JPS6250775B2 - - Google Patents

Info

Publication number
JPS6250775B2
JPS6250775B2 JP54002485A JP248579A JPS6250775B2 JP S6250775 B2 JPS6250775 B2 JP S6250775B2 JP 54002485 A JP54002485 A JP 54002485A JP 248579 A JP248579 A JP 248579A JP S6250775 B2 JPS6250775 B2 JP S6250775B2
Authority
JP
Japan
Prior art keywords
pixel
signal
pixels
small section
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002485A
Other languages
Japanese (ja)
Other versions
JPS5594147A (en
Inventor
Nobuo Kimura
Yasuhide Nakai
Yoshiro Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP248579A priority Critical patent/JPS5594147A/en
Priority to US06/110,616 priority patent/US4319270A/en
Priority to GB8000811A priority patent/GB2042716B/en
Priority to FR8000652A priority patent/FR2446476A1/en
Priority to SE8000240A priority patent/SE8000240L/en
Priority to DE3000875A priority patent/DE3000875C2/en
Priority to BR8000224A priority patent/BR8000224A/en
Publication of JPS5594147A publication Critical patent/JPS5594147A/en
Publication of JPS6250775B2 publication Critical patent/JPS6250775B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高温被検材の表面欠陥判別法に関し、
熱鋼片等の高温被検材の表面欠陥を表面温度斑、
スケールの存在等に拘りなく確実かつ迅速に検出
できるようにしたものである。
[Detailed Description of the Invention] The present invention relates to a method for determining surface defects on high-temperature test materials.
Surface defects of high-temperature test materials such as hot steel pieces can be detected by surface temperature unevenness.
This allows reliable and quick detection regardless of the presence of scale.

板状の移動物体の表面欠陥を検査する方法とし
ては、その表面状況をカメラで撮像して線情報に
変換し、この線情報を信号処理することにより欠
陥信号を抽出するスキヤナー方式が従来より実用
に供されている。この種の表面検査装置における
検査方式は、表面状況の良好なものの検査には非
常に有効であるが、熱鋼片等の高温被検材のよう
に表面にスケールが存在し、表面温度斑による輝
度のバラツキの大きい材料に適用するのは相当困
難である。
As a method for inspecting surface defects on plate-shaped moving objects, the scanner method has traditionally been used, which images the surface condition with a camera, converts it into line information, and extracts defect signals by signal processing this line information. It is served to. The inspection method used in this type of surface inspection equipment is very effective for inspecting items with good surface conditions, but there are scales on the surface of high-temperature test materials such as hot steel pieces, and surface temperature unevenness can cause It is quite difficult to apply this method to materials with large variations in brightness.

本発明は、このような従来の事情に鑑みてなさ
れたものであり、表面状態の良否を判断するため
の基準レベルを固定せずに、表面温度斑等の温度
レベルに応じた基準パターンなるものを設定する
と共に、判定を小区画と大区画の2段階に分けて
行なうことによつて、表面温度斑、スケールの存
在に拘りなく確実かつ迅速に表面欠陥を検出でき
るようにしたものであつて、その特徴とするとこ
ろは、高温被検材の被検査面を縦横に多数の画素
に分割すると共に、その各画素毎に被検査面の温
度レベルに対応する基準パターン信号と比較して
画素情報を求め、次に縦横の複数個の画素数に相
当する小区画を1画素分づつ順次移動させながら
該小区画内における画素情報数を求めて、この画
素情報数が設定値以上の時に、対応する各画素の
画素情報を欠陥部とした後、小区画の画素数より
も多い縦横の画素数に相当する大区画を1画素分
づつ順次移動させながら、該大区画内における前
記小区画処理後の画素情報数を求めて欠陥部の判
定を行なう点にある。
The present invention has been made in view of such conventional circumstances, and it provides a reference pattern that corresponds to the temperature level of surface temperature spots, etc., without fixing the reference level for determining the quality of the surface condition. By setting the temperature and dividing the judgment into two stages: small sections and large sections, surface defects can be detected reliably and quickly regardless of the presence of surface temperature unevenness or scale. , is characterized by dividing the inspection surface of the high-temperature inspection material into a large number of pixels vertically and horizontally, and comparing each pixel with a reference pattern signal corresponding to the temperature level of the inspection surface to obtain pixel information. Next, while sequentially moving the small section corresponding to the number of pixels in the vertical and horizontal directions one pixel at a time, find the number of pixel information in the small section, and when this number of pixel information is greater than the set value, take the corresponding action. After determining the pixel information of each pixel as a defective part, the large sections corresponding to the number of vertical and horizontal pixels that are greater than the number of pixels of the small section are sequentially moved one pixel at a time, and after the small section processing within the large section. The defective portion is determined by determining the number of pixel information.

以下、図示の実施例について本発明方法を詳述
する。
The method of the invention will now be described in detail with reference to the illustrated embodiments.

今、例えば、第1図に示すように欠陥〔ヘゲ〕
1及びスケール2が存在する高温被検材3の表面
に大区画4を設定する。この大区画4は被検査面
を縦横に多数の画素に分割し、その画素を縦横に
所要数(16×16画素)だけ集めたものであり、こ
の大区画4内に第2図に示す斜線部の如く欠陥1
及びスケール2が存在した場合を想定する。この
斜線部は被検材3の被検査面を撮像することによ
つて得られた映像信号の内、被検査面の温度レベ
ルに対応する基準パターン信号以下の部分であ
る。
Now, for example, as shown in Figure 1, there is a defect.
A large section 4 is set on the surface of the high temperature test material 3 where the scale 1 and the scale 2 are present. This large section 4 divides the surface to be inspected into a large number of pixels vertically and horizontally, and collects the required number of pixels (16 x 16 pixels) vertically and horizontally. part like defect 1
Assume that scale 2 and scale 2 exist. This shaded area is a portion of the video signal obtained by imaging the surface to be inspected of the material 3 to be inspected, which is lower than the reference pattern signal corresponding to the temperature level of the surface to be inspected.

従来の検出方法にあつては、単に大区画4内の
斜線部の個数を数えて表面状態の良否を判断する
だけであるため、スケール2が存在すれば、それ
が欠陥1と同様に数えられ、判断に誤りが生じて
しまう。第2図の例では、実際の欠陥1は52画素
の大きさを持つが、スケール2〔計52画素〕も加
わつて、この大区画4内には104画素の欠陥が存
在すると判断される。
In the conventional detection method, the quality of the surface condition is determined by simply counting the number of diagonal lines in the large section 4, so if scale 2 exists, it is counted in the same way as defect 1. , resulting in errors in judgment. In the example of FIG. 2, the actual defect 1 has a size of 52 pixels, but with the addition of scale 2 (52 pixels in total), it is determined that a defect of 104 pixels exists within this large section 4.

然るに本発明方法にあつては、先ず第3図に示
すような小区画〔4×4画素〕5を1画素分づつ
移動させ、その小区画5内の斜線部の占める割合
が設定値に比して多い場合に、その小区画5は欠
陥部であると判定し、その後、大区画4内の欠陥
部を数えて表面状態の良否を判断する。従つて第
2図の例に適用すると、小区画5による判定によ
つて第4図に示すような欠陥部が得られ、大区画
4内には52画素の欠陥1が存在することが判る。
これはスケール2を除いた実際の欠陥1の大きさ
である。但し、小区画5の設定値は8個とした。
このようにして被検材3の被検査面を検査して行
けば、スケール2の存在に拘らず欠陥1を確実か
つ迅速に検出することができる。
However, in the method of the present invention, first, the small section (4 x 4 pixels) 5 as shown in FIG. If the number of defects is large, the small section 5 is determined to be a defective portion, and then the defective portions within the large section 4 are counted to determine whether the surface condition is good or bad. Therefore, when applied to the example shown in FIG. 2, a defect as shown in FIG. 4 is obtained by the determination based on the small section 5, and it is found that the defect 1 of 52 pixels exists in the large section 4.
This is the actual size of defect 1 excluding scale 2. However, the setting value for small section 5 was eight.
By inspecting the surface of the material 3 to be inspected in this manner, the defect 1 can be detected reliably and quickly regardless of the presence of the scale 2.

次に本発明方法を実施するための装置を第5図
を参照しながら説明する。第5図において、6は
被検材3を搬送する搬送経路で、ローラテーブル
等により構成される。7は撮像装置であつて、被
検材3の搬送方向と略直交方向に被検査面を走査
し、被検材3の輻射光画像を捕えて映像信号VS
1を得る。この撮像装置7によつて得た映像信号
VS1は、録画装置8へ送られて記録されると共
に、自動感度調整器9及びA/D変換器10を経
てデイジタル映像信号VS2に変換される。なお
自動感度調整器9は被検材3の温度の高低による
検出能の違いをなくすためのものである。11は
シフトレジスタ等の記憶回路であり、A/D変換
器10によりデイジタル化されたデイジタル映像
信号VS2を受けて、このデイジタル映像信号VS
2を一定時間(複数走査線分)だけ遅延させるた
めのものである。デイジタル映像信号VS2から
被検材3の表面温度レベルに対応した基準パター
ン信号(後述する)をそのまま引算すると、対象
となる場所がずれるので、記憶回路11にデイジ
タル映像信号VS2を通して基準パターン信号を
作るに必要なだけの時間、そのデイジタル映像信
号VS2を遅延させる。12は基準パターン検出
回路であり、A/D変換器10によりデイジタル
化されたデイジタル映像信号VS2を受けて、被
検材3の表面の欠陥やスケールのない正常な場合
の温度レベルを示す基準パターン信号VS4を作
る。つまり、被検材3には温度斑があるため、欠
陥を判別する時に、欠陥やスケール等の影響を除
いた正常な場合の材面輻射光レベルを基準パター
ン信号VS4とし、その基準パターン信号VS4に
対して映像信号がどれだけずれたかを見なければ
ならない。13は暗部浮動2値化回路であり、記
憶回路11より取出した遅延映像信号VS3と基
準パターン検出回路12より取出した基準パター
ン信号VS4との偏差を減算器で求め、その差信
号を比較器で一定値と比較する。比較器には予め
一定値が設定されており、前記差信号がこの一定
値より低い時に論理1を出力する。この結果は面
積判別回路14に送られる。面積判別回路14で
は前述した本発明方法に従つて疵面積の算出を行
ない、予め設定された面積と比較し、その設定面
積より大きい時に論理1の疵信号FSとして疵位
置検出回路15へ出力する。この暗部浮動2値化
回路13及び面積判別回路14は第6図に示すよ
うに構成されている。
Next, an apparatus for carrying out the method of the present invention will be explained with reference to FIG. In FIG. 5, reference numeral 6 denotes a conveyance path for conveying the specimen 3, which is composed of a roller table and the like. Reference numeral 7 denotes an imaging device that scans the surface to be inspected in a direction substantially orthogonal to the conveying direction of the inspected material 3, captures a radiant light image of the inspected material 3, and generates a video signal VS.
Get 1. Video signal obtained by this imaging device 7
VS1 is sent to the recording device 8 and recorded therein, and is also converted into a digital video signal VS2 via the automatic sensitivity adjuster 9 and the A/D converter 10. Note that the automatic sensitivity adjuster 9 is used to eliminate differences in detection ability due to the temperature of the specimen 3. Reference numeral 11 denotes a storage circuit such as a shift register, which receives the digital video signal VS2 digitized by the A/D converter 10 and stores the digital video signal VS2.
2 by a certain period of time (multiple scanning lines). If the reference pattern signal (described later) corresponding to the surface temperature level of the test material 3 is directly subtracted from the digital video signal VS2, the target location will be shifted, so the reference pattern signal is passed through the digital video signal VS2 to the storage circuit 11. The digital video signal VS2 is delayed for as long as necessary to produce the digital video signal VS2. Reference numeral 12 denotes a reference pattern detection circuit, which receives the digital video signal VS2 digitized by the A/D converter 10 and generates a reference pattern indicating the temperature level in a normal case with no defects or scales on the surface of the material to be inspected 3. Create signal VS4. In other words, since there are temperature irregularities in the material 3 to be inspected, when determining defects, the level of radiant light on the surface of the material in a normal case excluding the effects of defects, scale, etc. is used as the reference pattern signal VS4, and the reference pattern signal VS4 We need to see how much the video signal deviates from that. Reference numeral 13 denotes a dark-area floating binarization circuit, in which a subtractor calculates the deviation between the delayed video signal VS3 taken out from the storage circuit 11 and a reference pattern signal VS4 taken out from the reference pattern detection circuit 12, and the difference signal is obtained by a comparator. Compare with a constant value. A constant value is set in the comparator in advance, and a logic 1 is output when the difference signal is lower than this constant value. This result is sent to the area determination circuit 14. The area determination circuit 14 calculates the flaw area according to the method of the present invention described above, compares it with a preset area, and outputs a logic 1 flaw signal FS to the flaw position detection circuit 15 when the area is larger than the set area. . The dark area floating binarization circuit 13 and the area determination circuit 14 are constructed as shown in FIG.

第6図において、16は8ビツトの減算器であ
り、遅延映像信号VS3と基準パターン信号VS4
との偏差を求め、その差信号を8ビツトの比較器
17で一定値Lと比較する。比較器17は差信号
が一定値より低い時に論理1を出力する。18−
1,18−2,18−3は2048ビツトのシフトレ
ジスタであり、比較器17の出力を受けて、その
信号を小区画5の判断をするに必要な時間だけ遅
延させるためのものである。19−1,19−
2,19−3,19−4は並列出力を持つ4ビツ
トのシフトレジスタで、小区画〔4×4画素〕5
の内容を出力する。20−1,20−2,20−
3,20−4及び21は加算器で、この小区画5
の内容をすべて読出して加算し、その結果を4ビ
ツトの比較器22で個数設定値Nと比較して、そ
の設定値Nより多い時に論理1を出力する。23
−1,23−2,23−4……23−15は2048
ビツトのシフトレジスタであり、比較器22の出
力を受けて、その信号を大区画4の判断をするに
必要な時間だけ遅延させるためのものである。2
4−1,24−2,24−3……24−15は並
列出力を持つ16ビツトのシフトレジスタであり、
大区画〔16×19画素〕4の内容を出力する。25
−1,25−2,25−3……25−16、及び
26は加算器で、大区画4の内容をすべて読出し
て加算し、その結果を16ビツトの比較器27で面
積設定値Sと比較して、この設定値Sより大きい
時に論理1を疵信号として出力する。
In FIG. 6, 16 is an 8-bit subtracter, which separates the delayed video signal VS3 and the reference pattern signal VS4.
The difference signal is compared with a constant value L by an 8-bit comparator 17. Comparator 17 outputs a logic 1 when the difference signal is lower than a certain value. 18-
1, 18-2, and 18-3 are 2048-bit shift registers, which receive the output of the comparator 17 and delay the signal by the time necessary for determining the subdivision 5. 19-1, 19-
2, 19-3, and 19-4 are 4-bit shift registers with parallel outputs, each consisting of 5 small sections [4 x 4 pixels].
Output the contents of. 20-1, 20-2, 20-
3, 20-4 and 21 are adders, and this small section 5
The 4-bit comparator 22 compares the result with a set number N, and outputs logic 1 when the number is greater than the set value N. 23
-1, 23-2, 23-4...23-15 is 2048
This is a bit shift register that receives the output of the comparator 22 and delays the signal by the time necessary to make a decision on the large section 4. 2
4-1, 24-2, 24-3...24-15 are 16-bit shift registers with parallel outputs,
Output the contents of large section [16 x 19 pixels] 4. 25
-1, 25-2, 25-3...25-16, and 26 are adders that read out and add all the contents of the large section 4, and the result is added to the area setting value S by the 16-bit comparator 27. By comparison, when the value is greater than the set value S, a logic 1 is output as a flaw signal.

第5図において、28は材エツジ検出回路であ
り、基準パターン検出回路12より取出した基準
パターン信号VS4を比較器で一定値と比較し、
この一定値より高い部分を被検材3とみなして材
エツジを検出する。疵位置検出回路15は材エツ
ジ検出回路28からのエツジ信号と前記疵信号
FSとから疵位置を算出し、その結果は疵位置表
示回路29を介してプリンタ30上に表示される
と共に、コンピユータ31に送られる。32は走
行状態検出回路で、ホツトメタル検出器33から
の材有無信号とローラテーブル速度計34からの
材速度信号とから被検材3の走行状態を判断す
る。35は材前後端検出回路で、走行状態検出回
路32からの信号により材前後端を検出し、コン
ピユータ31に送る。コンピユータ31では、こ
のようにして送られてきた信号に基づいて、疵の
状態を再生して見る必要があれば、録画装置8を
コントロール(再生)して表示装置36に表示す
る。また疵総面積等の算出、疵位置による判定等
の高度判断がなされ、この結果はリジエクト判
定、ホツトスカーフコントロール、スポツトスカ
ーフコントロール、製鋼指令(疵情報、材形状)
等に利用される。37は暗部絶対2値化回路であ
り、記憶回路11より取出された遅延映像信号
VS3を比較器で一定値と比較し、この遅延映像
信号VS3が一定値より低い時に論理1を出力す
る。この結果は面積判別回路38に送られ、前述
の本発明方法に基づいて疵面積の算出を行ない、
予め設定された面積と比較し、この面積より大き
い時に論理1を疵信号として出力する。39は信
号幅・深さによる2値化回路であり、記憶回路1
1より取出された遅延映像信号VS3と基準パタ
ーン検出回路12より取出された基準パターン信
号VS4との差を求め、その差信号の信号幅と信
号深さとのデータをパラメータとして演算して欠
陥か否かを判別するものであり、その結果はつな
がり判別回路40に送られ、このつながり判別回
路40にて疵のつながり方に基づいて疵長さの算
出を行ない、予め設定された長さと比較し、その
長さよりも長い時に論理1を疵信号として出力す
る。41は明部浮動2値化回路で、記憶回路11
より取出された遅延映像信号VS3と基準パター
ン検出回路12より取出された基準パターン信号
VS4との偏差を減算器で求め、その差信号を比
較器で一定値と比較し、差信中が一定値より高い
時に論理1を出力する。この結果はつながり判別
回路42に送られ、疵のつながり方に基づいて疵
の長さの算出を行ない、予め設定された長さと比
較し、その長さより長い時に論理1を疵信号とし
て出力する。
In FIG. 5, 28 is a material edge detection circuit, which compares the reference pattern signal VS4 extracted from the reference pattern detection circuit 12 with a constant value using a comparator.
The portion higher than this certain value is regarded as the material to be inspected 3, and the material edge is detected. The flaw position detection circuit 15 receives the edge signal from the material edge detection circuit 28 and the flaw signal.
The flaw position is calculated from the flaw position, and the result is displayed on the printer 30 via the flaw position display circuit 29 and is also sent to the computer 31. 32 is a running state detection circuit which determines the running state of the material to be inspected 3 based on the material presence signal from the hot metal detector 33 and the material speed signal from the roller table speed meter 34. Reference numeral 35 denotes a material front and rear end detection circuit, which detects the front and rear ends of the material based on a signal from the running state detection circuit 32 and sends it to the computer 31. Based on the signals thus sent, the computer 31 controls (plays) the recording device 8 and displays it on the display device 36 if it is necessary to reproduce and view the state of the flaw. In addition, advanced judgments such as calculation of the total flaw area and judgment based on the flaw position are made, and these results are used for reject judgment, hot scarf control, spot scarf control, and steelmaking directives (flaw information, material shape).
It is used for etc. 37 is a dark area absolute binarization circuit, which outputs the delayed video signal taken out from the storage circuit 11;
A comparator compares VS3 with a constant value, and outputs logic 1 when the delayed video signal VS3 is lower than the constant value. This result is sent to the area determination circuit 38, and the flaw area is calculated based on the method of the present invention described above.
The area is compared with a preset area, and when the area is larger than this area, a logic 1 is output as a flaw signal. 39 is a binarization circuit based on signal width and depth, and memory circuit 1
The difference between the delayed video signal VS3 extracted from the reference pattern detection circuit 12 and the reference pattern signal VS4 extracted from the reference pattern detection circuit 12 is calculated, and the data of the signal width and signal depth of the difference signal are used as parameters to calculate whether the signal is defective or not. The result is sent to the connection determination circuit 40, which calculates the flaw length based on how the flaws are connected, and compares it with a preset length. When the length is longer than that length, a logic 1 is output as a flaw signal. 41 is a bright floating binarization circuit, and a memory circuit 11
Delayed video signal VS3 extracted from the reference pattern detection circuit 12 and reference pattern signal extracted from the reference pattern detection circuit 12
The deviation from VS4 is obtained by a subtracter, the difference signal is compared with a constant value by a comparator, and when the difference signal is higher than the constant value, a logic 1 is output. This result is sent to a connection determining circuit 42, which calculates the length of the flaw based on the way the flaws are connected, compares it with a preset length, and outputs logic 1 as a flaw signal when it is longer than the length.

なお暗部浮動2値化回路13、面積判別回路1
4は小ヘゲ疵、暗部絶対2値化回路37、面積判
別回路38は大ヘゲ疵、信号幅・深さによる2値
化回路39、つながり判別回路40は根ありヘゲ
疵、明部浮動2値化回路41、つながり判別回路
42は割れ疵を夫々検出するためのものである。
Note that the dark area floating binarization circuit 13 and the area discrimination circuit 1
4 is a small heave flaw, dark area absolute binarization circuit 37, area discrimination circuit 38 is a large heave flaw, signal width/depth binarization circuit 39, connection discrimination circuit 40 is a root heave flaw, bright area The floating binarization circuit 41 and the connection determination circuit 42 are for detecting cracks, respectively.

以上実施例に詳述したように本発明では、高温
被検材3の被検査面を縦横に多数の画素に分割す
ると共に、その各画素毎に被検査面の温度レベル
に対応する基準パターン信号と比較して画素情報
を求め、次に縦横の複数個の画素数に相当する小
区画5を1画素分づつ順次移動させながら該小区
画5内における画素情報数を求めて、この画素情
報数が設定値以上の時に、対応する各画素の画素
情報を欠陥部とした後、小区画5の画素数よりも
多い縦横の画素数に相当する大区画4を1画素分
づつ順次移動させながら、該大区画4内における
前記小区画処理後の画素情報数を求めて欠陥部の
判定を行なうので、ヘゲ疵等の被検材表面の欠陥
を、スケール等のノイスから完全に分離抽出で
き、その欠陥の面積に比例した判断を出力するこ
とが可能となり、表面欠陥を確実かつ迅速に検出
できる。
As described in detail in the embodiments above, in the present invention, the surface to be inspected of the high-temperature specimen 3 is divided into a large number of pixels vertically and horizontally, and each pixel receives a reference pattern signal corresponding to the temperature level of the surface to be inspected. Next, the number of pixel information in the small section 5 is determined by sequentially moving the small section 5 corresponding to the number of pixels in the vertical and horizontal directions one pixel at a time. is greater than the set value, the pixel information of each corresponding pixel is set as a defective part, and then the large sections 4 corresponding to the number of pixels in the vertical and horizontal directions that are greater than the number of pixels in the small section 5 are sequentially moved one pixel at a time, while Since the number of pixel information after the small section processing in the large section 4 is determined to determine the defective part, it is possible to completely separate and extract defects on the surface of the material to be inspected, such as scab marks, from noise such as scale, It becomes possible to output a judgment proportional to the area of the defect, and surface defects can be detected reliably and quickly.

因みに本発明方法により得られた具体的実験結
果を第7図に示す。これは或る大きさの欠陥が小
区画及び大区画に設定された設定値に対してどの
ように検出されたかを示すものである。Aの設定
〔小区画13/16、大区画208/256〕では◎印の欠陥
のみが検出され、同様にBの設定〔8/16,160/25
6〕では◎と〇、Cの設定では◎と〇と□、Dの
設定では◎と〇と□と△の欠陥が夫々検出され
た。また×印の欠陥はこれらの設定では検出され
なかつた。この結果から判るように、本発明によ
れば、ヘゲ疵等の欠陥の面積に相応した出力を得
ることができる。
Incidentally, specific experimental results obtained by the method of the present invention are shown in FIG. This shows how defects of a certain size are detected with respect to the settings set for the small section and the large section. In setting A [small section 13/16, large section 208/256], only defects marked with ◎ were detected, and similarly in setting B [8/16, 160/25]
6], defects ◎ and ◎, defects ◎, 〇, and □ were detected in the setting C, and defects ◎, 〇, □, and △ were detected in the setting D. Also, defects marked with an "x" were not detected under these settings. As can be seen from this result, according to the present invention, it is possible to obtain an output corresponding to the area of defects such as bald spots.

なお区画の大小は、2つの区画の相対関係を示
すのみであり、被検査面に対する大小関係を示す
ものではない。
Note that the size of the sections only indicates the relative relationship between the two sections, and does not indicate the size relationship with respect to the surface to be inspected.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は被検
材表面を示す図、第2図乃至第4図は画素と区画
との関係を示す説明図、第5図は全体のブロツク
図、第6図は要部のブロツク図、第7図は欠陥の
大きさと検出結果との関係を示す図である。 1……欠陥、3……被検材、4……大区画、5
……小区画、7……撮像装置、12……基準パタ
ーン検出回路、13……暗部浮動2値化回路、1
4,38……面積判別回路、37……暗部絶対2
値化回路、39……信号幅・深さによる2値化回
路、40,42……つながり判別回路、41……
明部浮動2値化回路。
The drawings show one embodiment of the present invention; FIG. 1 is a diagram showing the surface of a material to be inspected, FIGS. 2 to 4 are explanatory diagrams showing the relationship between pixels and sections, and FIG. 5 is an overall block diagram. , FIG. 6 is a block diagram of the main part, and FIG. 7 is a diagram showing the relationship between the size of the defect and the detection result. 1...Defect, 3...Test material, 4...Large section, 5
... Small section, 7 ... Imaging device, 12 ... Reference pattern detection circuit, 13 ... Dark area floating binarization circuit, 1
4, 38...area discrimination circuit, 37...dark area absolute 2
Value conversion circuit, 39...Binarization circuit based on signal width/depth, 40, 42...Connection determination circuit, 41...
Bright floating binarization circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 高温被検材3の被検査面を縦横に多数の画素
に分割すると共に、その各画素毎に被検査面の温
度レベルに対応する基準パターン信号と比較して
画素情報を求め、次に縦横の複数個の画素数に相
当する小区画5を1画素分づつ順次移動させなが
ら該小区画5内における画素情報数を求めて、こ
の画素情報数が設定値以上の時に、対応する各画
素の画素情報を欠陥部とした後、小区画5の画素
数よりも多い縦横の画素数に相当する大区画4を
1画素分づつ順次移動させながら、該大区画4内
における前記小区画処理後の画素情報数を求めて
欠陥部の判定を行なうことを特徴とする高温被検
材の表面欠陥判別法。
1 Divide the inspection surface of the high-temperature inspection material 3 into a large number of pixels vertically and horizontally, and calculate pixel information for each pixel by comparing it with a reference pattern signal corresponding to the temperature level of the inspection surface. The number of pixel information in the small section 5 is calculated by sequentially moving the small section 5 corresponding to the number of pixels of , one pixel at a time, and when this number of pixel information is equal to or greater than the set value, the number of pixel information of each corresponding pixel is calculated. After the pixel information is set as a defective part, the large sections 4 corresponding to the number of vertical and horizontal pixels that are greater than the number of pixels of the small section 5 are sequentially moved pixel by pixel, and the small section processing within the large section 4 is performed. A surface defect determination method for a high-temperature test material, characterized in that a defective portion is determined by determining the number of pixel information.
JP248579A 1979-01-12 1979-01-12 Method of discriminating surface flaw of high temperature material to be detected Granted JPS5594147A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP248579A JPS5594147A (en) 1979-01-12 1979-01-12 Method of discriminating surface flaw of high temperature material to be detected
US06/110,616 US4319270A (en) 1979-01-12 1980-01-09 Surface inspection system for hot radiant material
GB8000811A GB2042716B (en) 1979-01-12 1980-01-10 Surface inspection of hot radiant material
FR8000652A FR2446476A1 (en) 1979-01-12 1980-01-11 PROCESS FOR DETECTING IMPERFECTIONS ON THE SURFACE OF A HEAT RADIANT MATERIAL AND DEVICE FOR IMPLEMENTING SAME
SE8000240A SE8000240L (en) 1979-01-12 1980-01-11 Surface Inspection System for Thermal Radiant Material
DE3000875A DE3000875C2 (en) 1979-01-12 1980-01-11 Method for determining defects on the surface of a warm workpiece and device for carrying out the method
BR8000224A BR8000224A (en) 1979-01-12 1980-01-14 PROCESS TO DETECT IMPERFECTIONS ON THE SURFACE OF A HOT RADIANT MATERIAL, SURFACE INSPECTION SYSTEM, "FOLLOW-UP" CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP248579A JPS5594147A (en) 1979-01-12 1979-01-12 Method of discriminating surface flaw of high temperature material to be detected

Publications (2)

Publication Number Publication Date
JPS5594147A JPS5594147A (en) 1980-07-17
JPS6250775B2 true JPS6250775B2 (en) 1987-10-27

Family

ID=11530647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP248579A Granted JPS5594147A (en) 1979-01-12 1979-01-12 Method of discriminating surface flaw of high temperature material to be detected

Country Status (1)

Country Link
JP (1) JPS5594147A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118647A (en) * 1980-02-25 1981-09-17 Hitachi Ltd Flaw inspecting apparatus
DE3248928T1 (en) * 1981-07-29 1983-07-07 Dai Nippon Insatsu K.K., Tokyo PRESSURE INSPECTION PROCEDURE AND DEVICE FOR CARRYING OUT THE PROCEDURE
DE3278861D1 (en) * 1982-05-27 1988-09-08 I2S Automatic container testing process and device comparing transparency
JPS59196446A (en) * 1983-04-22 1984-11-07 Toshiba Corp Defect recognizing device
JPS608769A (en) * 1983-06-29 1985-01-17 Fujitsu Ltd Object detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143590A (en) * 1974-05-08 1975-11-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143590A (en) * 1974-05-08 1975-11-19

Also Published As

Publication number Publication date
JPS5594147A (en) 1980-07-17

Similar Documents

Publication Publication Date Title
US4319270A (en) Surface inspection system for hot radiant material
JPS6250775B2 (en)
JP2001050921A (en) Method and device for automatically detecting internal defect of object
JP2890801B2 (en) Surface scratch inspection device
JPH08189905A (en) Scratch tester
JPH079403B2 (en) Surface defect inspection method for objects
JPH0238956A (en) Surface flaw inspection device
JPH03194454A (en) Container internal surface inspection device
JPH0694660A (en) Method and device for surface defect inspection
JPS6347642A (en) Method for discriminating kind of flaw in surface flaw detection
JPH08128968A (en) Defect inspection method for transparent sheet formed body
JPS618610A (en) Apparatus for inspecting steel sheet surface
JPS5916661B2 (en) Signal processing method for surface defect detection of high-temperature test materials
JP2638121B2 (en) Surface defect inspection equipment
JPH0412257A (en) Method and device for detecting linear flaw on steel plate
JPH0827181B2 (en) Automatic coating skin inspection device
JPH0569536A (en) Defect detecting method and defect detecting circuit in inspection device for printed matter
JPS6349180B2 (en)
JPH0236896B2 (en) JIKUTAISHOBUTSUTAINOKETSUKANKENSASOCHI
JP4093338B2 (en) Automatic evaluation equipment for printed matter
JPH0914934A (en) Visual inspection device
JPH03216768A (en) Method and device for image processing
JPS60207004A (en) Surface-defect inspecting apparatus
JPS63185182A (en) Variable density picture processing system
JPH09184812A (en) Flaw detection method