JPH0479276A - Manufacture of superconducting element - Google Patents

Manufacture of superconducting element

Info

Publication number
JPH0479276A
JPH0479276A JP2193757A JP19375790A JPH0479276A JP H0479276 A JPH0479276 A JP H0479276A JP 2193757 A JP2193757 A JP 2193757A JP 19375790 A JP19375790 A JP 19375790A JP H0479276 A JPH0479276 A JP H0479276A
Authority
JP
Japan
Prior art keywords
temperature
oxide superconductor
bonding
substrate
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193757A
Other languages
Japanese (ja)
Inventor
Koji Yamano
耕治 山野
Masanobu Yoshisato
善里 順信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2193757A priority Critical patent/JPH0479276A/en
Publication of JPH0479276A publication Critical patent/JPH0479276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To stabilize the adhesion of a substrate and an adhesive by using, as the adhesive, molten glass that contains PbO and has the sealing temperature higher than the crystallization temperature of an oxide superconductor and by setting the junction temperature between the sealing temperature and the crystallization temp. CONSTITUTION:A frit glass-made adhesive 2 is applied on a substrate 1 which is made of crystallized glass. Frit glass to be used as the adhesive 2 should contain PbO and have the sealing temperature of 400 deg.C. At the junction temperature 410 deg.C, an oxide superconductor 3 whose crystallization temperature is 550 deg.C is adhered to the substrate 1 in an oxygen atmosphere. After that, the oxide superconductor 3 is polished and refined. At the time of junction of the oxide superconductor and the substrate, the only requirement for the junction temperature is that the junction temperature is ranged from the sealing temperature of the adhesive 2 to the crystallization temperature of the oxide superconductor 3. In the junction process, the junction temperature and the heating time required for the junction are regulated to form a non-superconductive phase of the desired thickness in a superconductive phase. Consequently, a highly reliable element having good element characteristics can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体を用いた電磁波センサ、磁気
センサ等の各種センサ及びトランジスタ等の各種エレク
トロニクス素子等における超電導素子を作製する方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing superconducting elements in various sensors such as electromagnetic wave sensors and magnetic sensors, and various electronic elements such as transistors, using oxide superconductors. .

〔従来の技術〕[Conventional technology]

従来のNb系等の超電導体を用いた超電導素子は、薄膜
積層構造によりSNS接合、 SIS接合を形成してい
るものが多い。酸化物超電導体では、平滑な表面は得ら
れにくく、また酸化物超電導体と反応しないような常電
導材料及び絶縁材料が発見されていないので、薄膜積層
構造による良好なSNS接合、 515接合を有する超
電導素子は作製されていない。一方、超電導体バルクを
用いた超電導素子では、基板とこの超電導体バルクとを
一般的にエポキシ系の樹脂により接合しているので、高
温での作製工程及び例えば液体窒素による低温環境での
素子特性の測定というヒートサイクル中に素子内部にク
ラック等が入って信転性が高い素子を得ることができな
い。
Many conventional superconducting elements using superconductors such as Nb-based superconductors form SNS junctions and SIS junctions using thin film laminated structures. With oxide superconductors, it is difficult to obtain a smooth surface, and no normal conducting or insulating material that does not react with oxide superconductors has been discovered. No superconducting elements have been produced. On the other hand, in a superconducting element using a superconductor bulk, the substrate and the superconductor bulk are generally bonded using an epoxy resin. During the heat cycle of measurement, cracks or the like develop inside the element, making it impossible to obtain an element with high reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、酸化物電導体を用いた超電導素子にあっ
ては、srs接合、 SNS接合の実現は困難であり、
超電導体を研磨及び微細加工して素子特性が良好な超電
導素子を作製することができないという問題があった。
As mentioned above, in superconducting elements using oxide conductors, it is difficult to realize SRS junctions and SNS junctions.
There has been a problem in that a superconducting element with good element characteristics cannot be manufactured by polishing and finely processing a superconductor.

本発明はかかる事情に鑑みてなされたものであり、超電
導体と基板との接合が安定し、しかも従来困難であった
超電導体の研磨及び微細加工が容易であり、信顛性が高
く素子特性が良好な超電導素子を作製でき、SIS接合
、 SNS接合の実現も可能である超電導素子の 製方
法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides stable bonding between a superconductor and a substrate, easy polishing and microfabrication of the superconductor, which were conventionally difficult, and high reliability and device characteristics. The purpose of the present invention is to provide a method for manufacturing a superconducting element that can manufacture a superconducting element with good compatibility and also enables the realization of SIS junctions and SNS junctions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る超電導素子の作製方法は、酸化物超電導体
と非超電導基板とを接合材を用いて接合し、超電導素子
を作製する方法において、PbOを含み、その封着温度
が前記酸化物超電導体の結晶化温度よりも高い溶融ガラ
ス材を前記接合材として使用し、接合時の温度を前記封
着温度以上、前記結晶化温度以下とすることを特徴とす
る。
A method for producing a superconducting element according to the present invention is a method for producing a superconducting element by bonding an oxide superconductor and a non-superconducting substrate using a bonding material, the method includes PbO, and the sealing temperature is set to The bonding material is characterized in that a molten glass material having a higher temperature than the crystallization temperature of the body is used as the bonding material, and the temperature at the time of bonding is set to be higher than the sealing temperature and lower than the crystallization temperature.

〔作用〕[Effect]

本発明の超電導素子の作製方法にあっては、このように
することによって、超電導特性の劣化を招くことなく、
超電導体と基板との良好な接合性を達成できる。また、
接合時の温度または時間を調整することにより、超電導
相内に任意の厚さの非超電導相を形成することができる
In the method for producing a superconducting element of the present invention, by doing so, the superconducting properties are not deteriorated, and
Good bonding properties between the superconductor and the substrate can be achieved. Also,
By adjusting the temperature or time during bonding, a non-superconducting phase with an arbitrary thickness can be formed within the superconducting phase.

〔実施例〕〔Example〕

以下、本発明の実施例について具体的に説明する。 Examples of the present invention will be specifically described below.

第1図は、本発明の作製手順を示す模式的断面図である
。まず、結晶化ガラスからなる基板1に、フリットガラ
スからなる接着材2を塗布する(第1図(a))。基板
lとして使用する結晶化ガラスは、Zn0−A1z03
−SiO□を主成分とし、その熱膨張係数は140〜1
60 Xl0−’/”Cであって後述する酸化物超電導
体3の熱膨張係数に近い。また、接着材2として使用す
るフリットガラスは、PbOを20〜80%含有するP
bO+ZnO,A1z03+5iOz系であって、その
封着温度(粘性が10’ poiseになる温度)は4
00℃であり、その熱膨張係数は120〜140 xl
O−’/’cである。
FIG. 1 is a schematic cross-sectional view showing the manufacturing procedure of the present invention. First, an adhesive material 2 made of frit glass is applied to a substrate 1 made of crystallized glass (FIG. 1(a)). The crystallized glass used as the substrate l is Zn0-A1z03
-Main component is SiO□, its thermal expansion coefficient is 140-1
60
It is a bO+ZnO, A1z03+5iOz system, and its sealing temperature (temperature at which the viscosity becomes 10' poise) is 4
00℃, and its thermal expansion coefficient is 120-140 xl
O-'/'c.

次に、結晶化温度が550℃であるY−Ba−Cu−0
系の酸化物超電導体3を、例えば接合温度を410℃加
熱時間を10分として、流i11.51/分の酸素雰囲
気中にて接着させ、その後、酸化物超電導体3に対し任
意の厚さ及び形状になるように研磨及び微細加工を施し
て超電導素子を作製する(第1図(bl)。なお、この
際の接合温度及び加熱時間は一例である。
Next, Y-Ba-Cu-0 with a crystallization temperature of 550°C
For example, the oxide superconductor 3 of the system is bonded at a bonding temperature of 410° C. for 10 minutes in an oxygen atmosphere at a flow rate of 11.51/min, and then the oxide superconductor 3 is bonded to an arbitrary thickness. A superconducting element is produced by polishing and microfabrication to obtain a shape (FIG. 1 (bl)). Note that the bonding temperature and heating time at this time are merely examples.

接合温度は、接合材2の封着温度(400℃)以上であ
り、酸化物超電導体3の結晶化温度(550℃)以下で
あれば良<、400℃〜490℃が最適である。また加
熱時間としては、10分〜30分が最適である。このよ
うな接合条件では、フリットガラスからなる接合材2は
、結晶化ガラスからなる基板1及びY−Ba−Cu−0
系の酸化物超電導体3に対して良好な接着性が得られた
The bonding temperature may be equal to or higher than the sealing temperature of the bonding material 2 (400°C) and equal to or lower than the crystallization temperature of the oxide superconductor 3 (550°C), and is optimally between 400°C and 490°C. Moreover, the optimum heating time is 10 minutes to 30 minutes. Under such bonding conditions, the bonding material 2 made of frit glass is bonded to the substrate 1 made of crystallized glass and Y-Ba-Cu-0
Good adhesion to the oxide superconductor 3 of the system was obtained.

上記したような温度領域では、基板1と酸化物超電導体
3との熱膨張係数が近似しているので、酸化物超電導体
3内には歪が殆ど生じず、基板1の変形も生じないので
、厚さ10μm程度まで酸化物超電導体3を平坦、均一
に研磨することができた。また、酸化物超電導体3と基
板1.接合材2との間の機械的な特性が近似しているの
で、各層間にて超音波エネルギの伝達が良好であり、酸
化物超電導体3に機械的な損傷を与えることなく、超音
波加工により幅10μm程度まで微細加工することがで
きた。
In the above-mentioned temperature range, the thermal expansion coefficients of the substrate 1 and the oxide superconductor 3 are similar, so almost no strain occurs in the oxide superconductor 3, and no deformation of the substrate 1 occurs. It was possible to flatten and uniformly polish the oxide superconductor 3 to a thickness of about 10 μm. Moreover, the oxide superconductor 3 and the substrate 1. Since the mechanical properties between the bonding material 2 and the bonding material 2 are similar, the transmission of ultrasonic energy between each layer is good, and ultrasonic processing can be performed without mechanically damaging the oxide superconductor 3. This enabled microfabrication to a width of about 10 μm.

本発明では、この接合工程において、接合温度または接
合に要する加熱時間を調整することにより、超電導相内
に任意の厚さの非超電導相を形成できる。第2図は、接
合温度を410℃より高くして作製した超電導素子の模
式的断面図であり、超電導体3中の超電導相内に非超電
導相4が形成されている。
In the present invention, in this bonding step, a non-superconducting phase of any thickness can be formed within the superconducting phase by adjusting the bonding temperature or the heating time required for bonding. FIG. 2 is a schematic cross-sectional view of a superconducting element manufactured at a bonding temperature higher than 410° C., in which a non-superconducting phase 4 is formed within a superconducting phase in a superconductor 3.

接合温度を400℃〜410℃、加熱時間を10分とし
た場合には、超電導特性(臨界温度、臨界電流密度)を
低下させることなく接合させることができた。一方、接
合温度を410℃〜490℃、加熱時間を10分とした
場合には、接合温度の変化に伴って超電導特性を連続的
に低下させることができた。
When the bonding temperature was 400° C. to 410° C. and the heating time was 10 minutes, bonding was possible without deteriorating superconducting properties (critical temperature, critical current density). On the other hand, when the bonding temperature was 410° C. to 490° C. and the heating time was 10 minutes, the superconducting properties could be continuously reduced as the bonding temperature changed.

第3図は、接合温度と形成される非超電導相4の厚さと
の関係を示している。第3図に示す結果から、本発明で
は接合時の温度を調整することによって、非超電導相の
厚さを任意に設定できる、つまり任意の超電導特性を有
する超電導素子を形成できることがわかる。
FIG. 3 shows the relationship between the bonding temperature and the thickness of the non-superconducting phase 4 formed. The results shown in FIG. 3 show that in the present invention, by adjusting the temperature during bonding, the thickness of the non-superconducting phase can be set arbitrarily, that is, a superconducting element having arbitrary superconducting characteristics can be formed.

なお、このような非超電導相4の厚さの制御は、接合に
要する加熱時間を調整しても行うことが可能である。
Note that such control of the thickness of the non-superconducting phase 4 can also be performed by adjusting the heating time required for bonding.

次に、本発明を応用してSIS素子(またはSIN素子
)を作製する方法について、第4図を参照して説明する
。第4図(alに示す例では、基板1に接合材2を介し
て接合された酸化物超電導体3上に、接合材2と同様の
フリットガラスを塗布した後、超電導体6 (または常
電導体7)を接着させてSIS素子(またはSIN素子
)を作製する。また、第4図世)に示す例では、基板1
に接合材2を介して接合された酸化物超電導体3上に、
接合材2と同様のフリットガラスを塗布した後、超電導
体6 (または常電導体7)の薄膜を真空蒸着法にて成
膜して、SIS素子(またはSIN素子)を作製する。
Next, a method of manufacturing an SIS element (or SIN element) by applying the present invention will be explained with reference to FIG. In the example shown in FIG. 4 (al), after applying frit glass similar to the bonding material 2 on the oxide superconductor 3 bonded to the substrate 1 via the bonding material 2, the superconductor 6 (or A SIS element (or SIN element) is produced by bonding the conductor 7).In addition, in the example shown in Figure 4), the substrate 1
On the oxide superconductor 3 bonded to via the bonding material 2,
After applying frit glass similar to bonding material 2, a thin film of superconductor 6 (or normal conductor 7) is formed by vacuum evaporation to produce an SIS element (or SIN element).

何れの場合においても、酸化物超電導体3.フリットガ
ラス及び非超電導相からなる絶縁体層5.超電導体6を
積層させたSIS素子(または酸化物超電導体3.同様
の絶縁体層5.常電導体7を積層させたSIN素子)を
作製できる。この際、超電導体6 (または常電導体7
)を設ける際の温度を調整することにより、下部の酸化
物超電導体3内に任意の厚さの非超電導相を形成するこ
とができる。
In either case, the oxide superconductor 3. Insulator layer consisting of frit glass and non-superconducting phase5. An SIS device (or a SIN device in which an oxide superconductor 3, a similar insulator layer 5, and a normal conductor 7 are stacked) can be produced. At this time, superconductor 6 (or normal conductor 7
) A non-superconducting phase with an arbitrary thickness can be formed in the lower oxide superconductor 3 by adjusting the temperature when providing the layer.

本発明によって基板1と酸化物超電導体3との接着性が
良好であるので、安定的にSIS素子(またはSIN素
子)を作製することができる。
Since the adhesiveness between the substrate 1 and the oxide superconductor 3 is good according to the present invention, an SIS element (or SIN element) can be stably manufactured.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明では、PbOを含み、封着温度が酸
化物超電導体の結晶化温度より高い溶融ガラスを接合材
として用い、接合時の温度を封着温度と結晶化温度との
間としたので、酸化物超電導体を基板に安定的に接合す
るこができ、従来困難であった酸化物起電導体の研磨及
び微細加工を容易に行うことができ、信転性が高く素子
特性が良好である超電導素子を作製することが可能であ
る。
As described above, in the present invention, molten glass containing PbO and having a sealing temperature higher than the crystallization temperature of the oxide superconductor is used as a bonding material, and the temperature during bonding is set between the sealing temperature and the crystallization temperature. As a result, the oxide superconductor can be stably bonded to the substrate, and the polishing and microfabrication of the oxide electromotive conductor, which was previously difficult, can be easily performed, resulting in high reliability and improved device characteristics. It is possible to produce a good superconducting element.

また、接合時の条件、つまり接合温度または接合に要す
る加熱時間を調整することにより、超電導相内に任意の
厚さの非超電導相を形成することができ、種々のSIS
素子またはSIN素子を作製することが可能となる。
In addition, by adjusting the bonding conditions, that is, the bonding temperature or the heating time required for bonding, it is possible to form a non-superconducting phase with an arbitrary thickness within the superconducting phase, allowing various SIS
It becomes possible to manufacture an element or a SIN element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超電導素子の作製方法の手順を示
す模式的断面図、第2図は本発明により作製された超電
導素子の模式的断面図、第3図は接合温度と非超電導相
の厚さとの関係を示すグラフ、第4図は本発明を応用し
て作製したSIS素子(またはSIN素子)を示す模式
的断面図である。 1・・・基板 2・・・接合材 3・・・酸化物超電導
体4・・・非超電導相 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 第 ] 図 第 図 第 図 接 湿 度 [ ℃ 第 図
FIG. 1 is a schematic cross-sectional view showing the steps of the method for manufacturing a superconducting device according to the present invention, FIG. 2 is a schematic cross-sectional view of a superconducting device manufactured according to the present invention, and FIG. 3 is a diagram showing bonding temperature and non-superconducting phase. FIG. 4 is a schematic cross-sectional view showing a SIS element (or SIN element) manufactured by applying the present invention. 1...Substrate 2...Joining material 3...Oxide superconductor 4...Non-superconducting phase patent Applicant: Sanyo Electric Co., Ltd. Representative Patent attorney Noboru Kono No.] Humidity [ ℃ Diagram

Claims (1)

【特許請求の範囲】 1、酸化物超電導体と非超電導基板とを接合材を用いて
接合し、超電導素子を作製する方法において、 PbOを含み、その封着温度が前記酸化物超電導体の結
晶化温度よりも高い溶融ガラス材を前記接合材として使
用し、接合時の温度を前記封着温度以上、前記結晶化温
度以下とすることを特徴とする超電導素子の作製方法。
[Claims] 1. A method for manufacturing a superconducting element by bonding an oxide superconductor and a non-superconducting substrate using a bonding material, which includes PbO and whose sealing temperature is higher than that of the crystals of the oxide superconductor. A method for producing a superconducting element, characterized in that a molten glass material whose temperature is higher than the crystallization temperature is used as the bonding material, and the temperature at the time of bonding is set to be equal to or higher than the sealing temperature and equal to or lower than the crystallization temperature.
JP2193757A 1990-07-20 1990-07-20 Manufacture of superconducting element Pending JPH0479276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193757A JPH0479276A (en) 1990-07-20 1990-07-20 Manufacture of superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193757A JPH0479276A (en) 1990-07-20 1990-07-20 Manufacture of superconducting element

Publications (1)

Publication Number Publication Date
JPH0479276A true JPH0479276A (en) 1992-03-12

Family

ID=16313307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193757A Pending JPH0479276A (en) 1990-07-20 1990-07-20 Manufacture of superconducting element

Country Status (1)

Country Link
JP (1) JPH0479276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4113B (en) 1995-05-23 1997-02-25 Rimantas Mykolas Kanapenas Magnetic laser apparatus applicable to therapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT4113B (en) 1995-05-23 1997-02-25 Rimantas Mykolas Kanapenas Magnetic laser apparatus applicable to therapy

Similar Documents

Publication Publication Date Title
JP2856030B2 (en) Method for manufacturing bonded wafer
US5344524A (en) SOI substrate fabrication
US6114188A (en) Method of fabricating an integrated complex-transition metal oxide device
US5100740A (en) Direct bonded symmetric-metallic-laminate/substrate structures
EP0265090B1 (en) Method for making multisensor piezoelectric elements
JPS59169121A (en) Method of producing semiconductor device
JPS61500393A (en) Light/detector array module and its manufacturing method
JPH05503812A (en) Semiconductor device and its manufacturing method
JPH0479276A (en) Manufacture of superconducting element
JPH1187799A (en) Magnetoresistive element and manufacture thereof
JPS59126639A (en) Manufacture of substrate for semiconductor device
JPS6122675A (en) Manufacture of element for thermopile
JPS63269585A (en) Josephson junction device
JP2914328B2 (en) Method for producing oxide superconducting thin film
JPH0494129A (en) Manufacture of semiconductor device
JP2639961B2 (en) Superconducting element manufacturing method
JPH0722315A (en) Method for manufacturing semiconductor film
JPH0312941A (en) Superconductive device
JPH01119076A (en) Manufacture of oxide superconductive film
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPH0334531A (en) Semiconductor substrate
JPS63259980A (en) Oxide superconductor film
JPH03112638A (en) Directly connected symmetrical metal layered body/substrate structure
JPH03104276A (en) Manufacture of semiconductor device
JPH02218109A (en) Method of forming silicon leyar in when lating layer