JPH0477843B2 - - Google Patents

Info

Publication number
JPH0477843B2
JPH0477843B2 JP59128963A JP12896384A JPH0477843B2 JP H0477843 B2 JPH0477843 B2 JP H0477843B2 JP 59128963 A JP59128963 A JP 59128963A JP 12896384 A JP12896384 A JP 12896384A JP H0477843 B2 JPH0477843 B2 JP H0477843B2
Authority
JP
Japan
Prior art keywords
flaw detection
steel plate
flaw
detection device
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59128963A
Other languages
Japanese (ja)
Other versions
JPS618610A (en
Inventor
Hirokatsu Kato
Shuji Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59128963A priority Critical patent/JPS618610A/en
Publication of JPS618610A publication Critical patent/JPS618610A/en
Publication of JPH0477843B2 publication Critical patent/JPH0477843B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は鋼板連続搬送ラインにおいて用いら
れる鋼板表面検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a steel plate surface inspection device used in a continuous steel plate conveyance line.

従来技術 圧延工程の酸洗ライン出側においては冷延母材
としての品質向上の為に熱延鋼帯の探傷が必要と
されている。
Prior Art On the exit side of the pickling line in the rolling process, flaw detection of hot rolled steel strips is required to improve the quality of the cold rolled base material.

従来、こうした熱延鋼帯の探傷には光学的探傷
法、電磁式探傷法等が用いられているが、光学的
探傷法では酸洗後の鋼材表面よごれ(水、油等)
による誤検出が多く、探傷精度を向上させる為に
は別途前処理が必要になつていた。
Conventionally, optical flaw detection methods, electromagnetic flaw detection methods, etc. have been used to detect flaws in hot rolled steel strips, but optical flaw detection methods detect contamination (water, oil, etc.) on the steel surface after pickling.
There were many erroneous detections due to the flaw detection, and additional pretreatment was required to improve flaw detection accuracy.

また、検出精度及び高速度で移動する被探傷物
体への探傷性からは電磁式探傷法が優れているが
測定範囲が狭い為、被探傷物体幅に応じて高価な
プローブを複数台配置しなければならなかつた。
さらに、浸透液式等では探傷速度に問題があるた
め連続搬送ラインでの探傷には適さないという問
題があつた。
In addition, although electromagnetic flaw detection is superior in terms of detection accuracy and ability to detect flaws on objects to be tested that move at high speed, the measurement range is narrow, so multiple expensive probes must be arranged depending on the width of the object to be tested. It was impossible.
Furthermore, the penetrating liquid method has a problem in flaw detection speed and is therefore not suitable for flaw detection on a continuous conveyance line.

このため、鋼板の連続搬送ラインの様に鋼板の
搬送速度が速く、板幅も広く、かつ酸洗によるヨ
ゴレがある場合には従来法による鋼板表面疵の完
全な把握は困難であり、最終的にはオペレータの
感と目視と判断に頼つているのが現状であつた。
For this reason, when the steel plate is conveyed at a high speed, wide, and has dirt due to pickling, such as in a continuous conveyance line, it is difficult to completely identify the surface flaws of the steel plate using conventional methods, and the final The current situation is that the operator's intuition, visual inspection, and judgment are relied upon.

発明の目的 そこで、この発明は前記のよう鋼板連続搬送ラ
インの表面検査における従来技術の不都合な点を
改善して、鋼板の板幅や搬送速度に充分に対応で
き、かつ酸洗によるヨゴレも疵等と的確に判別出
来得る鋼板表面検査装置を提供することを目的と
する。
Purpose of the Invention Therefore, the present invention improves the disadvantages of the conventional technology in the surface inspection of a continuous steel plate conveyance line as described above, and can sufficiently cope with the width and conveyance speed of the steel plate, and also eliminates stains caused by pickling. It is an object of the present invention to provide a steel plate surface inspection device that can accurately determine the following.

発明の構成 この発明による鋼板表面検査装置は、鋼板連続
搬送ラインにおいて、鋼板搬送方向の上流側に配
置され、当該搬送ライン上を移送される鋼板表面
を撮像する光学式一次探傷装置と、前記探傷装置
の鋼板搬送方向下流側に配置され、当該搬送ライ
ン上を搬送される鋼板表面の平坦度を測定する電
磁式二次探傷装置と、前記一次探傷装置から入力
される撮像画面を画像処理して鋼板表面疵である
確立の高い部分を選定し当該選定された部分を前
記二次探傷装置に指令して再測定すると共にその
二次探傷装置の平坦度測定値から鋼板の疵部分を
確定する演算制御部とを備えた点に特徴がある。
Composition of the Invention The steel plate surface inspection apparatus according to the present invention includes an optical primary flaw detection device that is disposed on the upstream side in the steel plate conveyance direction in a continuous steel plate conveyance line, and that images the surface of the steel plate transferred on the conveyance line; An electromagnetic secondary flaw detection device is placed on the downstream side of the device in the steel sheet conveyance direction, and measures the flatness of the surface of the steel sheet conveyed on the conveyance line, and an electromagnetic secondary flaw detection device is configured to image-process the captured screen input from the primary flaw detection device. A calculation that selects a portion that is highly likely to be a surface flaw in the steel plate, instructs the secondary flaw detection device to re-measure the selected portion, and determines the flawed portion of the steel plate from the flatness measurement value of the secondary flaw detection device. It is characterized by having a control section.

実施例 以下、図示する本発明の実施例により説明す
る。第1図にこの発明による鋼板表面検査装置実
施例の制御ブロツク図を示したが、この鋼板表面
検査装置は撮像装置である光学式一次探傷装置
(以下、光学式探傷装置という)A、平坦度測定
装置である電磁式二次探傷装置(以下、電磁式探
傷装置という)B、及び演算制御部Cとから構成
される。
Embodiments The present invention will be described below with reference to illustrated embodiments. FIG. 1 shows a control block diagram of an embodiment of the steel plate surface inspection apparatus according to the present invention. It is composed of an electromagnetic secondary flaw detection device (hereinafter referred to as electromagnetic flaw detection device) B, which is a measuring device, and an arithmetic control section C.

光学式探傷装置Aは熱延から冷延間の鋼板連続
搬送ライン中で第2図に示した様に鋼板1のバタ
つきの少ないブライドル・ロール23部付近に設
置されている。
As shown in FIG. 2, the optical flaw detection device A is installed near the bridle roll 23 where the steel sheet 1 has little flapping, as shown in FIG.

この光学式探傷装置Aは鋼板1の幅方向に並べ
て配列された3台のITV(CCDカメラ)2と各
ITV2の鋼板1撮像面にストロボ光を照射する
3台のストロボ3が備えられている。これら3台
のストロボ3の中で2台のストロボ3は鋼板1幅
方向の一側方に配置されており、残りの1台のス
トロボ3は鋼板1幅方向の他側に配置されてい
る。こうして、対向関係にあるストロボ間の光の
相互干渉を防ぐために遮光板4が設けられてい
る。
This optical flaw detection device A consists of three ITVs (CCD cameras) 2 arranged in the width direction of the steel plate 1, and each
Three strobes 3 are provided to irradiate the imaging surface of the steel plate 1 of the ITV 2 with strobe light. Among these three strobes 3, two strobes 3 are arranged on one side in the width direction of the steel plate, and the remaining one strobe 3 is arranged on the other side in the width direction of the steel plate. In this way, the light shielding plate 4 is provided to prevent mutual interference of light between the strobes that are in a facing relationship.

これらのITV2とストロボ3は同期制御部5
に接続されており、この同期制御部5は鋼板1の
通板速度に合わせてITV視野が重ならない様に
ストロボ発光タイミングが制御される。同期制御
部5の次段にはタイミング制御部6が接続されて
おり各ITV2からの撮像信号が同期制御部5か
らタイミング制御部6に入力される。このタイミ
ング制御部6には通板トラツキングを行なつてい
るパルス・ジエネレータ7からのトラツキング信
号が入力されており、入力する撮像信号の撮像・
画像処理タイミング制御を行なつて演算制御部C
側に出力する。また、タイミング制御部6から同
期制御部5へ同期信号が出力され、通板速度に応
じたITV2とストロボ3との間の同期制御を行
なう。
These ITV2 and strobe 3 are controlled by the synchronization control unit 5.
The synchronization control unit 5 controls the strobe light emission timing in accordance with the threading speed of the steel plate 1 so that the ITV fields of view do not overlap. A timing control section 6 is connected to the next stage of the synchronization control section 5, and the imaging signal from each ITV 2 is inputted from the synchronization control section 5 to the timing control section 6. A tracking signal from a pulse generator 7 that performs sheet thread tracking is input to this timing control unit 6, and the imaging and
Calculation control section C performs image processing timing control.
output to the side. Further, a synchronization signal is outputted from the timing control section 6 to the synchronization control section 5, and synchronization control between the ITV 2 and the strobe 3 is performed according to the sheet threading speed.

ここで、光学式探傷装置AのITV2とストロ
ボ3との関係を第3図に示した配置図に従つて詳
述すると、ストロボ3はITV2の解像度不足を
補うためにITV2撮像範囲ABに斜めからストロ
ボ光を照射するよう構成されている。また、スト
ロボ3の照射角αと照射距離lに関するデータを
第4図及び第5図に示したが、鋼板1面上の深さ
1mmの疵を検出させるためにストロボ3の照射角
を20゜未満とすることにより2mm長以上の影を発
生させることができる。こうして発生させる影と
共に、斜め方向からのストロボ照射による鋼板1
表面幅方向の照度比をITV2の解像能力範囲に
入れるために鋼板1からストロボ3までの照射距
離lを1000mm以上となるように配置し良好な画像
を得ている。
Here, the relationship between the ITV2 and the strobe 3 of the optical flaw detection device A will be explained in detail according to the arrangement diagram shown in Figure 3.The strobe 3 is inserted diagonally into the ITV2 imaging range AB in order to compensate for the lack of resolution of the ITV2. It is configured to emit strobe light. In addition, data regarding the irradiation angle α and irradiation distance l of the strobe 3 are shown in Figs. 4 and 5. In order to detect a 1 mm deep flaw on one surface of the steel plate, the irradiation angle of the strobe 3 is set to 20°. By making it less than 2 mm, it is possible to generate a shadow with a length of 2 mm or more. Along with the shadows generated in this way, the steel plate 1 is exposed to the strobe light from an oblique direction.
In order to bring the illuminance ratio in the surface width direction into the resolution range of the ITV 2, the irradiation distance l from the steel plate 1 to the strobe 3 is arranged to be 1000 mm or more to obtain a good image.

この実施例では各々3台ずつのITV2とスト
ロボ3を使用しているが鋼板1の板幅が狭ければ
ITV2は1台とすることも可能であり、同様に
ストロボ3も照射能力が充分に大きければ1台だ
けとすることも出来る。
In this example, three ITVs 2 and three strobes are used, but if the width of steel plate 1 is narrow,
It is possible to use only one ITV 2, and similarly, it is also possible to use only one strobe 3 if the irradiation capacity is sufficiently large.

また、搬送ラインの前記光学式探傷装置Aより
も所定長だけ下流には平担度測定装置である電磁
式探傷装置Bが設けられている。この電磁式探傷
装置Bは鋼板1の幅方向に変位自在となるように
配置された2個のプローブ9と、このプローブ9
を検出端とする渦流探傷部8とを備えている。
Further, an electromagnetic flaw detector B, which is a flatness measuring device, is provided downstream of the optical flaw detector A by a predetermined length on the conveyance line. This electromagnetic flaw detection device B includes two probes 9 disposed so as to be freely displaceable in the width direction of the steel plate 1;
The eddy current flaw detection section 8 has a detection end.

2個のプローブ9は鋼板1の幅方向中心から
各々独立して幅方向外側に延在する2本のボー
ル・ネジ10に螺合されている。このボール・ネ
ジ10の鋼板幅方向外側端部にはモータ11が
各々取付けられており、モータ11で回転される
ボール・ネジ10によつて、2個のプローブ9を
独立して鋼板1の幅方向に変位可能としている。
モータ11にはサーボ回路14を介して後述する
演算制御部Cからの探傷位置信号が入力される。
また2個のモータ11には各々パルス・ジエネレ
ータ12とタコ・ジエネレータ13が取付けられ
ており、これらのパルス・ジエネレータ12とタ
コ・ジエネータ13により各々のプローブ9の変
位量及び変位方向を示すモータ11の回転数及び
回転方向がサーボ回路14に入力される。こうし
て電磁式探傷装置Bは演算制御部Cからの探傷信
号によつて鋼板1幅方向の半分ずつの領域をカバ
ーする2個のプローブ9をサーボ制御し、鋼板1
の渦流探傷を行なう。
The two probes 9 are screwed into two ball screws 10 that each independently extend outward in the width direction from the center of the steel plate 1 in the width direction. Motors 11 are attached to the outer ends of the ball screws 10 in the width direction of the steel plate, and the ball screws 10 rotated by the motors 11 independently move the two probes 9 across the width of the steel plate 1. It is possible to move in the direction.
A flaw detection position signal from an arithmetic control section C, which will be described later, is input to the motor 11 via a servo circuit 14.
Further, a pulse generator 12 and a tacho generator 13 are attached to each of the two motors 11, and these pulse generators 12 and tacho generators 13 cause the motor 11 to indicate the amount and direction of displacement of each probe 9. The rotation speed and rotation direction are input to the servo circuit 14. In this way, the electromagnetic flaw detection device B servo-controls the two probes 9 that cover half the area in the width direction of the steel plate 1 based on the flaw detection signal from the calculation control unit C.
Perform eddy current flaw detection.

さらに、この発明の鋼板表面検査装置には前記
光学式探傷装置Aと電磁式探傷装置Bを制御する
演算制御部Cが設けられている。
Furthermore, the steel plate surface inspection apparatus of the present invention is provided with an arithmetic control section C that controls the optical flaw detection apparatus A and the electromagnetic flaw detection apparatus B.

この演算制御部Cは3ch.の1次疵検出部16を
備えており、光学式探傷装置Aのタイミング制御
部6からの画像信号を入力し、30回/秒程度の画
像をリアルタイムで疵判定して次段のフレーム・
メモリ17に疵の画像を記憶させる。この1次疵
検出部16はITV画像の走査線輝度を微分した
ものを微分スライスにより設定値以上の値の有無
を検出し、この設定値を越えた分の面積計算もし
くはピーク値により、第1次の疵有無判定を行な
い、疵有と判定した場合は当該画面情報をフレー
ム・メモリ17に出力する。
This arithmetic control unit C is equipped with a 3-channel primary flaw detection unit 16, which inputs the image signal from the timing control unit 6 of the optical flaw detection device A, and performs flaw determination in real time using images at a rate of about 30 times/second. and the next frame/
The image of the flaw is stored in the memory 17. This primary flaw detection unit 16 uses differential slices to differentiate the scanning line brightness of the ITV image to detect the presence or absence of a value exceeding a set value. Next, the presence/absence of flaws is determined, and if it is determined that there is a flaw, the screen information is output to the frame memory 17.

1次疵検出部16とフレーム・メモリ17は3
台のITV2に対応するよう各々3チヤンネル
(3ch.)で構成されているが、処理能力の大きな
ものであれば各々1チヤンネルで構成することも
可能である。
The primary flaw detection unit 16 and the frame memory 17 are 3
Each channel is configured with three channels (3ch.) to correspond to the ITV2, but if the processing capacity is large, each channel can be configured with one channel.

フレーム・メモリ17の出力側には2次疵検出
部18が接続されており、フレーム・メモリ17
内に記憶された1次疵検出部16での疵判定で疵
有となつた部分と、電磁式探傷装置Bの渦流探傷
部8から入力される探傷結果とから2次疵検出が
行なわれる。この2次疵検出により疵の有無確認
疵の種類、深さ、危険の大きさ等の判定を行う。
2次疵検出部18の出力側にはモニター19と疵
アラーム20とが接続されてており、2次疵検出
部18での2次疵検出結果としてモニター19上
に疵部位の静止画、疵の種類、および定量化され
た疵の大きさを表示し、必要に応じて疵アラーム
20を作動してオペレータに異常を知らせる。
A secondary flaw detection section 18 is connected to the output side of the frame memory 17.
Secondary flaw detection is performed based on the part that is determined to be flawed by the flaw determination by the primary flaw detection section 16 stored in the device and the flaw detection results inputted from the eddy current flaw detection section 8 of the electromagnetic flaw detection device B. Through this secondary flaw detection, the presence or absence of flaws is checked, and the type, depth, and level of danger of the flaws are determined.
A monitor 19 and a flaw alarm 20 are connected to the output side of the secondary flaw detection unit 18, and a still image of the flaw site and a flaw are displayed on the monitor 19 as a result of secondary flaw detection by the secondary flaw detection unit 18. The type of the defect and the quantified size of the defect are displayed, and if necessary, the defect alarm 20 is activated to notify the operator of the abnormality.

また、2次疵検出部18から1次疵検出部16
には2次疵検出結果としての1次検出設定値変更
信号が出力される。この1次検出設定値変更信号
は、1次検出で疵の疑いをかけた撮像に対し、電
磁式探傷装置Bでの探傷で疵でないと判定された
時(1次検出での誤検出)、2次検出のソフトウ
エアロジツクで暗部断面積、暗部長さ、明部−暗
部の判別レベル等の設定値を自動変更する。こう
して、1次疵検出部16の誤検出率を改善するこ
とにより、より高速の通板検査に対応し、より少
ないプローブでの検査を可能にする。
Further, the secondary flaw detection unit 18 to the primary flaw detection unit 16
A primary detection setting value change signal is output as a result of secondary flaw detection. This primary detection setting value change signal is used when it is determined that an image suspected of a flaw in the primary detection is not a flaw in the flaw detection by the electromagnetic flaw detection device B (false detection in the primary detection). Secondary detection software logic automatically changes settings such as dark area cross-sectional area, dark area length, bright area/dark area discrimination level, etc. In this way, by improving the false detection rate of the primary flaw detection section 16, it is possible to support higher-speed sheet passing inspection and to perform inspection using fewer probes.

さらに、演算制御部Cにはマイクロ・コンピユ
ータ15が備えられており、1次疵検出部16か
ら疵検出信号の入力があるとパルス・ジエネレー
タ7の通板トラツキング信号から所定距離だけ光
学式探傷装置Aよりも搬送方向下流に位置する電
磁式探傷装置Bへの当該疵検出部到達に合わせて
サーボ回路14により制御する。こうしてサーボ
回路14は各々のモータ11を作動してプローブ
9の鋼板1の疵検出部への追従制御を行なうよう
構成されている。
Furthermore, the arithmetic and control unit C is equipped with a microcomputer 15, and when a flaw detection signal is input from the primary flaw detection unit 16, the optical flaw detector detects a predetermined distance from the strip tracking signal of the pulse generator 7. Control is performed by the servo circuit 14 in accordance with the arrival of the flaw detection part to the electromagnetic flaw detection device B located downstream from A in the conveyance direction. In this way, the servo circuit 14 is configured to operate each motor 11 to control the probe 9 to follow the flaw detection portion of the steel plate 1.

このマイクロ・コンピユータ15は、渦流探傷
部8からの探傷信号と1次疵検出部16からの入
力信号とから溶接点を検出して酸洗プロセス・コ
ンピユータ21に溶接点検出信号を出力する。ま
た、酸洗プロセス・コンピユータ21からはタイ
ミング制御部6に通板中の板幅、材質及び溶接点
の位置等の表示信号を出力する。
This microcomputer 15 detects a welding point from the flaw detection signal from the eddy current flaw detection section 8 and the input signal from the primary flaw detection section 16, and outputs a welding point detection signal to the pickling process computer 21. In addition, the pickling process computer 21 outputs display signals to the timing control unit 6 indicating the width of the plate being passed, the material, the position of the welding point, etc.

さらに、冷延プロセス・コンピユータ22には
酸洗プロセス・コンピユータ21から疵の有無、
位置等の情報が入力され、疵検出位置の通板時に
は冷圧速度を下げて板破断事故を防止する。
Further, the cold rolling process computer 22 is inspected for defects from the pickling process computer 21;
Information such as the position is input, and when passing the plate at the flaw detection position, the cold compression speed is lowered to prevent plate breakage accidents.

作 用 以上の構成において、この装置は搬送ライン上
を鋼板1が搬送されて光学式探傷装置Aに到達す
ると、タイミング制御部6は入力するパルス・ジ
エネレータ7からの通板トラツキング信号を同期
制御部5に出力する。そこで、同期制御部5は
ITV2とストロボ3を通板速度に合わせて同期
制御を行なう。
Function In the above configuration, when the steel plate 1 is conveyed on the conveyance line and reaches the optical flaw detection device A, the timing control unit 6 transmits the input tracking signal from the pulse generator 7 to the synchronous control unit. Output to 5. Therefore, the synchronization control section 5
ITV2 and strobe 3 are synchronously controlled according to the sheet passing speed.

こうして、ITV2で撮像された撮像信号は同
期制御部5からタイミング制御部6に送られる。
このタイミング制御部6で撮像信号は静止画像に
画像処理された後に1次疵検出部16に出力され
て1次疵検出が行なわれる。
In this way, the image signal captured by the ITV 2 is sent from the synchronization control section 5 to the timing control section 6.
The imaging signal is image-processed into a still image by the timing control section 6, and then outputted to the primary flaw detection section 16, where primary flaw detection is performed.

ここで、第6図a,b,c,dに各々鋼板表面
疵を示す斜視図、その断面図、撮像輝度、及び2
次検出例を示した。第6図aの鋼板表面の各部は
かぶれ疵、線状光沢、,,水又は油等
のよごれ、耳われ疵、耳おれあとを示すもの
とする。この鋼板A−A′部断面形状は第6図b
に示すもので、このA−A′部に相当する撮像画
面上の走査線輝度を第6図cに示す。1次疵検出
部16では撮像画面の走査線輝度上下制限値(第
6図c上の破線)を越えた量(同図の黒ぬり部
分)及び微分後のピーク値、ピーク数等を元に、
あらかじめ限界値として設定された値との比較に
より疵の有無を判定する。
Here, FIGS. 6a, b, c, and d are perspective views showing steel sheet surface flaws, their cross-sectional views, imaging brightness, and 2
The following detection example is shown. Each part of the surface of the steel plate in Figure 6a shall show rash flaws, linear luster, dirt from water or oil, etc., selvage flaws, and selvage marks. The cross-sectional shape of this steel plate A-A' section is shown in Figure 6b.
The scanning line brightness on the imaging screen corresponding to the A-A' section is shown in FIG. 6c. The primary flaw detection unit 16 detects the scanning line brightness of the imaging screen based on the amount exceeding the upper and lower limit values (broken lines in Figure 6c) (the black areas in Figure 6), the peak value after differentiation, the number of peaks, etc. ,
The presence or absence of flaws is determined by comparison with a value set in advance as a limit value.

こうして、設定値以上で疵の疑いがある部位を
検出し、その画面情報をフレーム・メモリ17に
記憶する。
In this way, a part suspected of being a flaw is detected when the setting value is exceeded, and the screen information is stored in the frame memory 17.

これと同時に、1次疵検出部16はマイクロ・
コンピユータ15に1次疵検出信号を出力し、こ
の信号を入力したマイクロ・コンピユータ15は
電磁式探傷装置Bのサーボ回路14に信号を送り
1次疵検出部16により疵とみなされた部位にプ
ローブ9を追従制御して渦流探傷を行なう。
At the same time, the primary flaw detection section 16
A primary flaw detection signal is output to the computer 15, and the microcomputer 15 inputting this signal sends a signal to the servo circuit 14 of the electromagnetic flaw detection device B to probe the area deemed to be a flaw by the primary flaw detection unit 16. 9 and performs eddy current flaw detection.

この電磁探傷部8は探傷結果をマイクロ・コン
ピユータ15と2次疵検出部18に出力する。電
磁式探傷部Bからの探傷結果を入力した2次疵検
出部18は、この探傷結果とフレーム・メモリ1
7から読み出した1次疵検出のデータを付き合わ
せて判定を行なう。
This electromagnetic flaw detection section 8 outputs the flaw detection results to a microcomputer 15 and a secondary flaw detection section 18. The secondary flaw detection unit 18 that receives the flaw detection results from the electromagnetic flaw detection unit B stores the flaw detection results and the frame memory 1.
Judgment is made by comparing the primary flaw detection data read from 7.

第6図dに2次疵検出例を示したが、′は明
線、暗線が連続して閉じており電磁式探傷部Bか
らの探傷結果と付き合わせて“かぶれ疵”と判定
し面積、深さを算出する。同様に、エツジで終わ
る暗状線部である′を“耳われ疵”として長さ
をチエツクし、暗線・明線が連続しエツジとで閉
じている′を“耳おれあと”と判別して面積及
び深さを算出する。また、閉じていない暗部′
及び第1図aの,,は2次疵検出によつて
は疵とは見なさない。
An example of secondary flaw detection is shown in Fig. 6d, where the bright line and dark line are continuously closed, and in conjunction with the flaw detection results from electromagnetic flaw detection section B, it is determined that it is a "rash flaw", and the area is Calculate depth. Similarly, a dark line that ends with an edge is considered an "ear scar" and the length is checked, and a continuous dark line and bright line closed with an edge is identified as an "ear scar." Calculate area and depth. In addition, the dark area that is not closed
and , in Fig. 1a are not considered to be flaws by secondary flaw detection.

こうして、2次疵検出部18の出力はモニター
19に入力されて疵部位の静止画、疵の種類及び
定量化された疵の大きさを表示することによりオ
ペレータに疵の検出を知らせる。
In this manner, the output of the secondary flaw detection section 18 is input to the monitor 19, which displays a still image of the flaw site, the type of flaw, and the quantified size of the flaw, thereby informing the operator of the detection of the flaw.

また、必要に応じて疵アラーム20からアラー
ムを発し、疵部位の冷圧時には圧延速度を減速し
て冷圧時の鋼板破断を防止する。
Further, if necessary, an alarm is issued from the flaw alarm 20, and the rolling speed is reduced during cold rolling of the flawed area to prevent breakage of the steel plate during cold rolling.

また、2次疵検出部18からは1次疵検出部1
6に1次検出設定値変更信号を出力して、1次疵
検出部16での過検出もしくは検出漏れ気味とな
るのを修正する。
Further, the secondary flaw detection unit 18 detects the primary flaw detection unit 1.
A primary detection setting value change signal is output to 6 to correct over-detection or under-detection in the primary flaw detection section 16.

さらに、1次疵検出部16からの検出信号と渦
流探傷部8からの探傷信号を入力するマイクロ・
コンピユータ15は鋼板の溶接点も検出できるの
で、この溶接点検出信号を酸洗プロセス・コンピ
ユータ21に出力し、酸洗プロセス・コンピユー
タ21中の通板トラツキングの誤差補正用として
使用する。
Furthermore, a micro-controller which inputs the detection signal from the primary flaw detection section 16 and the flaw detection signal from the eddy current flaw detection section 8 is provided.
Since the computer 15 can also detect welding points on steel plates, this welding point detection signal is output to the pickling process computer 21 and used for error correction in sheet tracking in the pickling process computer 21.

この点に関して詳述すると、酸洗プロセス・コ
ンピユータ21内では酸洗入側の溶接器より溶接
したとの信号が入力すると、酸洗ラインの動きよ
り溶接点位置を時間を追つて計算する。この計算
により、鋼板表面検査装置に溶接点が到達したと
みなす時点で鋼板表面検査装置のタイミング制御
部6を通してマイクロ・コンピユータ15に信号
を送り、次に鋼板表面検査装置自体で溶接点を検
知した信号を得る事により、今までの計算上の溶
接位置との誤差を算出する。そこで、この誤差に
基づいて巻取り鋼帯長さ等の値の補正を行なうと
同時に、本装置以外に送つている通板トラツキン
グ情報用に誤差補正の為のリセツトを行なう。
To explain this point in detail, when the pickling process computer 21 receives a signal indicating welding from the welder on the pickling input side, the welding point position is calculated over time based on the movement of the pickling line. Based on this calculation, when the steel plate surface inspection device considers that the welding point has arrived, a signal is sent to the microcomputer 15 through the timing control unit 6 of the steel plate surface inspection device, and then the welding point is detected by the steel plate surface inspection device itself. By obtaining the signal, the error from the previously calculated welding position is calculated. Therefore, values such as the length of the rolled steel strip are corrected based on this error, and at the same time, the threading tracking information sent to a device other than this device is reset to correct the error.

これにより、例えば酸洗出側シヤーでの溶接点
部切断除去作業では、溶接点の位置情報が格段に
正確となる事より、最適減速・停止が行なえ、従
来は自動減速、目視停止であつたものを完全自動
化することができる。
As a result, for example, when cutting and removing a welding point on the pickling side shear, the positional information of the welding point becomes much more accurate, making it possible to perform optimal deceleration and stopping, which previously required automatic deceleration and visual stopping. Things can be fully automated.

なお、電磁式探傷装置Bは光学式探傷装置Aが
疵を検出しない間は、鋼板の角部近傍の横割れ
(毛割れ)検出のためにエツジ近傍を探傷する。
Note that while the optical flaw detection device A is not detecting flaws, the electromagnetic flaw detection device B detects flaws near the edges of the steel plate in order to detect horizontal cracks (hair cracks) near the corners.

本実施例装置の採用により、疵検出量は光学式
のみの場合に比べて1/4〜1/5の検出量に減り目視
によるサンプル部での比較では過検出量は1.2で
あり、本装置の疵情報を冷間圧延工程時の圧延速
度調整に適用した結果、冷間圧延時の板破断が全
く発生しなかつた。
By adopting this example device, the amount of flaws detected is reduced to 1/4 to 1/5 compared to the case of only optical method, and the overdetection amount is 1.2 when visually compared at the sample section. As a result of applying the flaw information to the rolling speed adjustment during the cold rolling process, no plate breakage occurred during cold rolling.

この実施例では、熱延−冷延間に本発明の装置
を設置するものとしたが、冷圧後に設置すること
により製品の最終検査をオンラインで行なえ、圧
延油による誤検出を減少させることができる。
In this example, the device of the present invention was installed between hot rolling and cold rolling, but by installing it after cold rolling, the final inspection of the product can be performed online and false detections caused by rolling oil can be reduced. can.

発明の効果 本発明による鋼板表面検査装置実施例は以上の
通りであり、次に述べる効果を挙げることができ
る。
Effects of the Invention The embodiments of the steel sheet surface inspection apparatus according to the present invention are as described above, and can provide the following effects.

鋼板の連続搬送ラインでの鋼板表面検査におい
て鋼板の板幅や搬送速度に充分に対応でき、かつ
酸洗によるヨゴレ疵等と的確に判別すると共に誤
検出を大巾に減少して自動化の信頼性を大巾に向
上させることが可能となる。
In the steel plate surface inspection on a continuous steel plate conveyance line, it can fully correspond to the width and conveyance speed of the steel plate, and it can accurately distinguish from scratches caused by pickling, and the number of false detections can be greatly reduced, increasing the reliability of automation. It becomes possible to significantly improve the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による鋼板表面検査装置実施例
の制御ブロツク図、第2図はITVの設置位置を
示す概略図、第3図はストロボの照射角と照射距
離を示す概略図、第4図はストロボ照射角と疵影
長さの関係を示すグラフ、第5図は照射距離と
ITV視野左右コーナの照度比を示すグラフ、第
6図aは鋼板表面例を示す斜視図、同図bはその
A−A′線断面図、同図cはその撮像輝度信号波
形図、同図dは2次疵検出例を示すパターンであ
る。 A……光学式探傷装置、B……電磁式探傷装
置、C……演算制御部、1……鋼板、2……
ITV、3……ストロボ、4……遮光板、5……
同期制御部、6……タイミング制御部、7……パ
ルス・ジエネレータ、8……渦流探傷部、9……
プローブ、10……ボールネジ、11……モー
タ、12……パルス・ジエネレータ、13……タ
コ・ジエネレータ、14……サーボ回路、15…
…マイクロ・コンピユータ、16……1次疵検出
部、17……フレーム・メモリ、18……2次疵
検出部、19……モニター、20……疵アラー
ム、21……酸洗プロセス・コンピユータ、22
……冷延プロセス・コンピユータ、23……ブラ
イドル・ロール。
Fig. 1 is a control block diagram of an embodiment of the steel plate surface inspection device according to the present invention, Fig. 2 is a schematic diagram showing the installation position of the ITV, Fig. 3 is a schematic diagram showing the irradiation angle and irradiation distance of the strobe, and Fig. 4 is a graph showing the relationship between strobe irradiation angle and flaw shadow length, and Figure 5 shows the relationship between irradiation distance and
A graph showing the illuminance ratio of the left and right corners of the ITV field of view, Fig. 6a is a perspective view showing an example of the surface of a steel plate, Fig. 6b is a sectional view taken along the line A-A', and Fig. 6c is a waveform diagram of the imaging luminance signal. d is a pattern showing an example of secondary flaw detection. A...Optical flaw detection device, B...Electromagnetic flaw detection device, C...Calculation control unit, 1...Steel plate, 2...
ITV, 3... Strobe, 4... Light shielding plate, 5...
Synchronous control section, 6... Timing control section, 7... Pulse generator, 8... Eddy current flaw detection section, 9...
Probe, 10... Ball screw, 11... Motor, 12... Pulse generator, 13... Tacho generator, 14... Servo circuit, 15...
...Micro computer, 16...Primary flaw detection unit, 17...Frame memory, 18...Secondary flaw detection unit, 19...Monitor, 20...Flaw alarm, 21...Pickling process computer, 22
...cold rolling process computer, 23...bridle roll.

Claims (1)

【特許請求の範囲】 1 鋼板連続搬送ラインにおいて、 鋼板搬送方向の上流側に配置され、当該搬送ラ
イン上を移送される鋼板表面を撮像する光学式一
次探傷装置と、 前記探傷装置の鋼板搬送方向下流側に配置さ
れ、当該搬送ライン上を搬送される鋼板表面の平
坦度を測定する電磁式二次探傷装置と、 前記一次探傷装置から入力される撮像画面を画
像処理して鋼板表面疵である確率の高い部分を選
定し当該選定された部分を前記二次探傷装置に指
令して再測定すると共にその二次探傷装置の平坦
度測定値から鋼板の疵部分を確定する演算制御部
とを備えたことを特徴とする鋼板表面検査装置。
[Scope of Claims] 1. In a continuous steel plate conveyance line, an optical primary flaw detection device that is disposed on the upstream side in the steel plate conveyance direction and images the surface of the steel plate transferred on the conveyance line; An electromagnetic secondary flaw detection device is placed on the downstream side and measures the flatness of the surface of the steel sheet conveyed on the conveyance line, and an image processing device input from the primary flaw detection device is used to detect flaws on the surface of the steel sheet. and a calculation control unit that selects a portion with a high probability, instructs the secondary flaw detection device to re-measure the selected portion, and determines the flawed portion of the steel plate from the flatness measurement value of the secondary flaw detection device. A steel plate surface inspection device characterized by:
JP59128963A 1984-06-22 1984-06-22 Apparatus for inspecting steel sheet surface Granted JPS618610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59128963A JPS618610A (en) 1984-06-22 1984-06-22 Apparatus for inspecting steel sheet surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59128963A JPS618610A (en) 1984-06-22 1984-06-22 Apparatus for inspecting steel sheet surface

Publications (2)

Publication Number Publication Date
JPS618610A JPS618610A (en) 1986-01-16
JPH0477843B2 true JPH0477843B2 (en) 1992-12-09

Family

ID=14997742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59128963A Granted JPS618610A (en) 1984-06-22 1984-06-22 Apparatus for inspecting steel sheet surface

Country Status (1)

Country Link
JP (1) JPS618610A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623115B2 (en) * 1988-05-18 1997-06-25 三菱電機株式会社 Appearance inspection device
JPH02269943A (en) * 1989-04-11 1990-11-05 Mitsubishi Electric Corp Outward appearance inspecting device for semiconductor device
JP2003344013A (en) * 2002-05-31 2003-12-03 Tomoegawa Paper Co Ltd Apparatus and method for position detection or visual inspection
JP5031691B2 (en) * 2008-07-17 2012-09-19 新日本製鐵株式会社 Surface flaw inspection device
JP5488953B2 (en) * 2008-09-17 2014-05-14 新日鐵住金株式会社 Method and apparatus for inspection of uneven surface
JP7276263B2 (en) * 2020-06-30 2023-05-18 Jfeスチール株式会社 Surface inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334586A (en) * 1976-09-10 1978-03-31 Ishikawajima Harima Heavy Ind Method of and apparatus for detecting surface flaw

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334586A (en) * 1976-09-10 1978-03-31 Ishikawajima Harima Heavy Ind Method of and apparatus for detecting surface flaw

Also Published As

Publication number Publication date
JPS618610A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
EP1255090B1 (en) Method and apparatus for measuring elongation of a test specimen
JP2005517165A (en) Method and apparatus for optical measurement of surface shape and optical surface inspection of moving strips in a rolling processing facility
JPH0477843B2 (en)
JP4901578B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
JPH06241740A (en) Electro-resistance welded tube weld beam defective cutting and defect detecting method
US5606410A (en) Method for controlling the surface state of one face of a solid and the associated device
KR101867704B1 (en) Ultrasonic testing apparatus
JPS5922894B2 (en) Surface quality identification method for moving objects
JP2000205847A (en) Method and device for inspecting surface flaw
JPH11248638A (en) Automatic detection method for surface of press-molded product
JPH0238952A (en) Surface defect inspection device
JPS6250775B2 (en)
JP3557372B2 (en) Can winding sorter
RU2777718C1 (en) Method for non-destructive optical and visual testing of items by means of computer vision
Fraga et al. Camber measurement system in a hot rolling mill
JP3110241B2 (en) Roll flaw detection method
JP2002090307A (en) Surface defect inspection device and inspected result display method for surface defect inspection device
JP5376355B2 (en) Winding defect inspection machine
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JP2002090306A (en) Self-diagnostic method for surface inspection device
JPS60169580A (en) Method for discriminating remaining scale condition of copper strip
JPH0690148B2 (en) Surface defect inspection device
JPH071236B2 (en) Surface defect inspection device
JP3132931B2 (en) Scratch inspection device
JPS62115357A (en) Defect inspection device