JPH0479685B2 - - Google Patents

Info

Publication number
JPH0479685B2
JPH0479685B2 JP59223370A JP22337084A JPH0479685B2 JP H0479685 B2 JPH0479685 B2 JP H0479685B2 JP 59223370 A JP59223370 A JP 59223370A JP 22337084 A JP22337084 A JP 22337084A JP H0479685 B2 JPH0479685 B2 JP H0479685B2
Authority
JP
Japan
Prior art keywords
membrane
porous
solvent
polymer
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59223370A
Other languages
Japanese (ja)
Other versions
JPS61101211A (en
Inventor
Takashi Nomi
Toshifumi Fukai
Yosuke Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59223370A priority Critical patent/JPS61101211A/en
Publication of JPS61101211A publication Critical patent/JPS61101211A/en
Publication of JPH0479685B2 publication Critical patent/JPH0479685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、液䜓混合物から少なくずも䞀皮類の
液䜓分子を分離するための液䜓分離甚耇合膜の補
造方法に関するものである。 〔埓来の技術ずその問題点〕 埓来皮々の補膜方法によりミクロフむルタヌ限
倖濟過膜、逆浞透膜、アルコヌル分離膜等が開発
されお来たが、膜の分画分子量が小さくなるに埓
぀お、又粟密濟過であるほど、孔埄分垃の特にす
そのに圓たる倧きな孔埄の郚分が䞍郜合ずな぀お
来た。そしお、このような倧きな孔がどうしお存
圚するのか、劂䜕にしおこのような孔の数を少な
くするこずがでできるのかが倧きな問題ずな぀お
来た。 膜衚面の分離に䞎かる局の厚さが、10ÎŒm以䞋
曎には1ÎŒm以䞋にな぀おくるず、最早そこに存圚
するゎミが無芖できなくなり、ゎミのある郚分が
ピンホヌルずなり、このピンホヌルが分離性を悪
くする倧きな原因である。 しかし、䟋えば、単䞀の原液からの玡糞、平膜
の補膜、溶融玡糞に至るたで、ポリマヌ䞭に含た
れるゎミ、䞍玔物の数は非垞に倚い。これらのゎ
ミ、䞍玔物を含んだポリマヌから補膜する堎合、
理想的には、ポリマヌ溶液は補膜しようずしおい
る膜の平均孔埄よりも倧きいゎミ、䞍玔物を含ん
ではならない。しかしながら珟実問題ずしお1ÎŒm
以䞋のゎミを陀去するのは、ポリマヌ溶液の粘床
が倧きく実際には濟過圧力が倧きくな぀お来るの
で難しい。況しお0.1ÎŒmのものずもなるず手軜な
方法で陀去する方法はないず蚀える。 本発明は、これらの問題を鋭意研究した結果、
支持䜓倚孔性䞭空糞に平均孔埄0.5ÎŒm以䞋のもの
を甚いるこずにより、コヌテむング液䞭に含たれ
る所望の倧きさのゎミを取り去り、所望の濃床に
濃瞮した埌、所望の分画分子量を有する耇合膜䞭
空糞を埗るこずが出来、本発明を成すに至぀た。 〔問題点を解決するための手段〕 即ち、本発明は、 (1) 支持䜓倚孔性䞭空糞の片偎衚面に、非溶媒を
含むポリマヌ垌薄溶液をコヌテむングし、コヌ
テむング液を支持䜓倚孔膜䞭に保持させた埌、
加熱された䞍掻性気流䞭でコヌテむング液を濃
瞮した埌、凝固液ず接觊させるこずによりコヌ
テむング材料を凝固させるこずを特城ずする耇
合膜補膜方法。 (2) 支持䜓倚孔性䞭空糞の片偎衚面に、非溶媒を
含むポリマヌ垌薄溶液をコヌテむングし、コヌ
テむング液を支持䜓倚孔膜䞭に保持させた埌、
加熱䞍掻性気䜓により、溶媒を蒞発させるこず
を特城ずする耇合膜補膜方法。 に関するものである。 以䞋に本発明を詳现に説明する。 本発明における支持䜓䞭空糞は、走査型電子顕
埮鏡により芳察される平均孔埄0.5ÎŒm以䞋、奜た
しくは0.1ÎŒm以䞋で、か぀、分画分子量8000以䞊
で、空孔率10〜80のものであれば䜕れも甚い埗
る。 孔埄が0.5ÎŒmを超える支持䜓䞭空糞は、䞀般に
耐圧力性が匱くなり、か぀、コヌテむングの際コ
ヌテむング溶液䞭に含たれる倚数のゎミで0.5ÎŒm
以䞋のものを取り蟌むために、無欠陥のコヌテむ
ング膜を䜜り難いので奜たしくない。䞀方分画分
子量1000以䞋のものは、支持䜓の透過抵抗が倧き
く、埗られる耇合膜の透過性が小さくなり奜たし
くない。 支持䜓䞭空糞の材質は、䞊蚘の条件を満足する
ものなら䜕でも良いが、高分子、無機材料、䟋え
ば、アルミナ、ガラス、その他金属、セラミツク
ス焌結倚孔䜓が含たれる。なかでも高分子材料が
奜たしい。 倚孔膜玠材ずしおは、高分子玠材が䞀般的に知
られおおり、その奜たしいものずしおは、ポリス
ルホン、ポリ゚ヌテルスルホン、ポリアクリロニ
トリル、ポリスチレン、ポリメチルメタアクリレ
ヌト、ポリメチルアクリレヌト、塩化ビニル、塩
化ビニリデン、塩玠化ポリ゚チレン、ポリカヌボ
ネヌト、酢酞セルロヌス、セルロヌスアセテヌト
ブチレヌト等の酢酞セルロヌス゚ステル、ナむロ
ン、ナむロン66、ナむロン、ナむロン11等の
ポリアミド、ポリベンズむミダゟヌル等のポリむ
ミド、ポリアミドむミド、ポリアセタヌル、ポリ
プニレンオキシド、ポリキシレンオキシド、ポ
リりレタン、ポリ゚チレンテレフタレヌト、ポリ
アルキルメタクリレヌト、ポリアルキルアクリレ
ヌト、ポリプニレンテレフタレヌト、ポリスル
フむド、ポリフツ化ビニル、ポリフツ化ビニリデ
ン、ポリ䞉、又は四フツ化゚チレン等のフツ玠系
ポリマヌ、ポリスルフむド、ポリフオスフアれ
ン、ポリビニルアルコヌル、ポリビニル゚ステ
ル、ポリ酢酞ビニル、ポリプロピオンビニル、ポ
リビニルピリゞン、ポリカルボゞむミド、ポリア
セチレン、ポリトリメチルシリルプロピレン等の
トリメチルシリル基を持぀ポリアセチレン誘導
䜓、次の化孊匏
[Industrial Field of Application] The present invention relates to a method for producing a composite membrane for liquid separation for separating at least one type of liquid molecule from a liquid mixture. [Prior art and its problems] Microfilter ultrafiltration membranes, reverse osmosis membranes, alcohol separation membranes, etc. have been developed using various membrane manufacturing methods, but as the molecular weight cutoff of the membranes becomes smaller, Also, the more precise the filtration, the more inconvenient the large pore diameter portion, especially at the base of the pore size distribution. The question of why such large holes exist and how the number of such holes can be reduced has become a major problem. When the thickness of the layer that contributes to separation on the membrane surface becomes less than 10 ÎŒm or even less than 1 ÎŒm, the dust present there can no longer be ignored, and the part with the dust becomes a pinhole, and this pinhole causes separation. It is a major cause of bad sex. However, the number of dust and impurities contained in the polymer is extremely large, for example, from spinning from a single stock solution to forming a flat membrane to melt spinning. When forming a film from a polymer containing these dusts and impurities,
Ideally, the polymer solution should not contain dirt or impurities that are larger than the average pore size of the membrane to be formed. However, as a practical matter, 1ÎŒm
It is difficult to remove the following dirt because the viscosity of the polymer solution is high and the filtration pressure actually increases. However, when it comes to particles of 0.1 ÎŒm, there is no easy way to remove them. The present invention was developed as a result of intensive research into these problems.
By using a support porous hollow fiber with an average pore diameter of 0.5 ÎŒm or less, dust of a desired size contained in the coating liquid is removed, concentrated to a desired concentration, and then a composite having a desired molecular weight cut-off is formed. It was possible to obtain membrane hollow fibers, and the present invention was completed. [Means for Solving the Problems] That is, the present invention provides the following steps: (1) One surface of a porous hollow fiber support is coated with a dilute polymer solution containing a non-solvent, and the coating liquid is introduced into the porous membrane support. After holding
A method for forming a composite membrane, which comprises concentrating a coating liquid in a heated inert air stream and then coagulating the coating material by bringing it into contact with a coagulation liquid. (2) After coating one surface of the porous hollow fiber support with a dilute polymer solution containing a non-solvent and retaining the coating liquid in the porous membrane support,
A composite membrane forming method characterized by evaporating a solvent using heated inert gas. It is related to. The present invention will be explained in detail below. The hollow fiber support in the present invention may have an average pore diameter of 0.5 ÎŒm or less, preferably 0.1 ÎŒm or less, as observed by a scanning electron microscope, a molecular weight cut-off of 8000 or more, and a porosity of 10 to 80%. Any of these can be used. Support hollow fibers with a pore size exceeding 0.5 ÎŒm generally have weak pressure resistance, and during coating, a large amount of dust contained in the coating solution
This is not preferable because it is difficult to create a defect-free coating film because it incorporates the following: On the other hand, a molecular weight cut-off of 1000 or less is not preferred because the permeation resistance of the support is high and the permeability of the resulting composite membrane is low. The hollow fiber support may be made of any material that satisfies the above conditions, and includes polymers, inorganic materials such as alumina, glass, other metals, and sintered porous ceramics. Among these, polymeric materials are preferred. Polymer materials are generally known as porous membrane materials, and preferred examples include polysulfone, polyethersulfone, polyacrylonitrile, polystyrene, polymethyl methacrylate, polymethyl acrylate, vinyl chloride, vinylidene chloride, Chlorinated polyethylene, polycarbonate, cellulose acetate esters such as cellulose acetate and cellulose acetate butyrate, polyamides such as nylon 6, nylon 66, nylon 4, and nylon 11, polyimides such as polybenzimidazole, polyamideimide, polyacetal, polyphenylene oxide , polyxylene oxide, polyurethane, polyethylene terephthalate, polyalkyl methacrylate, polyalkyl acrylate, polyphenylene terephthalate, polysulfide, polyvinyl fluoride, polyvinylidene fluoride, polytri- or tetrafluoroethylene, and other fluorine-based polymers, polysulfide, Polyacetylene derivatives with trimethylsilyl groups such as polyphosphazene, polyvinyl alcohol, polyvinyl ester, polyvinyl acetate, polypropion vinyl, polyvinylpyridine, polycarbodiimide, polyacetylene, polytrimethylsilylpropylene, etc., with the following chemical formula:

【匏】䜆し、R1、R2は、 トリメチルシリル基SiCH33、プニル基、
メチル基、゚チル基、プロピル基等の脂肪族眮換
基であるの繰り返し単䜍を持぀ポリマヌ、又、
これずゞトリメチルシリルゞ゚チニルベンれン、
ゞメチルプニル゚チルシラン等ずの共重合䜓、
及びこれらの架橋を䞀郚含むもの含たれる。曎
に、前蚘ポリマヌを反埩単䜍ずしお持぀ブロツク
ポリマヌ及び前蚘のものを䞻骚栌鎖に持぀ブロツ
クポリマヌ、前蚘すべおのポリマヌずポリマヌに
ハロゲン基−、−Cl、−Br、−、メチル、
゚チル、プロピル、−COOH、−SO3H、−NH4 +等
の眮換基を導入した誘導䜓、たたゞビニルベンれ
ンによる架橋物も含たれる。又、前蚘ポリマヌの
異皮組合せによる混合物も含たれる。 曎に奜たしい䟋ずしおは、無機埮粒䜓を混合し
お、公知の高分子溶融成圢手段を甚いお、䞭空糞
等に成圢した埌、適圓な枩床条件で或る皋床延䌞
する方法、或いは高分子ず無機埮粒䜓ず曎に適圓
な有機液䜓を混合しお、公知の高分子溶媒成圢技
術を甚いお、䞭空状態に成圢した埌、該成圢物か
ら有機液䜓を抜出する方法などにより補造される
ものである。これらの物及びその補造法の䞀䟋
は、特開昭52−70988号、特開昭52−156776号等
の公報に開瀺されおいる。 これらの無機埮粒䜓配合高分子倚孔膜にあ぀お
は、無機埮粒䜓の量は10重量〜80重量である
こずが望たしいたしい。10重量未満では、可塑
剀が倚くか぀高分子䞭に均䞀分散しおも連通した
现孔になりにくく、実甚的な倚孔膜ずはならな
い。又80重量を超すず、膜ずしおの匷床が䜎く
実甚的な倚孔膜ずはなり埗ない。 無機埮粒䜓の䟋ずしおは、カヌボンブラツク、
酞化珪玠、珪酞カルシりム、珪酞アルミニりム、
酞化アルミニりム、酞化チタン、カオリンクレ
ヌ、炭酞カルシりム、炭酞マグネシりム、ケむ゜
り土、タルク、硫酞バリりム、マむカ、アスベス
ト等があり、それらの単独又はその皮以䞊の混
合物を甚いるこずもできる。曎に本発明に甚いら
れる無機埮粒䜓の粒子圢状ずしおは、特に限定さ
れるものではないが、平均粒埄0.005〜1ÎŒm、比
衚面積が30〜800m2の埮粒子状、又は倚孔性
粒状のものが均䞀で優れた性胜の無機埮粒䜓配合
高分子倚孔膜を埗る堎合に奜たしいものずなる。 無機埮粒䜓配合高分子倚孔膜を構成する高分子
ずしおは、特に限定されるものではないが、䟋え
ば、゚チレン、プロピレン、ブテン−等の重合
䜓、又はこれらの䞀぀又は二぀以䞊を䞻芁成分ず
しお含有する共重合䜓のようなポリオレフむン系
暹脂、フツ化ビニル、フツ化ビニリデン、䞉フツ
化゚チレン或いは四フツ化゚チレン等の重合䜓な
いしはこれらを構成成分ずしお含む共重合䜓等の
矀からなるフツ玠系暹脂、ポリ゚チレンテレフタ
レヌトやポリブチレンテレフタレヌトのようなポ
リ゚ステル系暹脂、ポリアミド系暹脂、ポリスチ
レン系暹脂、ポリ塩化ビニル及びその他抌出成圢
可胜な倚くの熱可塑性暹脂であり、それらの単独
又は皮以䞊の暹脂の混合物から遞ぶこずができ
る。 曎に成圢埌にそれらの暹脂を凊理し、フツ玠、
塩玠、臭玠のようなハロゲンやヒドロキシル基、
アルコキシ基、アシル基、アミド基、スルホン基
のような官胜基を付加するこずも可胜である。 無機埮粒䜓配合高分子倚孔膜を補造するのに特
に奜たしい高分子の䟋ずしおは、ポリオレフむン
系暹脂及びフツ玠系暹脂が挙げられる。䜎密床ポ
リ゚チレンから高密床ポリ゚チレンにわたる皮々
のポリ゚チレン、ポリプロピレン、又はそれらの
共重合䜓は匷床、耐薬品性、可撓性等に優れおお
り、無機埮粒䜓ずの混合、混緎が容易であり、埗
られた混合物から通垞の成圢加工手段により極め
お容易にシヌト、フむルム及び䞭空糞等が成圢で
きる。フツ玠系暹脂はポリオレフむン系暹脂に比
し、䞀局耐薬品性、匷床及び耐熱性においお優れ
おいる。フツ玠系暹脂の䟋ずしおは、四フツ化゚
チレン−六フツ化プロピレン共重合䜓、四フツ化
゚チレン−パヌフルオロアルコキシ゚チレン共重
合䜓、ポリ䞉フツ化゚チレン暹脂、四フツ化゚チ
レン−゚チレン共重合䜓やポリフツ化ビニリデン
暹脂がある。 本発明における無機埮粒䜓配合高分子倚孔膜
は、膜䞭の高分子ず無機埮粒子の界面及び又は
無機埮粒子間に平均孔埄0.5ÎŒm以䞋、奜たしくは
0.1ÎŒm、曎に奜たしくくは0.07ÎŒm以䞋の埮现な空
隙によ぀お網状構造の倚孔性が付䞎されおいる。
本発明においおは、かかる埮现な平均孔系の倚孔
膜を甚いるこずが極めお望たしい。このような無
機埮粒䜓配合高分子倚孔膜を甚いこずの有甚性は
次のコヌテむング膜圢成過皋においおも芋られ
る。 高分子の薄局を倚孔性支持膜䞊に圢成させる方
法ずしおは、圓該高分子を適圓な溶媒に溶解させ
た溶液を公知の手段を甚いお倚孔膜䞊に薄くコヌ
テむング積局した埌、溶媒を蒞発陀去するの
が実甚的である。無機埮粒䜓配合倚孔膜は、無機
埮粒䜓の存圚により、高分子液に極めお濡れ易く
な぀おいるので、該高分子溶液を薄く、か぀比范
的䞀定の厚さで、コヌテむングするこずが可胜に
なる。曎に、無機埮粒䜓配合高分子倚孔膜の空孔
は䞻ずしお無機埮粒子の間隙からなる埮现な網状
構造をなしおいるため、コヌテむングされた前蚘
高分子溶液䞭の溶媒は衚面から蒞発するだけでな
く、無機埮粒子間隙の網状構造を通しお極めお速
やかに浞透し裏面からも蒞発陀去さる。その結果
圢成される高分子薄膜は、空孔内郚ぞの入り蟌み
が少なく比范的均䞀な厚さでか぀厚さ方向にも均
質な極薄膜ずなる。曎に又無機埮粒䜓ずコヌテむ
ング局ずの間のアンカヌ効果による支持膜ず気䜓
分離掻性薄膜ずの接着性向䞊、或いは支持膜ずし
おの倚孔膜の苛酷な枩床、圧力等の䜿甚条件䞋で
の耐圧密性の向䞊など、気䜓分離膜ずしお実甚䞊
重芁な改善がなされる。このような意味から、無
機埮粒䜓の配合は極めお効果の高い重芁な芁件で
ある。 又、無機埮粒䜓配合高分子倚孔膜をアルカリ氎
溶液䞭に浞挬する等により、無機物を溶解陀去
し、空孔床を増倧させたものも同じように䜿甚す
るこずができる。 本発明におけるコテむング材料は、ポリマヌで
あり、倚孔性支持䜓の䞭空糞を溶解させないよう
な溶媒を有するものに限られる。皮々の暹脂が甚
いられ、その代衚的なものずしおは、ポリスルホ
ン系暹脂、セルロヌスアセテヌト、ポリフツ化ビ
ニル、ポリ゚チレンテレフタレヌトで代衚さるポ
リ゚ステル系暹脂、ポリアミドむミド系暹脂、脂
肪族又は芳銙族ポリアミド系暹脂、ポリカヌボネ
ヌト系暹脂、ポリむミド系暹脂、ポリプニレン
゚ヌテル系暹脂、ブタゞ゚ン−アクリロニトリル
系共重合䜓等がある。この䞭でもポリスルホン系
暹脂、ポリプニレン゚ヌテル系暹脂が溶液コヌ
テむング時の薄膜の圢成し易さにおいお良奜であ
るため奜たしいものずなる。 䜿甚し埗るポリスルホンの䞭には、反埩構造単
䜍 匏䞭、及びR′は同䞀又は異な぀おいおも
よい脂肪族又は芳銙族ヒドロカルビル含有郚分、
䟋えば〜玄40個の炭玠原子を含有するものであ
り、スルホニル基䞭の硫黄は脂肪族又は芳銙族炭
玠原子に結合しおいるを含む重合䜓骚栌を有す
るものがある。そしおこのポリスルホンは薄膜圢
成に適圓な10000以䞊の平均分子量を有しおいる
のが奜たしい。このポリスルホンを亀叉結合させ
ない堎合には、このポリスルホンの分子量は䞀般
に玄500000以䞋である。及びは炭玠−炭玠結
合によ぀おか或いは皮々の結合基、䟋えば
[Formula] (where R 1 and R 2 are trimethylsilyl group (Si(CH 3 ) 3 ), phenyl group,
Polymers having repeating units of aliphatic substituents such as methyl, ethyl, and propyl groups, and
This and ditrimethylsilyldiethynylbenzene,
Copolymer with dimethylphenylethylsilane, etc.
and those containing some of these crosslinks. Further, block polymers having the above polymers as repeating units, block polymers having the above polymers as main backbone chains, all of the above polymers and polymers have halogen groups (-F, -Cl, -Br, -I), methyl,
It also includes derivatives into which substituents such as ethyl, propyl, -COOH, -SO3H , and -NH4 + have been introduced, and crosslinked products with divinylbenzene. Also included are mixtures of different combinations of the above polymers. More preferable examples include a method in which inorganic fine particles are mixed and formed into hollow fibers using a known polymer melt molding method, and then stretched to a certain extent under appropriate temperature conditions, or a method in which a polymer and an inorganic It is manufactured by mixing the fine particles and an appropriate organic liquid, molding the mixture into a hollow state using a known polymer solvent molding technique, and then extracting the organic liquid from the molded product. Examples of these products and their manufacturing methods are disclosed in publications such as JP-A-52-70988 and JP-A-52-156776. In these porous polymer membranes containing inorganic fine particles, the amount of inorganic fine particles is preferably 10% to 80% by weight. If it is less than 10% by weight, the amount of plasticizer is large and even if it is uniformly dispersed in the polymer, it is difficult to form continuous pores, and a practical porous membrane cannot be obtained. If it exceeds 80% by weight, the strength of the membrane will be low and it will not be possible to obtain a practical porous membrane. Examples of inorganic fine particles include carbon black,
silicon oxide, calcium silicate, aluminum silicate,
Examples include aluminum oxide, titanium oxide, kaolin clay, calcium carbonate, magnesium carbonate, diatomaceous earth, talc, barium sulfate, mica, and asbestos, and these may be used alone or in a mixture of two or more thereof. Further, the particle shape of the inorganic fine particles used in the present invention is not particularly limited, but may be fine particles with an average particle size of 0.005 to 1 ÎŒm and a specific surface area of 30 to 800 m 2 /g, or porous particles. This is preferable when obtaining a porous polymer membrane containing inorganic fine particles with uniform properties and excellent performance. The polymer constituting the porous polymer membrane containing inorganic fine particles is not particularly limited, but for example, polymers such as ethylene, propylene, butene-1, etc., or one or more of these as the main Consisting of a group of polyolefin resins such as copolymers contained as components, polymers such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, or tetrafluoroethylene, or copolymers containing these as constituent components. Fluorocarbon resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins, polystyrene resins, polyvinyl chloride, and many other thermoplastic resins that can be extruded, either alone or in combination. You can choose from a mixture of resins. Furthermore, after molding, these resins are processed to produce fluorine,
halogens and hydroxyl groups such as chlorine and bromine,
It is also possible to add functional groups such as alkoxy groups, acyl groups, amide groups, and sulfone groups. Examples of particularly preferable polymers for producing a porous polymer membrane containing inorganic fine particles include polyolefin resins and fluorine resins. Various polyethylenes, polypropylenes, and copolymers thereof, ranging from low-density polyethylene to high-density polyethylene, have excellent strength, chemical resistance, flexibility, etc., and are easy to mix and knead with inorganic fine particles. Sheets, films, hollow fibers, etc. can be formed very easily from the resulting mixture by ordinary forming processing means. Fluorine-based resins are superior to polyolefin-based resins in terms of chemical resistance, strength, and heat resistance. Examples of fluorocarbon resins include tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polytrifluoroethylene resin, and tetrafluoroethylene-ethylene copolymer. There are polymerized and polyvinylidene resins. The porous polymer membrane containing inorganic fine particles in the present invention has an average pore diameter of 0.5 ÎŒm or less, preferably at the interface between the polymer and inorganic fine particles in the membrane and/or between the inorganic fine particles.
The porosity of the network structure is imparted by fine voids of 0.1 ÎŒm, more preferably 0.07 ÎŒm or less.
In the present invention, it is extremely desirable to use a porous membrane having such a fine average pore system. The usefulness of using such a porous polymer membrane containing inorganic fine particles can also be seen in the following coating film formation process. A method for forming a thin layer of a polymer on a porous support membrane is to thinly coat (laminate) a solution of the polymer dissolved in an appropriate solvent on the porous membrane using known means, and then It is practical to remove it by evaporation. The presence of inorganic fine particles makes the porous film containing inorganic fine particles extremely wettable by the polymer solution, making it possible to coat the polymer solution in a thin and relatively constant thickness. . Furthermore, since the pores of the porous polymer membrane containing inorganic fine particles form a fine network structure consisting mainly of gaps between the inorganic fine particles, the solvent in the coated polymer solution not only evaporates from the surface; It penetrates extremely quickly through the network structure of the gaps between the inorganic particles and is evaporated from the back side. The resulting thin polymer film is an extremely thin film that has a relatively uniform thickness with little penetration into the pores and is also homogeneous in the thickness direction. Furthermore, the anchor effect between the inorganic fine particles and the coating layer improves the adhesion between the support membrane and the gas separation active thin membrane, or the porous membrane used as the support membrane can withstand compression under severe operating conditions such as temperature and pressure. This results in important practical improvements for gas separation membranes, such as improved properties. In this sense, the blending of inorganic fine particles is an important requirement for extremely high effectiveness. Alternatively, a porous polymer membrane containing inorganic fine particles may be immersed in an alkaline aqueous solution to dissolve and remove the inorganic matter, thereby increasing the porosity and may be used in the same manner. The coating material in the present invention is limited to a polymer and a solvent that does not dissolve the hollow fibers of the porous support. Various resins are used, and representative examples include polysulfone resins, cellulose acetate, polyvinyl fluoride, polyester resins represented by polyethylene terephthalate, polyamideimide resins, aliphatic or aromatic polyamide resins, and polycarbonates. resins, polyimide resins, polyphenylene ether resins, butadiene-acrylonitrile copolymers, and the like. Among these, polysulfone resins and polyphenylene ether resins are preferred because they are easy to form a thin film during solution coating. Some of the polysulfones that can be used include repeating structural units. (wherein R and R′ may be the same or different aliphatic or aromatic hydrocarbyl-containing moieties,
For example, some have polymeric backbones containing from 1 to about 40 carbon atoms, with the sulfur in the sulfonyl group attached to an aliphatic or aromatic carbon atom. This polysulfone preferably has an average molecular weight of 10,000 or more, which is suitable for forming a thin film. When the polysulfone is not cross-linked, the molecular weight of the polysulfone is generally less than about 500,000. R and R may be linked by carbon-carbon bonds or by various linking groups, e.g.

【匏】【formula】 【匏】【formula】

【匏】【formula】

【匏】の基その他によ぀お結合させるこず ができる。特に有利なポリスルホンは、及び
R′の少なくずも䞀方が芳銙族ヒドロカルビル含
有郚分を包含するものであり、そしおそのスルホ
ニル郚分は少なくずも個の芳銙族炭玠原子に結
合しおいる。 䞀般的芳銙族ヒドロカルビル含有郚分ずしお
は、プニレン及び眮換プニレン郚分、ビスフ
゚ニル及び眮換ビスプニル郚分、匏 の栞を有するビスプニルメタン及び眮換ビスフ
゚ニルメタン郚分、匏 匏䞭は酞玠又は硫黄である。の眮換及び
未眮換ビスプニル゚ヌテルその他が挙げられ
る。前蚘のビスプニルメタン及びビスプニル
゚ヌテル郚分では、R1〜R10は同䞀又は異な぀お
いおもよく、構造 〔匏䞭X1及びX2は同䞀又は異なる氎玠又はハ
ロゲンフツ玠、塩玠、臭玠であり、は又
は〜玄の敎数であり、は氎玠、ハロゲン
フツ玠、塩玠、臭玠、−−qR11匏䞭は
又はであり、は−−、−−、−SS−、
It can be bonded by a group of [Formula] or the like. Particularly advantageous polysulfones are R and
At least one of R' includes an aromatic hydrocarbyl-containing moiety and the sulfonyl moiety is bonded to at least one aromatic carbon atom. Common aromatic hydrocarbyl-containing moieties include phenylene and substituted phenylene moieties, bisphenyl and substituted bisphenyl moieties, formula Bisphenylmethane and substituted bisphenylmethane moieties with a nucleus of, formula Substituted and unsubstituted bisphenyl ethers (wherein X is oxygen or sulfur) and others are included. In the above bisphenylmethane and bisphenyl ether moieties, R 1 to R 10 may be the same or different, and the structure [In the formula, X 1 and X 2 are the same or different hydrogen or halogen (fluorine, chlorine, bromine), p is 0 or an integer from 1 to about 6, and Z is hydrogen, halogen (fluorine, chlorine, Bromine), (-Y) -q R 11 (where q is 0
or 1, and Y is -O-, -S-, -SS-,

【匏】又は[Formula] or

【匏】であり、R11は氎玠䟋 えば〜玄個の炭玠原子を含有する眮換又は未
眮換アルキル、又は䟋えば玄〜15個の炭玠原子
を含有する単環性又は二環性の眮換又は未眮換ア
リヌル基である、窒玠、酞玠及び硫黄の少なく
ずも䞀぀である耇玠原子を有し、玄〜15個の環
原子を有する単環性又は二環性である耇玠環、ス
ルフアヌト及びスルホノ、特に䜎玚アルキルを含
有するか又は単環性又は二環性アリヌルを含有す
るスルフアヌト及びスルホノ、燐含有郚分䟋えば
ホスフむノ及びホスフアヌト及びホスホノ、特に
䜎玚アルキルを含有するか又は単環たたは二環性
アリヌルを含有するホスフアヌト及びホスホノ、
第䞀玚、第二玚、第䞉玚及び第四玚アミンその
第二玚、第䞉玚及び第四玚アミンは埀々にしお䜎
玚アルキル又は単環又は二環性アリヌル郚分を含
有しおいるを含むアミン、む゜チオりレむル、
チオりレむル、グアニゞル、トリアルキルシリ
ル、トリアルキルスタニル、ゞアルキルスチビニ
ルその他である〕を有する眮換基を衚しおいる。
ビスプニルメタン及びビスプニル゚ヌテル郚
分のプニル基䞊の眮換基はオルト䜍にあるこず
が倚い。即ち、R7〜R10は氎玠である。芳銙族ヒ
ドロカルビル含有郚分を有するポリスルホンは、
䞀般に良奜な熱安定性を有しおおり、化孊詊薬の
攻撃に抵抗性であり、匷靭さず可撓性の優れた組
合せを有しおいる。有甚なポリスルホンは、ナニ
オン・カヌバむド瀟より䟋えば「ナヌデル−
1700」及び「ナヌデル−3500」の商品名で販売
されおいる。これら䞡補品は、䞀般匏 匏䞭、重合床を衚すは玄50〜80であるの
線状鎖を有しおいる。ポリアリレン゚ヌテル
スルホンも又有利である。 構造 を有し、ICI瀟から「100P」の商品名で販売さ
れ、入手可胜なポリ゚ヌテルスルホンも又有甚で
ある。曎にその他の有甚なポリスルホンは、䟋え
ば亀叉結合、グラフト化、四玚化その他による重
合䜓の倉性凊理によ぀お補造するこずができる。 ポリプチレン゚ヌテルずしおは、䞋蚘䞀般匏 匏䞭、R1及びR3は独立に炭玠数〜のア
ルキル基若しくはハロゲン原子を瀺し、R2は氎
玠、炭玠数〜のアルキル基若しくはハロゲン
原子を瀺し、は50〜300、奜たしくは〜280、
曎に奜たしくは70〜250の範囲の敎数である。 で衚されるものが奜適に䜿甚され埗る。 䞊蚘䞀般匏で瀺されるポリプニレン゚ヌテル
の代衚䟋ずしおは、ポリ−ゞメチルプ
ニレン−−゚ヌテル、ポリ−ゞ
゚チルプニレン−−゚ヌテル、ポリ
−メチル−−゚チルプニレン−−
゚ヌテル、ポリ−メチル−−クロルプ
ニレン−−゚ヌテル、ポリ−ゞ
クロルプニレン−−゚ヌテル、ポリ
−ゞ−−プロピルプニレン−
−゚ヌテル、ポリ−メチル−−−ブチ
ルプニレン−−゚ヌテル、ポリ−
メチル−−ブロムプニレン−−゚ヌテ
ル、ポリ−トリメチルプノヌル
などが挙げられる。 曎に奜たしいものずしおは、ポリアセチレン系
暹脂がある。ポリアセチレン系暹脂ずしおは、䞋
蚘の䞀般匏
[Formula] and R 11 is hydrogen, e.g. substituted or unsubstituted alkyl containing from 1 to about 8 carbon atoms, or monocyclic or bicyclic substitution containing e.g. about 6 to 15 carbon atoms. or unsubstituted aryl groups), monocyclic or bicyclic heterocycles having a heteroatom of at least one of nitrogen, oxygen and sulfur and having about 5 to 15 ring atoms, sulfate and Sulfono, especially those containing lower alkyl or containing monocyclic or bicyclic aryls, and sulfono, phosphorus-containing moieties such as phosphino and phosphonates and phosphono, especially containing lower alkyl or containing monocyclic or bicyclic aryls. Phosphates and phosphonos containing
Primary, secondary, tertiary and quaternary amines (secondary, tertiary and quaternary amines often contain lower alkyl or monocyclic or bicyclic aryl moieties) ) containing amines, isothioureyls,
thiouryl, guanidyl, trialkylsilyl, trialkylstannyl, dialkylstivinyl, etc.
Substituents on the phenyl group of bisphenylmethane and bisphenyl ether moieties are often in the ortho position. That is, R7 to R10 are hydrogen. Polysulfones with aromatic hydrocarbyl-containing moieties are
They generally have good thermal stability, are resistant to attack by chemical reagents, and have an excellent combination of toughness and flexibility. Useful polysulfones are commercially available from Union Carbide, such as "Udel P-
1700" and "Udel P-3500." Both of these products have the general formula (In the formula, n representing the degree of polymerization is about 50 to 80.) Poly(arylene ether)
Sulfones are also advantageous. structure Also useful is polyether sulfone, available under the trade name "100P" from ICI Corporation. Still other useful polysulfones can be prepared by modification of the polymers, such as by cross-linking, grafting, quaternization, and the like. As polyphelene ether, the following general formula is used. (In the formula, R 1 and R 3 independently represent an alkyl group having 1 to 4 carbon atoms or a halogen atom, R 2 represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a halogen atom, and n is 50 to 300 , preferably 6 to 280,
More preferably, it is an integer in the range of 70 to 250. ) may be preferably used. Typical examples of polyphenylene ether represented by the above general formula include poly(2,6-dimethylphenylene-1,4-ether), poly(2,6-diethylphenylene-1,4-ether), Poly(2-methyl-6-ethylphenylene-1,4-
ether), poly(2-methyl-6-chlorophenylene-1,4-ether), poly(2,6-dichlorophenylene-1,4-ether), poly(2,6-di-n-propylphenylene) -1,4
-ether), poly(2-methyl-6-n-butylphenylene-1,4-ether), poly(2-
methyl-6-bromophenylene-1,4-ether), poly(2,3,6-trimethylphenol)
Examples include. More preferred are polyacetylene resins. For polyacetylene resin, the following general formula is used:

〔実斜䟋〕〔Example〕

以䞋に実斜䟋を瀺す。 実斜䟋  酞化珪玠ア゚ロゞル200商品名、比衚面
積175m2、平均粒埄16mΌ〕23重量ずゞオク
チルフタレヌトDOP54重量をヘンシルミ
キサヌで混合し、これに高密床ポリ゚チレン暹脂
〔Suntec −360登録商暙旭化成工業(æ ª)補〕
23重量を添加し、再床ヘンシ゚ルミキサヌで混
合した。 該混合物を䞭空糞玡糞甚ノズルから、内郚に窒
玠ガスを混入し、䞭空糞を玡糞した。圢成された
䞭空糞は、−トリクロロ゚タンクロ
ロセン䞭で分間浞挬し、DOPの抜出を行぀
た。埗られた䞭空糞の内埄、倖埄は倫々0.75mm及
び1.35mm、倚孔膜の組成は、ポリ゚チレン暹脂50
重量、埮粉珪酞50重量、倚孔膜の平均孔埄
0.02ÎŒm、空孔率58であ぀た。 次いで本䞭空糞に以䞋のコヌテむング操䜜を行
぀た。 ポリスルホンUCC瀟補コヌデル−3500、
商品名、溶媒ずしおの−メチルピロリドン、
非溶媒ずしおのテトラ゚チレングリコヌルを、
倫々5.90、重量の割合で混合しお均䞀な溶液
ずした。 溶媒枩床を25℃ずしお、倚孔性䞭空糞支持䜓の
片末端を融着しお封じ、該溶液䞭に浞挬した埌、
䞭空糞の他の未端より真空ポンプにお、䞭空糞の
内偎から倖偎にかけお、150mmHgの圧力募配を぀
けお、ポリマヌ垌薄溶液を䞭空糞倖衚面、倚孔䜓
现胞䞭に吞匕した。䜙分に付着したポリマヌ溶液
を窒玠ガスで振り萜ずした埌、120℃に加熱した
窒玠気流を30分間䞭空糞䞊に導入し、溶媒を蒞発
させた埌、䞭空糞䞊に30℃の氎を導入し、䞭空糞
䞊のポリマヌをミクロ盞分離凝固させた。 本耇合膜の分画分子量は3000で、透氎率は30
m3m2Kgcm2Dayであ぀た。 なお、䞊蚘の操䜜は氎分を嫌うため窒玠雰囲気
䞋で行぀た。 実斜䟋  実斜䟋同様な倚孔膜支持䜓を甚い、ポリ゚ヌ
テルスルホンICI補、溶媒−メチルピロリド
ン、非溶媒テトラ゚チレングリコヌルを、倫々
、90、重量の割合で混合しお均䞀な溶液ず
した。 その埌実斜䟋ず同様な操䜜でポリ゚ヌテルス
ルホンを支持䜓ポリ゚チレン倚孔性䞭空糞䞊にコ
ヌテむングした。 埗られた耇合膜の分画分子量は2000、透氎率は
40m3m2Kgm2Dayであ぀た。 実斜䟋  実斜䟋で䜿甚したず同様な支持䜓ポリ゚チレ
ン倚孔性䞭空糞で、膜䞭に包含される埮粉珪酞を
熱アルカリで溶出させ、空孔率を増倧させたもの
を甚い、該䞭空糞土にコヌテむングを行぀た。 埗られた倚孔膜の平均孔埄は0.05ÎŒm、空孔率
は65であ぀た。 ポリマヌずしおポリサルホン−3500、溶
媒ゞクロルメタン、非溶媒メタノヌルを、倫々
、90、重量の割合で混合しお均䞀な溶液ず
した埌、実斜䟋ず同様な方法で䞭空糞䞊に浞透
させた。その埌䞍溶なポリマヌ溶液を窒玠ガスを
甚いお取り去り、60℃に加熱した窒玠ガスを流し
続けるこずにより溶媒を完党に蒞発させた。 埗られた䞭空糞の平均孔埄は0.02ÎŒm、透氎率
は200m3m2Kgcm2Dayであ぀た。 実斜䟋  ポリトリメチルシリルプロピレン、溶媒ゞメチ
ルアセトアミド、非溶媒テトラ゚チレングリコヌ
ルを倫々、84、重量の割合で混合しお均䞀
にした溶媒を、実斜䟋ず同様な方法で、ポリ゚
チレン䞭空糞倚孔膜现胞内に浞透させた。䜙分な
ポリマヌを窒玠ガスにお取り去぀た埌、120℃の
窒玠ガスを30分間導入しお、溶媒を蒞発させた
埌、䞭空糞䞊に氎を導入しお、ポリマヌを凝固さ
せた。 埗られた耇合膜の分画分子量は100、透氎量は
50m2m2Kgcm2Dayであ぀た。 実斜䟋  ゞトリメチルシリル゚チニルベンれン、シ
クヘキサン溶液、非溶媒メタノヌルを、倫々
84重量の割合で混合した均䞀溶液を、実斜
䟋ず同様な方法で、旭化成工業(æ ª)補の限倖濟過
膜䞭空糞SI−商品名の倖偎衚面に浞透させ
た埌に、窒玠ガスにより䜙分なポリマヌ溶液を陀
去し、60℃の加熱窒玠ガスを限倖濟過膜衚面に導
入しお溶媒を蒞発させた。30分埌膜䞊にメタノヌ
ルを導入しおポリマヌを完党に凝固させた。 埗られた耇合膜の分画分子量は1000、透氎量は
10m3m2Kgcm2Dayであ぀た。 〔発明の効果〕 本発明の効果は次のずおり芁玄される。 (1) 䞭空糞玡糞原液を予め濟過する必芁がない。 (2) コヌテむング甚溶液は、枅浄化したたた䞍玔
物汚染がない状態で補膜できる。 (3) 埓぀お、耇合膜のピンホヌルが少ない。 (4) コヌテむング局は、支持䜓倚孔質孔䞭にあ
り、確りずアンカリングしおいるので、コヌテ
むング局を薄膜化しおも、匷床が倧である。 (5) 埓぀お、倧きなフラツクスFluxが埗ら
れる。 (6) 衚面スキン局にキズが぀いおも、衚面スキン
局が倚孔質现胞䞭に存圚するので損傷が少な
い。 (7) どんなに垌薄な溶液でも䜿甚できるため、溶
解床の小さなポリマヌもコヌテむング甚溶液に
䜿甚できる。 (8) フむルムにするずひび割れし易い性質のポリ
マヌも䜿甚できる。又、分子量が小さいもの、
フむルムを䜜り難いもの、結晶化し易いポリマ
ヌも䜿甚できる。 (9) 倚孔膜支持䜓は皮々の孔埄を持぀ものが遞
べ、コヌテむング甚溶液の枅浄床をコントロヌ
ルできる。又、コヌテむング材質ず芪和性の良
い倚孔膜支持䜓を遞べる。
Examples are shown below. Example 1 23% by weight of silicon oxide (Aerosil #200 (trade name), specific surface area 175m 2 /g, average particle size 16mΌ) and 54% by weight dioctyl phthalate (DOP) were mixed in a Henshil mixer, and this was mixed with high density Polyethylene resin [Suntec S-360 (registered trademark) manufactured by Asahi Kasei Corporation]
23% by weight was added and mixed again in the Henschel mixer. Nitrogen gas was mixed into the mixture through a hollow fiber spinning nozzle to spin hollow fibers. The formed hollow fibers were immersed in 1,1,1-trichloroethane (chlorocene) for 5 minutes to extract DOP. The inner and outer diameters of the obtained hollow fibers were 0.75 mm and 1.35 mm, respectively, and the composition of the porous membrane was polyethylene resin 50.
Weight%, fine silicic acid 50% by weight, average pore diameter of porous membrane
It was 0.02 ÎŒm and the porosity was 58%. Next, the following coating operation was performed on this hollow fiber. Polysulfone (UCC Cordel P-3500,
(trade name), N-methylpyrrolidone as a solvent,
Tetraethylene glycol as a non-solvent,
They were mixed at a ratio of 5.90% and 5% by weight, respectively, to form a uniform solution. After setting the solvent temperature to 25°C, sealing one end of the porous hollow fiber support by fusion and immersing it in the solution,
From the other end of the hollow fiber, a vacuum pump was used to create a pressure gradient of 150 mmHg from the inside to the outside of the hollow fiber, and the dilute polymer solution was sucked into the outer surface of the hollow fiber and into the cells of the porous body. After shaking off the excess polymer solution with nitrogen gas, a nitrogen stream heated to 120°C was introduced onto the hollow fiber for 30 minutes to evaporate the solvent, and then water at 30°C was introduced onto the hollow fiber. , the polymer on the hollow fiber was coagulated by microphase separation. The molecular weight cutoff of this composite membrane is 3000, and the water permeability is 30.
(m 3 /m 2 Kg/cm 2 Day). Note that the above operation was performed under a nitrogen atmosphere because water is disliked. Example 2 Using a porous membrane support similar to Example 1, polyether sulfone (manufactured by ICI), solvent N-methylpyrrolidone, and non-solvent tetraethylene glycol were mixed in proportions of 5, 90, and 5% by weight, respectively. A homogeneous solution was obtained. Thereafter, in the same manner as in Example 1, polyether sulfone was coated on the polyethylene porous hollow fiber support. The resulting composite membrane has a molecular weight cutoff of 2000 and a water permeability of
40 (m 3 /m 2 Kg/m 2 Day). Example 3 A polyethylene porous hollow fiber support similar to that used in Example 1 was used, and the porosity was increased by eluting the fine powdered silicic acid contained in the membrane with a hot alkali. I coated the soil. The resulting porous membrane had an average pore diameter of 0.05 Όm and a porosity of 65%. Polysulfone (P-3500) as a polymer, dichloromethane as a solvent, and methanol as a non-solvent were mixed in proportions of 5, 90, and 5% by weight, respectively, to form a homogeneous solution, and then applied onto a hollow fiber in the same manner as in Example 1. Infiltrated. Thereafter, the insoluble polymer solution was removed using nitrogen gas, and the solvent was completely evaporated by continuing to flow nitrogen gas heated to 60°C. The average pore diameter of the obtained hollow fibers was 0.02 Όm, and the water permeability was 200 (m 3 /m 2 Kg/cm 2 Day). Example 4 A homogeneous solvent obtained by mixing polytrimethylsilylpropylene, solvent dimethylacetamide, and non-solvent tetraethylene glycol in proportions of 8, 84, and 8% by weight, respectively, was prepared in the same manner as in Example 1 to form a porous polyethylene hollow fiber. The membrane was infiltrated into the cell. After removing excess polymer with nitrogen gas, nitrogen gas at 120°C was introduced for 30 minutes to evaporate the solvent, and then water was introduced onto the hollow fibers to solidify the polymer. The resulting composite membrane has a molecular weight cutoff of 100 and a water permeability of
50 (m 2 /m 2 Kg/cm 2 Day). Example 5 Di(trimethylsilylethynyl)benzene, cyclohexane solution, and non-solvent methanol were each mixed with 8:
A homogeneous solution mixed at a ratio of 84:8% by weight was infiltrated into the outer surface of the ultrafiltration membrane hollow fiber SI-1 (trade name) manufactured by Asahi Kasei Industries, Ltd. in the same manner as in Example 1. Afterwards, excess polymer solution was removed using nitrogen gas, and heated nitrogen gas at 60°C was introduced onto the surface of the ultrafiltration membrane to evaporate the solvent. After 30 minutes, methanol was introduced onto the membrane to completely solidify the polymer. The resulting composite membrane has a molecular weight cutoff of 1000 and a water permeability of
10 (m 3 /m 2 Kg/cm 2 Day). [Effects of the Invention] The effects of the present invention can be summarized as follows. (1) There is no need to filter the hollow fiber spinning stock solution in advance. (2) The coating solution can be used to form a film without any impurity contamination while keeping it clean. (3) Therefore, there are fewer pinholes in the composite membrane. (4) The coating layer is located in the porous pores of the support and is firmly anchored, so even if the coating layer is made thin, it has high strength. (5) Therefore, a large flux can be obtained. (6) Even if the surface skin layer is scratched, there is little damage because the surface skin layer exists within the porous cells. (7) Since any dilute solution can be used, even polymers with low solubility can be used in coating solutions. (8) Polymers that tend to crack easily when made into films can also be used. Also, those with a small molecular weight,
Polymers that are difficult to form into films and that are easily crystallized can also be used. (9) Porous membrane supports with various pore sizes can be selected to control the cleanliness of the coating solution. In addition, a porous membrane support that has good affinity with the coating material can be selected.

Claims (1)

【特蚱請求の範囲】  支持䜓倚孔性䞭空糞の片偎衚面に、非溶媒を
含むポリマヌ垌薄溶液をコヌテむングし、コヌテ
むング液を支持䜓倚孔膜䞭に保持させた埌、加熱
された䞍掻性気流䞭でコヌテむング液を濃瞮した
埌、凝固液ず接觊させるこずによりコヌテむング
材料を凝固させるこずを特城ずする耇合膜補膜方
法。  支持䜓倚孔性䞭空糞の片偎衚面に、非溶媒を
含むポリマヌ垌薄溶液をコヌテむングし、コヌテ
むング液を支持䜓倚孔膜䞭に保持させた埌、加熱
䞍掻性気䜓により、溶媒を蒞発させるこずを特城
ずする耇合膜補膜方法。
[Scope of Claims] 1 One surface of a porous hollow fiber support is coated with a dilute polymer solution containing a non-solvent, and the coating solution is retained in the porous support membrane, and then heated in a heated inert air stream. A method for forming a composite membrane, characterized in that the coating material is solidified by concentrating the coating liquid and then bringing the coating material into contact with a coagulation liquid. 2. One surface of the porous hollow fiber support is coated with a dilute polymer solution containing a non-solvent, and after the coating liquid is retained in the porous support membrane, the solvent is evaporated using heated inert gas. Composite membrane manufacturing method.
JP59223370A 1984-10-24 1984-10-24 Formation of novel composite membrane Granted JPS61101211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223370A JPS61101211A (en) 1984-10-24 1984-10-24 Formation of novel composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223370A JPS61101211A (en) 1984-10-24 1984-10-24 Formation of novel composite membrane

Publications (2)

Publication Number Publication Date
JPS61101211A JPS61101211A (en) 1986-05-20
JPH0479685B2 true JPH0479685B2 (en) 1992-12-16

Family

ID=16797076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223370A Granted JPS61101211A (en) 1984-10-24 1984-10-24 Formation of novel composite membrane

Country Status (1)

Country Link
JP (1) JPS61101211A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101851361B (en) * 2010-05-25 2012-05-09 南昌航空倧孊 Hollow fiber damping material of nitrile butadiene rubber and preparation method thereof
US9776142B2 (en) * 2014-02-28 2017-10-03 Pall Corporation Porous polymeric membrane with high void volume

Also Published As

Publication number Publication date
JPS61101211A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH09136985A (en) Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
KR900002095B1 (en) Production of porous membrane
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JPH051048B2 (en)
JP3992345B2 (en) Separation membrane and olefin separation method using the same
JPH02160026A (en) Hydrophilic separation membrane
JPH0479685B2 (en)
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JPH0479686B2 (en)
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPH03258330A (en) Porous hollow fiber membrane
JPH0832295B2 (en) Method for producing composite hollow fiber membrane
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH0468010B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
WO2020127456A1 (en) Porous membranes for high pressure filtration
JPS61402A (en) Semipermeable membrane for separation
JP2022514036A (en) Porous membrane for high pressure filtration
WO2019016177A1 (en) Membranes comprising fluorinated polymers and use thereof
JP2516007B2 (en) Method for manufacturing separation membrane
JPS63258603A (en) Aromatic polymer membrane
JPS6329562B2 (en)
JPH0696105B2 (en) Method for producing aromatic polysulfone hollow fiber membrane
JP2505496B2 (en) Semipermeable membrane and manufacturing method thereof
JPS6397666A (en) Low-temperature soluble type stock solution and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees