6Aに接する床を通
して機器アース7へ向かって流れる。 機器5A及び5Bのアース線及び金属製の外箱6A、6Bは、
電気的に共通の機器アース7へ接続されている。地絡機
器5Aの外箱6Aに該機器5Aの地絡前健全電圧Va(この場
合、変圧器1Aの低圧巻線2Aの電圧Va)が加えられると、
その電圧Vaは健全機器5Bの外箱6Bにも加えられる。この
ため、地絡電流Igの一部が分流する。一方の分流は大地
電流Ig1となり、機器アース7の接地抵抗Rp及び系統ア
ース3の接地抵抗Rtを通って地絡発生側の変圧器1Aの二
次巻線2Aを介してV0に戻る。この時、機器5Aの漏電しゃ
断器4Aがトリップする(健全漏電トリップ)。地絡電流Igの 他方の分流Ig2は、ノイズフィルタ(並
列静電容量)9を通して健全機器5Bの回路へ流れ込み、
漏電しゃ断器4Bの零相変圧器11Bの二次側と変圧器1Bの
二次巻線2Bと地絡発生側の変圧器1Aの二次巻線2Aを介し
てV0に戻る。この時、健全機器5Bの漏電しゃ断器4Bの零
相変圧器11Bの一次側電流バランスがくずれてその漏電
しゃ断器4Bがトリップする(もらい事故としての漏電ト
リップ)。
A ground fault occurs in the device 5A. The ground fault current Ig flows toward the equipment ground 7 through the ground wire or the floor in contact with the metal outer box 6A . Ground wires of equipment 5A and 5B and metal outer boxes 6A and 6B
It is electrically connected to a common equipment ground 7. Ground fault machine
In the outer box 6A of the device 5A, the sound voltage Va (before this
When the voltage Va) of the low voltage winding 2A of the transformer 1A is applied,
The voltage Va is also applied to the outer box 6B of the healthy device 5B. this
Therefore, part of the ground-fault current Ig is diverted. One shunt is ground current Ig 1, and the flow returns to V 0 via the secondary winding 2A of the transformer 1A ground fault occurs side through the ground resistor Rp and earth resistance Rt strains ground 3 of equipment grounding 7. At this time, the earth leakage breaker 4A of the device 5A trips (healthy earth leakage trip). The other shunt Ig 2 of the ground fault current Ig flows through the noise filter (parallel capacitance) 9 into the circuit of the healthy device 5B,
Back to V 0 through the zero-phase transformer 11B of the secondary side and the secondary winding 2A of the secondary winding 2B and the ground fault generation side of the transformer 1A transformer 1B earth leakage breaker 4B. At this time, the primary-side current balance of the zero-phase transformer 11B of the earth leakage breaker 4B of the healthy device 5B is disrupted, and the earth leakage breaker 4B trips (earth leakage trip as a fault accident).

【0014】変圧器1Aの二次電圧Vaと変圧器1Bの二次電
圧Vbとの位相関係を含めて示す図7を参照するに、ノイ
ズフィルタ9を流れる地絡電流Ig2のうち電源線の接地
側成分Ig21及び電源線の非接地側成分Ig22は、近似的に
次式で与えられる。ただし、Zcはノイズフィルター9の
インピーダンスであり、系統アース3の接地抵抗Rt及び
機器アース7の接地抵抗Rpに比し、変圧器1Bのインピー
ダンスZtbが無視できるほど小さく且つ機器5Bの内部イ
ンピーダンスが充分大きく機器5Bの回路は開放と見なし
得るものとする。
[0014] transformer 1A Referring to FIG. 7 showing, including the phase relationship between the secondary voltage Va and the secondary voltage Vb of the transformer 1B, the power supply line of the ground-fault current Ig 2 flowing a noise filter 9 ungrounded component Ig 22 of the ground side components Ig 21 and the power supply line is approximately given by the following equation. Here, Zc is the impedance of the noise filter 9, and the impedance Ztb of the transformer 1B is so small as to be negligible and the internal impedance of the device 5B is sufficient compared to the ground resistance Rt of the system ground 3 and the ground resistance Rp of the device ground 7. It is assumed that the circuit of the device 5B can be regarded as open.

【0015】[0015]

【式1】 Ig21=Va/Zc …………………………………………………………(1) Ig22=(Va−Vb)/Zc ………………………………………………(2) Ig2=Ig22+Ig21=(2Va−Vb)/Zc ………………………………(3) │2Va−Vb│={(2Va)2+Vb2−2・2Va・2Vb・cos(2π/3)}1/2 ={(2Va)2+Vb2+2Va・Vb}1/2 …………………(4) ここで、 │Va│=│Vb│=105(V) Rt=3(Ω) Rp=6(Ω) Zc=12,500(Ω)(0.25μF、50Hz) とすると Ig2={7・105/12500}1/2 ≒22.2(mA)[Formula 1] Igtwenty one= Va / Zc ………………………………………… (1) Igtwenty two= (Va-Vb) / Zc ……………………………… (2) IgTwo= Igtwenty two+ Igtwenty one= (2Va-Vb) / Zc ……………………… (3) | 2Va−Vb | = {(2Va)Two+ VbTwo−2.2Va · 2Vb · cos (2π / 3)}1/2  = {(2Va)Two+ VbTwo+ 2Va ・ Vb}1/2 …………… (4) where | Va | = | Vb | = 105 (V) Rt = 3 (Ω) Rp = 6 (Ω) Zc = 12,500 (Ω) (0.25μF, 50Hz) Then IgTwo= {7.105 / 12500}1/2 ≒ 22.2 (mA)

【0016】図5に示すように、このノイズフィルタ9
を流れる地絡電流Ig2は、零相残留電流であって、健全
機器5Bの漏電しゃ断器4Bの零相変圧器11Bの一次電流と
なる。漏電しゃ断器4Bの定格感度電流は、漏電しゃ断器
4Bが必ずトリップ動作する零相変圧器11Bの一次電流と
して定義されている。JIS C 8371(1980)の規格によれ
ば、定格不動作電流は、定格感度電流の50%以上であれ
ば足りるとされているので、図5の漏電しゃ断器4Bの定
格感度電流が30(mA)である場合には、機器5Aの地絡事故
時に健全機器5Bの回路の漏電しゃ断器4Bの零相変圧器一
次電流が22.2(mA)に達した時に、漏電しゃ断器4Bがもら
い事故としてトリップすることが起こり得る。
As shown in FIG. 5, this noise filter 9
Ground fault current Ig 2 flowing is a zero-phase residual current, the primary current of the zero-phase transformer 11B earth leakage breaker 4B sound equipment 5B. The rated sensitivity current of earth leakage breaker 4B is
4B is defined as the primary current of the zero-phase transformer 11B that always trips. According to the standard of JIS C 8371 (1980), it is sufficient that the rated non-operating current is 50% or more of the rated sensitivity current, so that the rated sensitivity current of the earth leakage breaker 4B of FIG. ), When the primary current of the zero-phase transformer of the earth leakage breaker 4B of the circuit of the healthy equipment 5B reaches 22.2 (mA) at the time of the ground fault accident of the equipment 5A, the earth leakage breaker 4B gets a trip as an accident. It can happen.

【0017】以上の解析から、このようなもらい事故を
防止するためには、図5〜7において例えば健全機器5B
のノイズフィルタ9に、他の機器5Aの地絡に起因して
該健全機器5Bに地絡機器5Aの電圧Vaが加えられて生じる
地絡電流Ig 2 を抑制しなければならないとの知見が得ら
れる。本発明は、この知見に基づいて完成したものであ
る。
From the above analysis, in order to prevent such an accident, as shown in FIGS.
The noise filter 9, those due to the grounding of other devices 5A
This occurs when the voltage Va of the ground fault device 5A is added to the healthy device 5B.
Finding that must be suppressed the ground fault current Ig 2 is obtained. The present invention has been completed based on this finding.

【0018】図1の実施例を参照するに、本発明の漏電
しゃ断器のもらい事故防止方法は、系統アース抵抗3で
接地された複数の配電用変圧器1A、1Bの低圧巻線2A、2B
へそれぞれ漏電しゃ断器4A、4Bを介して接続されると共
に共通機器アース抵抗7で接地された金属製外箱6A、6B
にそれぞれ収められた複数機器5A、5B中の一機器5Aが地
絡した時に、地絡した機器5Aの地絡前健全電圧Vaが外箱
6A、6Bへ加わることに起因して前記複数機器5A、5B中の
並列静電容量9を有する健全機器5Bの漏電しゃ断器4Bが
トリップする「もらい事故」を防ぐ方法において、並列
静電容量9を有しない機器5Aに接続した変圧器1Aの低圧
巻線2A系統アース抵抗3直列に接地抵抗器10Aを挿
することにより、機器アース抵抗6及び系統アース抵
抗3の和と接地抵抗器10Aとの分圧によって、地絡時に
健全機器5Bの外箱6Bへ加わる電圧を抑制し、地絡時の並
列静電容量9の電流を抑制してなるものである。
Referring to the embodiment of FIG. 1, the method for preventing accidental leakage of the earth leakage breaker according to the present invention uses a system ground resistance 3.
Low-voltage windings 2A, 2B of multiple distribution transformers 1A, 1B grounded
Metal outer boxes 6A, 6B connected to earth leakage breakers 4A, 4B
Multiple devices 5A, housed respectively one device 5A is ground in 5B
When a ground fault occurs, the sound voltage Va before ground fault of the ground fault device 5A is
6A, 6B In the method of preventing the "leakage accident" that the earth leakage breaker 4B of the healthy device 5B having the parallel capacitance 9 in the plurality of devices 5A, 5B due to the addition to the Low voltage of transformer 1A connected to equipment 5A without capacitance 9
By inserting a grounding resistor 10A in series with the system grounding resistor 3 in the winding 2A , the device grounding resistor 6 and the system grounding resistor are inserted.
Due to the sum of anti-3 and the partial pressure of the grounding resistor 10A,
Suppresses the voltage applied to the outer box 6B of the healthy equipment 5B,
This is obtained by suppressing the current of the column capacitance 9 .

【0019】好ましくは、前記複数機器5A、5Bを並列に
して機器アース抵抗(Rp)へ接続することにより接地
し、複数の変圧器1A、1Bの低圧巻線2A、2B並列にして
系統アース抵抗(Rt)に接続して接地し、前記並列静電
容量9を有しない機器10Aに接続した変圧器1Aの低圧巻
線1Bへ接続する前記接地抵抗器10Aの抵抗Raを機器アー
ス抵抗Rpと系統アース抵抗Rtとの和(Rp+Rt)より大き
くする。なお、変圧器の接地抵抗Ra及び機器アース抵抗
Rpの抵抗値を具体的に定める場合に、安全上の法規、例
えば電気設備の技術基準を遵守するのは当然であり、そ
れらの規定の範囲内で抵抗値を定めなければならない。
もちろん、選択の対象をある特定の変圧器又は機器に限
定する必要はなく、各種変圧器やその他各種機器の接地
抵抗値のバランスを、前記法規の範囲内で調整すること
によって「もらい事故」を防ぐことが可能である。
Preferably, the plurality of devices 5A and 5B are connected in parallel.
And grounding by connecting to the equipment grounding resistor (Rp), connecting the low voltage windings 2A and 2B of the plurality of transformers 1A and 1B in parallel to the system grounding resistor (Rt) and grounding , low-voltage transformer 1A connected to the device 10A not having parallel capacitances 9
The resistance Ra of the ground resistor 10A connected to the line 1B is made larger than the sum (Rp + Rt) of the equipment ground resistance Rp and the system ground resistance Rt. The grounding resistance Ra of the transformer and the equipment grounding resistance
When defining the resistance value of Rp, safety regulations and examples
For example, it is natural to comply with the technical standards for electrical equipment.
The resistance value must be determined within these specified ranges.
Of course, the choices should be limited to certain transformers or equipment.
It is not necessary to set, grounding of various transformers and other devices
Adjust the resistance balance within the range of the above regulations
By doing so, it is possible to prevent "getting accidents".

【0020】[0020]

【発明の実施の形態】図1を参照して、本発明による漏
電しゃ断器のもらい事故防止方法の一実施例の作用を説
明する。この実施例は、図5の従来例の変圧器1の接地
側に接地抵抗器10を挿入したものである。即ち、変圧器
1A及び1Bの共通の系統アース3に対し、変圧器1Aに対し
ては抵抗値(抵抗ということがある。)Raの接地抵抗器
10Aを挿入し、変圧器1Bに対しては抵抗値Rbの接地抵抗
器10Bを挿入している。もらい事故が生じ得る機器5Bが
有する並列静電容量9を、従来例と同様にノイズフィル
タとして示すが、もらい事故の原因となり得る並列静電
容量9はノイズフィルタに限定されない。例えば、線路
の対地静電容量が非常に大きい場合には、もらい事故の
原因となり得る並列静電容量である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS With reference to FIG. 1, the operation of an embodiment of a method for preventing a leakage breaker from being damaged according to the present invention will be described. In this embodiment, a ground resistor 10 is inserted on the ground side of the conventional transformer 1 shown in FIG. That is, the transformer
Ground resistor of resistance value (sometimes referred to as resistance) Ra for transformer 1A for common system ground 3 of 1A and 1B
10A is inserted, and a grounding resistor 10B having a resistance value Rb is inserted into the transformer 1B. The parallel capacitance 9 of the device 5B that can cause the accident is shown as a noise filter as in the conventional example, but the parallel capacitance 9 that can cause the accident is not limited to the noise filter. For example, if the ground capacitance of the line is very large, it is a parallel capacitance that may cause an accident.

【0021】図2において、地絡時に二つの接地抵抗の
和(Rt+Rp)に加わる電圧Va´は、地絡前に機器5Aへ加
えられる電圧Vaが三つの抵抗Rp、Rt、Ra(接地抵抗器10
Aの抵抗値)によって分圧されたものとなり、以下の式
(5)で与えられる。ただし、接地抵抗器10Bの抵抗Rbは、
並列静電容量9のインピーダンスに比し無視できるほど
小さいものとする。式(5)において、電圧Va´は電圧Va
の抵抗分圧であるから、両者の間に位相差はない。並列
静電容量9に流れる電流Ig2は、前記式(1)〜(4)の観察
から次の式(6)〜(8)のように求められる。
In FIG. 2, the voltage Va ′ applied to the sum (Rt + Rp) of the two ground resistances at the time of the ground fault is obtained by adding the voltage Va applied to the device 5A before the ground fault to three resistors Rp, Rt, Ra (ground resistor). Ten
A), the voltage is divided by the following formula.
Given by (5). However, the resistance Rb of the grounding resistor 10B is
It is assumed to be negligibly small compared to the impedance of the parallel capacitance 9. In equation (5), voltage Va ′ is equal to voltage Va
, There is no phase difference between the two. Current Ig 2 flowing in parallel capacitance 9 is obtained by the above formula (1) to (4) wherein the observation of the following (6) to (8).

【0022】[0022]

【式2】 Va´=Va{(Rp+Rt)/(Ra+Rp+Rt)} …………………………(5) Ig21=Va´/Zc …………………………………………………………(6) Ig22=(Va´−Vb)/Zc ………………………………………………(7) Ig2=Ig22+Ig21=(2Va´−Vb)/Zc ………………………………(8) │2Va´−Vb│={(2Va´)2+Vb2−2・2Va´・2Vb・cos(2π/3)}1/2 ={(2Va´)2+Vb2+2Va´・Vb}1/2 …………(9) ここで、 │Va│=│Vb│=105(V) Rt=3(Ω) Rp=6(Ω) Zc=12,500(Ω)(0.25μF、50Hz) Ra=25(Ω) とすると Va´=105・(3+6)/(3+6+25)=27.8(V) Ig2={4・(27.8)2+1052+2・105・27.8/12500}
1/2≒11.3(mA)
[Equation 2] Va ′ = Va {(Rp + Rt) / (Ra + Rp + Rt)} ……………………… (5) Igtwenty one= Va '/ Zc ………………………………………… (6) Igtwenty two= (Va'-Vb) / Zc ………………………………… (7) IgTwo= Igtwenty two+ Igtwenty one= (2Va'-Vb) / Zc ……………………… (8) | 2Va′−Vb | = {(2Va ′)Two+ VbTwo−2.2Va ′ · 2Vb · cos (2π / 3)}1/2  = {(2Va´)Two+ VbTwo+ 2Va´ ・ Vb}1/2 ……… (9) where | Va | = | Vb | = 105 (V) Rt = 3 (Ω) Rp = 6 (Ω) Zc = 12,500 (Ω) (0.25 μF, 50 Hz) Ra = 25 ( Ω) Va '= 105 · (3 + 6) / (3 + 6 + 25) = 27.8 (V) IgTwo= {4 ・ (27.8)Two+105Two+2 ・ 105 ・ 27.8 / 12500}
1/2≒ 11.3 (mA)

【0023】図5の従来技術と比較するに、図1の場合
には機器5Bの漏電しゃ断器4Bの零相変圧器11Bの一次電
流が22.2(mA)から11.3(mA)に減少している。漏電しゃ断
器4Bの定格感度電流が30(mA)である場合、11.3(mA)の地
絡電流Ig2がその零相変圧器の一次電流として流れて
も、そのような地絡電流Ig2は定格感度電流の50%以下
であるから、漏電しゃ断器4Bをトリップさせることはな
い。
As compared with the prior art of FIG. 5, in the case of FIG. 1, the primary current of the zero-phase transformer 11B of the earth leakage breaker 4B of the device 5B is reduced from 22.2 (mA) to 11.3 (mA). . When the rated sensitivity current of the earth leakage breaker 4B is 30 (mA), even if the ground fault current Ig 2 of 11.3 (mA) flows as the primary current of the zero-phase transformer, such a ground fault current Ig 2 is Since it is 50% or less of the rated sensitivity current, the earth leakage breaker 4B is not tripped.

【0024】式(5)〜(9)の観察から理解できるように、
並列静電容量9が存在する回路の電源変圧器1Bの接地側
の接地抵抗器10Bの抵抗Rbは並列静電容量9を流れる地
絡電流Ig2に関係しない。従って、もらい事故防止のた
めには、並列静電容量を持たない機器5Aに接続した電源
変圧器1Aの接地側のみに接地抵抗器10Aを挿入すれば足
りる。
As can be understood from the observation of the equations (5) to (9),
Resistance Rb of the ground resistor 10B of the ground side of the power transformer 1B circuits parallel capacitance 9 exists not related to the ground fault current Ig 2 flowing parallel capacitance 9. Therefore, in order to prevent accidents, it is sufficient to insert the ground resistor 10A only on the ground side of the power transformer 1A connected to the device 5A having no parallel capacitance.

【0025】図3は、7つの変圧器バンクI〜VIIからな
り系統アース3の接地抵抗Rtが3Ωである既設配電施設
において、バンクIVをもらい事故防止用のものとした場
合に挿入すべき接地抵抗器10の値の一例を示す。ただ
し、機器アース7の接地抵抗Rpを6Ωとする。図3の例
では、バンクIVにも25Ωの接地抵抗器10を挿入している
が、このバンクIVの接地抵抗器10は省略しても良い。
FIG. 3 shows a ground to be inserted when a bank IV is used to prevent accidents in an existing distribution facility having seven transformer banks I to VII and a ground resistance Rt of the system ground 3 of 3Ω. An example of the value of the resistor 10 is shown. However, the ground resistance Rp of the equipment ground 7 is 6Ω. In the example of FIG. 3, the grounding resistor 10 of 25Ω is also inserted in the bank IV, but the grounding resistor 10 of the bank IV may be omitted.

【0026】接地抵抗器10挿入後の図3の配電施設にお
いて、バンクIVは、図1と同様な漏電しゃ断器4を介し
て接続した並列静電容量9を有するものとする。この配
電施設において、バンクIV以外のすべてのバンクについ
て個別に地絡事故が発生した時に、バンクIVに接続した
前記並列静電容量9のために漏電しゃ断器4の零相変圧
器11に流れる一次電流Ig2の大きさを試算した。その結
果を、表1に「地絡時もらい込み電流Ig2」として示
す。
In the distribution facility shown in FIG. 3 after the grounding resistor 10 is inserted, the bank IV has a parallel capacitance 9 connected via the earth leakage breaker 4 similar to that in FIG. In this distribution facility, when a ground fault has occurred individually for all banks other than the bank IV, the primary current flowing to the zero-phase transformer 11 of the earth leakage breaker 4 due to the parallel capacitance 9 connected to the bank IV. The magnitude of the current Ig 2 was estimated. The results are shown in Table 1 as “current Ig 2 at the time of ground fault”.

【0027】この表1から明らかなように、いずれのバ
ンクで地絡が発生しても、上記条件下におけるバンクIV
の漏電しゃ断器4の地絡時もらい込み電流Ig2は、定格
感度電流の50%以下であり、その漏電しゃ断器4が他バ
ンクの地絡に起因し誤ってトリップすることはない。
As is clear from Table 1, no matter which bank is ground fault, the bank IV under the above conditions
The ground current Ig 2 of the ground fault circuit breaker 4 at the time of ground fault is 50% or less of the rated sensitivity current, and the ground fault circuit breaker 4 does not accidentally trip due to ground fault of another bank.

【0028】こうして、本発明の目的である「変圧器接
地抵抗の調整による漏電しゃ断器のもらい事故防止方
法」の提供が達成される。
Thus, the object of the present invention is to provide a "method of preventing accidental leakage of the earth leakage breaker by adjusting the transformer ground resistance".

【0029】[0029]

【実施例】配電施設を新設する場合や、接地の改修工事
が容易に実施できる場合には、もらい事故を防止したい
線路の変圧器バンクIVを系統アース3へ直接接地し、他
のバンクI〜III及びV〜VIIの変圧器を、共通の単一接地
抵抗器10を介して系統アース3へ接地し、いわば単独接
地型のもらい漏電対策をとることができる。このような
対策を施した変圧器バンクI〜VIIからなる配電施設の例
を図4に示す。この場合、系統アース3の接地抵抗をRt
B=3Ωとし、上記他のバンクの接地抵抗器10の抵抗Re
を含む合成接地抵抗を(RtA+Re)=20Ω以上とした。
接地抵抗器10のこの抵抗値は、機器アース7の接地抵抗
Rp=6Ωの条件下で求めた。
[Embodiment] When a distribution facility is to be newly constructed or grounding repair work can be easily carried out, the transformer bank IV of the line to be prevented from accidents is directly grounded to the system ground 3, and the other banks I to The transformers III and V to VII are grounded to the system ground 3 via the common single grounding resistor 10, so that it is possible to take a so-called single-grounding type leakage protection. FIG. 4 shows an example of a distribution facility including the transformer banks I to VII in which such measures are taken. In this case, the ground resistance of system ground 3 is Rt
B = 3Ω, and the resistance Re of the ground resistor 10 of the other bank
The synthetic ground resistance containing was (Rt A + Re) = 20Ω or more.
This resistance value of the grounding resistor 10 is the ground resistance of the equipment ground 7
It was determined under the condition of Rp = 6Ω.

【0030】図4の配電施設について、表1と同様に、
バンクIV以外のすべてのバンクで個別に地絡事故が発生
した時、バンクIVに接続した前記並列静電容量9のため
に漏電しゃ断器4の零相変圧器11に流れる一次電流の大
きさを試算した。その結果を、表2に「単独接地もらい
漏電対策シミュレーション」として示す。
Regarding the distribution facility of FIG.
When an individual ground fault occurs in all the banks except the bank IV, the magnitude of the primary current flowing through the zero-phase transformer 11 of the earth leakage breaker 4 due to the parallel capacitance 9 connected to the bank IV is determined. Estimated. The results are shown in Table 2 as "simulation for countermeasures for earth leakage due to single grounding".

【0031】この表2から明らかのように、いずれのバ
ンクで地絡が発生しても、上記条件下におけるバンクIV
の漏電しゃ断器4の地絡時もらい込み電流Ig2は、定格
感度電流の50%以下であり、その漏電しゃ断器4がもら
い事故としてトリップすることはない。
As is clear from Table 2, no matter which bank is grounded, the bank IV
The leakage current Ig 2 of the earth leakage breaker 4 at the time of a ground fault is 50% or less of the rated sensitivity current, and the earth leakage breaker 4 does not get tripped as an accident.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上詳細に説明したように、本発明の漏
電しゃ断器のもらい事故防止方法は、電源変圧器の接地
抵抗の選択によりもらい事故を防止するので、次の顕著
な効果を奏する。
As described above in detail, the method for preventing accidents caused by the earth leakage breaker according to the present invention prevents the accidents caused by the selection of the grounding resistance of the power transformer, and has the following remarkable effects.

【0035】(イ)電源変圧器側の対策のみで足り、負
荷機器側に手を加えることなく漏電しゃ断器のもらい事
故を防止することができる。 (ロ)既設の配電設備に対して容易に漏電しゃ断器のも
らい事故防止対策を施すことができる。 (ハ)新設の配電設備においては、配電用変圧器の接地
抵抗の抵抗値の選択のみにより、極めて簡単に低コスト
で漏電しゃ断器のもらい事故を防止することができる。
(A) It is sufficient to take only measures on the power transformer side, and it is possible to prevent an accident caused by the earth leakage breaker without changing the load equipment side. (B) It is possible to easily take measures to prevent accidents caused by leakage breakers in existing power distribution equipment. (C) In the newly installed power distribution equipment, it is possible to extremely easily and at a low cost to prevent an accident caused by an earth leakage breaker simply by selecting the resistance value of the grounding resistance of the power distribution transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明による漏電しゃ断器のもらい事故防
止方法の実施例の回路図である。
FIG. 1 is a circuit diagram of an embodiment of a method for preventing a leakage accident of a ground fault circuit breaker according to the present invention.

【図2】は、図1の回路の地絡電流の分布を示す等価回
路図である。
FIG. 2 is an equivalent circuit diagram showing a distribution of a ground fault current in the circuit of FIG.

【図3】は、本発明を実施した配電施設変圧器バンクの
結線図である。
FIG. 3 is a connection diagram of a distribution facility transformer bank embodying the present invention.

【図4】は、本発明を実施した他の配電施設変圧器バン
クの結線図である。
FIG. 4 is a connection diagram of another distribution facility transformer bank embodying the present invention.

【図5】は、従来の機器に対する配電線の一例の回路図
である。
FIG. 5 is a circuit diagram of an example of a distribution line for a conventional device.

【図6】は、図5の回路における地絡電流算出のための
等価回路図である。
FIG. 6 is an equivalent circuit diagram for calculating a ground fault current in the circuit of FIG. 5;

【図7】は、図5の回路における地絡電流の分布を示す
等価回路図である。
FIG. 7 is an equivalent circuit diagram showing a distribution of a ground fault current in the circuit of FIG.

【符号の説明】[Explanation of symbols]

1…(配電用)変圧器 2…二次巻線 3…系統アース抵抗 4…漏電しゃ断器 5…機器 6…(金属製)外箱 7…機器アース抵抗 8…配線用しゃ断器 9…並列静電容量(ノイズフィルタ) 10…接地抵抗器 11…零相変圧器 12…分電盤 20…高圧配電線DESCRIPTION OF SYMBOLS 1 ... (Distribution) transformer 2 ... Secondary winding 3 ... System earth resistance 4 ... Earth leakage breaker 5 ... Equipment 6 ... (Metal) outer box 7 ... Equipment earth resistance 8 ... Wiring circuit breaker 9 ... Parallel static Electric capacity (noise filter) 10… Grounding resistor 11… Zero phase transformer 12… Distribution board 20… High voltage distribution line

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02H 3/16 H02B 3/00 H02H 9/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02H 3/16 H02B 3/00 H02H 9/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】系統アース抵抗で接地された複数の配電用
変圧器の低圧巻線それぞれ漏電しゃ断器を介して接続
されると共に共通の機器アース抵抗で接地された金属製
外箱にそれぞれ収められた複数の機器中の一機器が地絡
した時に、該地絡した機器の地絡前健全電圧が前記外箱
へ加わることに起因して前記複数の機器中の並列静電容
量を有する健全機器の漏電しゃ断器がトリップする「も
らい事故」を防ぐ方法において、前記並列静電容量を有
しない機器に接続した変圧器の低圧巻線前記系統アー
スと直列に接地抵抗器を挿入することにより、前記機器
アース抵抗及び系統アース抵抗の和と前記接地抵抗器と
の分圧によって、前記地絡時に前記健全機器の外箱へ加
わる電圧を抑制し、前記地絡時の並列静電容量の電流を
抑制してなる漏電しゃ断器のもらい事故防止方法。
1. A metal device connected to low voltage windings of a plurality of distribution transformers grounded by a system ground resistance via respective earth leakage breakers and grounded by a common equipment ground resistance.
One of the devices contained in the outer box is grounded
The sound voltage before ground fault of the ground fault device is
In the method for preventing the "leakage accident" in which the earth leakage breaker of a healthy device having parallel capacitance among the plurality of devices is tripped due to the addition of the transformer, the transformer connected to the device having no parallel capacitance is used. To the low- voltage winding of the
By inserting a grounding resistor in series with the
The sum of the earth resistance and the system earth resistance and the earth resistor
Applied to the outer box of the sound equipment during the ground fault.
A method for preventing a leakage fault interrupter from receiving an electric leakage breaker, which suppresses an excessive voltage and a current of a parallel capacitance at the time of the ground fault.
【請求項2】請求項1のもらい事故防止方法において、
前記複数の機器を並列にして機器アース抵抗(Rp)へ接
続することにより接地し、前記各変圧器の低圧巻線
列にして系統アース抵抗(Rt)へ接続することにより
地し、前記並列静電容量を有しない機器に接続した変圧
器の低圧巻線へ接続する前記接地抵抗器の抵抗(Ra)を
前記系統アース抵抗Rp及び機器アース抵抗Rtの和(Rp+
Rt)より大きくしてなる漏電しゃ断器のもらい事故防止
方法。
2. The method according to claim 1, wherein
Connect the multiple devices in parallel to the device ground resistance (Rp).
To ground, and connect the low- voltage windings of each transformer in parallel.
Contact <br/> was ground by connecting to the system ground resistance (Rt) in the column, the ground resistor of the resistor to be connected to the low voltage winding of the transformer connected to the equipment not having parallel capacitances ( Ra) is the sum of the system ground resistance Rp and the equipment ground resistance Rt (Rp +
Rt) A method to prevent accidents from receiving electric leakage breakers that are larger than Rt.
【請求項3】請求項2のもらい事故防止方法において、
前記並列静電容量を有する機器に接続した変圧器の低圧
巻線へも前記系統アースと直列に接地抵抗器を接続して
なる漏電しゃ断器のもらい事故防止方法。
3. The method according to claim 2, wherein:
Low voltage of the transformer connected to the device having the parallel capacitance
Connect a grounding resistor to the winding in series with the system ground.
Got accident prevention method of earth leakage breaker to be.
JP10286202A 1998-10-08 1998-10-08 How to prevent accidents caused by earth leakage breakers Expired - Fee Related JP3080307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286202A JP3080307B2 (en) 1998-10-08 1998-10-08 How to prevent accidents caused by earth leakage breakers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10286202A JP3080307B2 (en) 1998-10-08 1998-10-08 How to prevent accidents caused by earth leakage breakers

Publications (2)

Publication Number Publication Date
JP2000115990A JP2000115990A (en) 2000-04-21
JP3080307B2 true JP3080307B2 (en) 2000-08-28

Family

ID=17701293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286202A Expired - Fee Related JP3080307B2 (en) 1998-10-08 1998-10-08 How to prevent accidents caused by earth leakage breakers

Country Status (1)

Country Link
JP (1) JP3080307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560500A (en) * 2013-11-05 2014-02-05 国家电网公司 Energy-saving selecting method for grounding resistor of transformer substation grounding transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560500A (en) * 2013-11-05 2014-02-05 国家电网公司 Energy-saving selecting method for grounding resistor of transformer substation grounding transformer
CN103560500B (en) * 2013-11-05 2016-08-17 国家电网公司 The energy-conservation choosing method of substation grounding transformer grounding resistance

Also Published As

Publication number Publication date
JP2000115990A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
JP5230432B2 (en) Earth leakage breaker system for three-phase power system
US20070086141A1 (en) Surge receptacle apparatus and power system including the same
Dunki-Jacobs The reality of high-resistance grounding
JPS6084919A (en) Protecting relay
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
EP1014530B1 (en) Electrical power distribution installation for electrical power system
Nelson System grounding and ground fault protection in the petrochemical industry: A need for a better understanding
Love et al. Considerations for ground fault protection in medium-voltage industrial and cogeneration systems
JP3080307B2 (en) How to prevent accidents caused by earth leakage breakers
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
CN109813997B (en) Controllable current source grounding current full-compensation output current calculation method and system
Paulson Monitoring neutral-grounding resistors
De Ronde et al. Loss of effective system grounding–best practices protection challenges and solutions
CN109873413B (en) Method for completely compensating grounding current by matching controllable current source with arc suppression coil
Horton et al. Unbalance protection of fuseless, split-wye, grounded, shunt capacitor banks
Das Ground fault protection for bus-connected generators in an interconnected 13.8-kV system
Deaton Limitations of ground-fault protection schemes on industrial electrical distribution systems
Gargoom et al. Effect of substation grounding on the neutral voltage in substations with multiple independent resonant grounding systems
Balakrishnan et al. Review of the effects of transformer configuration on distributed generator interconnection
Love Ground fault protection for electric utility generating station medium voltage auxiliary power systems
Ismail et al. Elimination of Zero Sequence Currents Effect on Differential Protection For Power Transformers Connected to Power Grid
JP3074695B2 (en) Circulating zero-phase current suppression circuit
Debrue et al. Influence of distributed generation on the protection principles of a 70 kV/15 kV transformer in antenna: the zero-sequence over-voltage protection U0
JP2005192337A (en) Transformer protecting relay device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees