JPH09184812A - Flaw detection method - Google Patents

Flaw detection method

Info

Publication number
JPH09184812A
JPH09184812A JP7352334A JP35233495A JPH09184812A JP H09184812 A JPH09184812 A JP H09184812A JP 7352334 A JP7352334 A JP 7352334A JP 35233495 A JP35233495 A JP 35233495A JP H09184812 A JPH09184812 A JP H09184812A
Authority
JP
Japan
Prior art keywords
image
defect
inspected
processing
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7352334A
Other languages
Japanese (ja)
Other versions
JP3145296B2 (en
Inventor
Atsuhiro Tokuda
篤洋 徳田
Takahiro Tasaka
隆弘 田坂
Akio Hamachi
昭夫 浜地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35233495A priority Critical patent/JP3145296B2/en
Publication of JPH09184812A publication Critical patent/JPH09184812A/en
Application granted granted Critical
Publication of JP3145296B2 publication Critical patent/JP3145296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently suppress over-detection and to enhance detection accuracy in the automatic inspection of a surface flaw. SOLUTION: An article to be inspected fed from a feed line is irradiated with light and the surface image of the article to be inspected is obtained from the reflected light to detect the surface flaw of the article to be inspected. Two-dimensional weighting moving average operation is applied to the inputted surface image to calculate a primary processing image and weighting short-time mutual correlation operation is applied thereto to obtain a flaw emphasized image and this image is biinarized on the basis of a threshold value to detect a surface flaw.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば鋼材表面の
有害欠陥を検出する際に利用される欠陥検出方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detecting method used for detecting harmful defects on the surface of a steel material, for example.

【0002】[0002]

【従来の技術】近年省エネルギーの一環として連続鋳造
スラブの圧延機への温片装入を行うことが実施されてい
るが、この実施に際し、1)温片装入の可否判断、およ
び、2)スラブ表面の疵発生状況の連続鋳造操業へのフ
ィードバックを目的として、熱間でスラブ表面疵を自動
的に検出することが行われている。この表面疵検出方法
として例えば、特開昭61−34447号公報で提案の
ように被検査物表面に照明光を照射しその反射光の濃度
分布を電気信号に変換し、この変換し電気信号の所定区
間毎に平均化して平滑化信号を出力する、いわゆる重み
付き移動平均演算により強調画を得、これを基に前記表
面疵を検知する方法がある。また、特開平1−2536
39号公報に提案のように、上記電気信号の微分画像を
得て、これを所定量ずらした微分信号を得、これと前記
ずらす前の微分画像との絶対値和により強調画像を得る
ことにより上記表面疵を検知する方法がある。
2. Description of the Related Art Recently, hot strip charging of a continuous casting slab into a rolling mill has been carried out as a part of energy saving. In this implementation, 1) determination of whether hot strip charging is possible and 2) For the purpose of feeding back the slab surface flaw generation state to the continuous casting operation, slab surface flaws are automatically detected while hot. As this surface flaw detection method, for example, as proposed in Japanese Patent Laid-Open No. 61-34447, the surface of the object to be inspected is irradiated with illumination light and the density distribution of the reflected light is converted into an electric signal. There is a method of obtaining an emphasized image by so-called weighted moving average calculation, which averages every predetermined section and outputs a smoothed signal, and detects the surface flaw based on this. In addition, JP-A 1-2536
As proposed in Japanese Patent Laid-Open No. 39, by obtaining a differential image of the electric signal, shifting the differential signal by a predetermined amount to obtain a differential image, and obtaining an emphasized image by the sum of absolute values of the differential signal and the differential image before shifting. There is a method of detecting the surface flaw.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記特
開昭61−34447号公報、特開平1−253639
号公報のいずれにおいても、被検査材表面の性状が、例
えば、幅圧下に伴う肉引け部内のしわ、および、圧延模
様、スケール等により一様でない場合、また、照明むら
や油滴等の外乱が存在する場合は表面画像における正常
部の濃度変化量が欠陥部の濃度変化量よりも大きくなる
ことがあり、上記重み付き移動平均や微分画像を用いた
だけでは欠陥部と非欠陥部との差別化が困難となる。こ
の結果、過検出が多くなり信頼性に乏しい等の問題を有
するものであった。本発明は表面欠陥の自動検査におい
て、過検出を十分に抑制し、且つ、検出精度を向上させ
ることを課題とするものであった。
However, the above-mentioned Japanese Patent Laid-Open Nos. 61-34447 and 1-253639.
In any of the publications, the property of the surface of the material to be inspected is not uniform due to, for example, wrinkles in the shrinkage portion due to width reduction, rolling pattern, scale, etc. If there is, the amount of change in the density of the normal part in the surface image may be larger than the amount of change in the density of the defective part, and it is possible to distinguish between the defective part and the non-defective part only by using the weighted moving average or the differential image. Becomes difficult. As a result, there are problems such as excessive detection and poor reliability. The present invention has an object to sufficiently suppress over-detection and improve detection accuracy in automatic inspection of surface defects.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するため、被検査物の表面画像を得て、該表面画像を
画像処理して前記被検査物の表面欠陥を検出する欠陥検
出方法において、 前記表面画像に2種類の2次元重み付き移動平均を施
した2つの信号系列に対して、遅延の異なる複数の短時
間相互相関関数を求め、これらの重み付き和を各画素の
濃度値として構成した画像を得て、これを閾値処理して
欠陥検出を行う欠陥検出方法であり、さらに、 前記表面画像に2種類の2次元重み付き移動平均を施
した2つの信号系列に対して、両信号の乗算を行って欠
陥部のみを強調した画像を得て、これを閾値処理して欠
陥検出を行う欠陥検出方法である。
In order to solve the above problems, the present invention provides a defect detection for obtaining a surface image of an object to be inspected and image-processing the surface image to detect a surface defect of the object to be inspected. In the method, a plurality of short-time cross-correlation functions with different delays are obtained for two signal sequences obtained by subjecting the surface image to two types of two-dimensional weighted moving averages, and the weighted sum of these is calculated as the density of each pixel. A defect detection method in which an image configured as a value is obtained, and the image is thresholded to detect a defect. Further, for two signal sequences obtained by performing two types of two-dimensional weighted moving averages on the surface image. , Is a defect detection method in which both signals are multiplied to obtain an image in which only a defective portion is emphasized, and this is subjected to threshold processing to detect a defect.

【0005】[0005]

【発明の実施の形態】本発明は、図1に示すような画像
処理演算フローを持つ。まず、入力された表面画像に対
し2系統の2次元重み付き移動平均の処理系統を持ち、
各々の処理系統内において下記(1)式に示すいわゆる
空間フィルタ演算を行って、一次処理画像x1 、x2
得る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has an image processing operation flow as shown in FIG. First, for the input surface image, there are two processing systems of two-dimensional weighted moving average,
In each processing system, so-called spatial filter calculation shown in the following equation (1) is performed to obtain primary processed images x 1 and x 2 .

【0006】[0006]

【数1】 [Equation 1]

【0007】ただし、 u(i,j) :入力画像の(i,j)位置の濃度 xk (i,j):一次処理画像の(i,j)位置の濃度 bk (i,j):2次元移動平均用重み係数の(i,
j)要素 M,N :2次元重み係数の水平・垂直方向の次
数の1/2 K :一次処理系列番号 本演算により、重み係数bk (i,j)のパターンに似
た波形部分が強調される。
However, u (i, j): density at the (i, j) position of the input image x k (i, j): density at the (i, j) position of the primary processed image b k (i, j) : Two-dimensional moving average weighting factor (i,
j) Element M, N: 1/2 K of the degree of the two-dimensional weighting coefficient in the horizontal / vertical directions: Primary processing sequence number By this operation, the waveform portion similar to the pattern of the weighting coefficient b k (i, j) is emphasized. To be done.

【0008】次に、2系統の前記一次処理画像の間で、
下記(2)式に示す短時間相互相関関数計算を施し、
Next, between the two primary processed images,
The short-time cross-correlation function calculation shown in the following equation (2) is performed,

【0009】[0009]

【数2】 [Equation 2]

【0010】ただし、 x1 (i,j):第1系統の一次処理画像の(i,j)
位置の濃度 x2 (i,j):第2系統の一次処理画像の(i,j)
位置の濃度 y (i,j):欠陥強調画像の(i,j)位置の濃度 w (i,j):短時間相互相関演算用重み係数の
(i,j)要素 K,L :短時間相互相関関数用重み係数の水平
垂直方向次数の1/2 さらに、ここで得られた欠陥強調画像y(i,j)に対
し適切な閾値で2値化することにより欠陥の検出及び領
域判定を行う。
However, x 1 (i, j): (i, j) of the primary processed image of the first system
Density at position x 2 (i, j): (i, j) of the primary processed image of the second system
Position Density y (i, j): Density at (i, j) Position of Defect Emphasized Image w (i, j): (i, j) Element of Short-Time Cross-Correlation Calculation Weighting Factor K, L: Short Time 1/2 of the horizontal-vertical direction order of the cross-correlation function weighting coefficient Further, the defect enhancement image y (i, j) obtained here is binarized with an appropriate threshold value to detect a defect and determine an area. To do.

【0011】本発明においては、2次元移動平均演算の
際の重み係数bk (i,j)は、信号の群遅延を一定化
するために直線位相型を用い、かつ、検査すべき欠陥の
代表的な方向と平行方向には平滑化、垂直方向には不完
全微分をとる形式に設定する。例えば、表面画像の濃度
分布が図2に示す欠陥の検出に対しては、図3のような
重み係数bk (i,j)を用いれば、2次元重み付き移
動平均演算の結果一次出力画像の濃度分布は図4のよう
になる。
In the present invention, the weighting factor b k (i, j) in the two-dimensional moving average calculation is of the linear phase type in order to make the group delay of the signal constant, and the defect to be inspected. Smoothing is performed in the direction parallel to the representative direction, and incomplete differentiation is performed in the vertical direction. For example, for the detection of the defect whose density distribution of the surface image is shown in FIG. 2, if the weighting coefficient b k (i, j) as shown in FIG. 3 is used, the result of the two-dimensional weighted moving average calculation is the primary output image. The concentration distribution of is as shown in FIG.

【0012】図4より欠陥の範囲内の欠陥に垂直な1ラ
インを取り出すと図5の波形となり、欠陥周囲の濃度勾
配の急変部が一次処理画像ではそれぞれ正負のピークと
なって現れる。この正負のピーク間の位置ずれを測定
し、図6に示すごとく短時間自己相関関数の重みw
(i,j)が前記位置ずれ量位置に負のピークを持つよ
うに設定して図4の短時間自己相関を求めることによ
り、図7に示すような欠陥位置のみで大きな正の値を持
つ信号、すなわち欠陥部のみを強調した画像を生成する
ことが可能となる。
If one line perpendicular to the defect within the defect range is taken out from FIG. 4, the waveform becomes as shown in FIG. 5, and the sudden change portion of the density gradient around the defect appears as positive and negative peaks in the primary processed image. The positional deviation between the positive and negative peaks is measured, and the weight w of the short-time autocorrelation function is measured as shown in FIG.
By setting (i, j) to have a negative peak at the position shift amount position and obtaining the short-time autocorrelation in FIG. 4, a large positive value is obtained only at the defect position as shown in FIG. It is possible to generate an image in which only the signal, that is, the defective portion is emphasized.

【0013】したがって、多くの欠陥の表面画像を採取
して各々の一次処理画像を分析し、欠陥部の正負のピー
クの位置ずれ量のヒストグラムに−1をかけたものと同
型の短時間自己相関関数重みw(i,j)を用いて短時
間自己相関関数を求めることにより、全ての欠陥を検出
可能な欠陥強調画像を得ることが可能となる。しかも、
この欠陥強調画像は画像濃度勾配が指定距離で急変する
部分のみで大きな正の値を持つため、欠陥等の微小領域
のみが強調され背景等の広範囲な領域にわたる濃度変動
の影響を受けることなく正確に目的とする欠陥のみを検
出することが可能である。
Therefore, a short-time autocorrelation of the same type as that obtained by multiplying the histogram of the positional deviation amount of the positive and negative peaks of the defect portion by -1 by collecting surface images of many defects and analyzing each primary processed image By obtaining the short-time autocorrelation function using the function weight w (i, j), it becomes possible to obtain a defect-enhanced image in which all the defects can be detected. Moreover,
This defect-enhanced image has a large positive value only in the area where the image density gradient changes abruptly at a specified distance, so only minute areas such as defects are emphasized and accurate without being affected by density fluctuations over a wide area such as the background. It is possible to detect only the target defect.

【0014】また2種類の一次処理画像算出手段を有す
る場合、各々の2次元移動平均演算の際の重み係数b1
(i,j)、b2 (i,j)を、例えば図2の欠陥を検
出する場合は、その疵に平行方向成分として図8のbb
(i)に示すように平滑化を狙った形式、垂直方向成分
として図9のba1(i)、ba2(i)のように、不完全
微分型でかつ互いが異符号で代表的な欠陥幅分だけずら
した形式に設定すると、一次出力画像の中から1ライン
を取り出したもののそれぞれの波形は、図10のように
なり、さらに両者の短時間相互相関関数を演算する際の
重みw(i,j)を、j≠0のとき0、j=0のとき前
記欠陥部の正負のピーク位置ずれ量ヒストグラムの横軸
を、代表的な欠陥幅分だけ負方向にずらしたものと同型
に設定すれば、欠陥強調画像の1ラインは図11として
得られ、前記短時間自己相関関数を用いた時と同じ結果
を得ることが可能となる。
When two types of primary processed image calculation means are provided, the weighting coefficient b 1 in each two-dimensional moving average calculation
When (i, j) and b 2 (i, j) are detected, for example, in the defect of FIG. 2, b b of FIG.
As shown in (i), a form aiming at smoothing, and as a vertical direction component, as shown in b a1 (i) and b a2 (i) in FIG. When set to a format shifted by the defect width, the waveforms of one line extracted from the primary output image are as shown in FIG. 10, and the weight w for calculating the short-time cross-correlation function of both is calculated. (I, j) is the same as 0 when j ≠ 0, and when j = 0, the horizontal axis of the positive / negative peak position deviation amount histogram of the defect portion is shifted in the negative direction by a typical defect width. If set to, one line of the defect-emphasized image is obtained as shown in FIG. 11, and it is possible to obtain the same result as when the short-time autocorrelation function is used.

【0015】また、欠陥の幅方向寸法がほぼ一様であ
り、前記欠陥部の正負のピーク位置ずれ量の分布が1画
素以下の狭い範囲に集中しているような欠陥のみを検出
する場合には、
Further, in the case of detecting only defects in which the size of the defect in the width direction is substantially uniform and the distribution of the positive and negative peak position deviation amounts of the defect portion is concentrated in a narrow range of 1 pixel or less. Is

【0016】[0016]

【数3】 (Equation 3)

【0017】と設定、すなわち2つの一次出力画像の画
像間乗算を行うのみで欠陥強調画像を作成することが可
能となる。
It is possible to create a defect-enhanced image by simply setting the following, that is, performing the multiplication between the images of the two primary output images.

【0018】[0018]

【実施例】以下に本発明をその実施例を示す図面にもと
づいて具体的に説明する。本実施例は搬送中の熱間スラ
ブ表面の縦割れ欠陥検査を行う場合である。図12は本
実施例に係る欠陥検出方法の実施状態を示す模式図であ
る。表面の欠陥を検出すべき被検査物たるスラブ1は、
搬送テーブル2により紙面に向かって左から右に搬送さ
れる。スラブ1の上方には照明光源3及びラインセンサ
カメラ4が設置されており、光源3からの照明によりス
ラブ1の表面画像がカメラ4に得られるようになってい
る。また、カメラ4は、搬送テーブル2の駆動装置5に
機械的に接続されたエンコーダ6のパルス信号と共に、
スラブの表面欠陥を検出する画像処理装置7に接続され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. In this embodiment, a vertical crack defect inspection is performed on the surface of the hot slab during transportation. FIG. 12 is a schematic diagram showing an implementation state of the defect detection method according to the present embodiment. The slab 1, which is the object to be inspected for detecting surface defects,
The transport table 2 transports the sheet from left to right toward the paper surface. An illumination light source 3 and a line sensor camera 4 are installed above the slab 1, and a surface image of the slab 1 can be obtained by the camera 4 by illumination from the light source 3. In addition, the camera 4 and the pulse signal of the encoder 6 mechanically connected to the driving device 5 of the transport table 2,
It is connected to an image processing device 7 that detects surface defects on the slab.

【0019】次に動作について説明する。カメラ4で得
られたスラブ1の1ライン分の表面画像はスキャン周期
毎に順次画像処理装置7に送られ、エンコーダ6の信号
を用いて画像処理装置7のメモリ上にスラブ1の2次元
の表面画像が展開され、以下に示す手順で画像処理され
て表面欠陥が検出される。
Next, the operation will be described. The surface image of one line of the slab 1 obtained by the camera 4 is sequentially sent to the image processing device 7 for each scan cycle, and the signal of the encoder 6 is used to store the two-dimensional image of the slab 1 in the memory of the image processing device 7. The surface image is developed, and image processing is performed by the procedure described below to detect the surface defect.

【0020】被検査スラブは表面欠陥検出のために前も
ってデスケーリングされているため、ここに存在する表
面欠陥は画像処理装置7内で展開された表面画像におい
て概ね目視確認可能ではあるが、スケール残り、および
前工程の幅圧延に伴う圧延模様、幅方向中央付近の肉引
け部位内のしわ、連続鋳造機による鋳造の際のオシレー
ションマーク等も表面画像に現れる。したがって、画像
処理7内で展開された表面画像は、欠陥のみならずスケ
ール残り等の外乱においても欠陥部と同程度の画素濃度
振幅や濃度勾配を持つ。ただし、縦割れ欠陥が存在する
部分はその他の外乱部分と比較して、欠陥と平行な方向
には谷状波形の連続性があり、かつ、波形上の谷の幅が
狭いことが確かめられる。
Since the slab to be inspected has been descaled in advance for the purpose of detecting surface defects, the surface defects existing there are almost visually observable in the surface image developed in the image processing apparatus 7, but the scale remains. , And the rolling pattern associated with the width rolling in the previous step, wrinkles in the shrinkage area near the center in the width direction, and oscillation marks at the time of casting by the continuous casting machine appear on the surface image. Therefore, the surface image developed in the image processing 7 has the same pixel density amplitude and density gradient as the defect portion not only in the defect but also in the disturbance such as scale remaining. However, it can be confirmed that the portion where the vertical crack defect exists has continuity of a valley waveform in the direction parallel to the defect and the width of the valley on the waveform is narrower than that of the other disturbance portion.

【0021】この表面画像の1ライン毎に図13に示す
画像処理回路の原信号入力部11より入力される。図中
12,16はカメラ走査方向に重み付き移動平均を行う
ためのFIRフィルタ素子、13,17は走査方向移動
平均結果を保持するためのローテイトメモリ、14,1
8はローテイトメモリに保存された画像に対してスラブ
長さ方向に重み付き移動平均を行うFIRフィルタ素
子、15,19は演算結果画像のエリア毎の2乗和を一
定にする、すなわち
Each line of the surface image is input from the original signal input unit 11 of the image processing circuit shown in FIG. In the figure, 12 and 16 are FIR filter elements for performing a weighted moving average in the camera scanning direction, 13 and 17 are rotate memories for holding the scanning direction moving average results, and 14 and 1.
Reference numeral 8 is an FIR filter element for performing a weighted moving average in the slab length direction on the image stored in the rotating memory, and 15 and 19 are for making the sum of squares for each area of the calculation result image constant, that is,

【0022】[0022]

【数4】 (Equation 4)

【0023】ただし、 但しu(i,j):入力画像の(i,j)要素の濃度 σu :入力画像のエリア内2乗平均値の平方根 の演算を行う正規化演算処理部であり、これらが縦続に
接続された回路が2系統存在し各々並列に動作して2つ
の一次処理画像を出力する。
Where u (i, j): the density of the (i, j) element of the input image σ u : a normalization processing unit for calculating the square root of the root mean square value of the input image, There are two systems in which these are connected in cascade, and each operates in parallel to output two primary processed images.

【0024】次に前記演算の結果得られた2つの一次処
理画像に対し画像間乗算部20で両信号を演算し、これ
をFIRフィルタ素子21を用いてカメラ走査方向の短
時間相互相関関数を計算し、この値を各画素の濃度とし
て欠陥強調画像とする。さらに、この欠陥強調画像を、
一定の閾値で2値化して2値化後のエリア寸法を計測す
る計測部22に入力して得られた寸法情報をもとに欠陥
判定部23で欠陥の判定を行う。カメラ走査方向及びス
ラブ長さ方向の1次元重み付き移動平均演算を行うFI
Rフィルタ素子12と14(または16と18)をロー
テイトメモリ13(又は17)を介して縦続接続して行
うことは、カメラ走査方向およびスラブ長さ方向のそれ
ぞれの移動平均重み係数をba (i)、bb (i)とす
ると、
Next, for the two primary processed images obtained as a result of the above-mentioned calculation, both signals are calculated in the inter-image multiplication section 20, and a short-time cross-correlation function in the camera scanning direction is calculated using the FIR filter element 21. Calculation is performed, and this value is used as the density of each pixel to form a defect-emphasized image. Furthermore, this defect emphasized image is
The defect determination section 23 determines a defect based on the dimension information obtained by binarizing the area with a constant threshold and inputting the binarized area dimension to the measuring section 22. FI for performing one-dimensional weighted moving average calculation in the camera scanning direction and slab length direction
Cascade connection of the R filter elements 12 and 14 (or 16 and 18) via the rotation memory 13 (or 17) means that the moving average weighting factors in the camera scanning direction and the slab length direction are b a ( i) and b b (i),

【0025】[0025]

【数5】 (Equation 5)

【0026】の重み係数による2次元重み付き移動平均
を行うことと等価である。また正規化演算を正規化演算
処理部15、19で行うことは、スラブの表面性状が一
般に材毎(例えば幅圧延の圧化率の相違)、または場所
毎(例えば幅圧延後の肉引け部と平坦部)に応じて変動
し、これに伴って2次元重み付き移動平均演算結果の絶
対値が変動するのを抑制するためである。
It is equivalent to performing a two-dimensional weighted moving average using the weighting factor of. Further, the normalization operation is performed by the normalization operation processing units 15 and 19 so that the surface texture of the slab is generally for each material (for example, the difference in compression ratio of width rolling) or for each place (for example, the thinning portion after width rolling). This is for suppressing that the absolute value of the two-dimensional weighted moving average calculation result fluctuates.

【0027】本例の縦割れ欠陥検出の場合、カメラ走査
方向の移動平均用重み係数は、図13中FIRフィルタ
素子12、16に対してそれぞれ図9のba1(i)、b
a2(i)を設定し、スラブ長さ方向の移動平均用重み係
数は図13中のFIRフィルタ素子14、18の両方に
対して図8のbb (i)を設定しており、その結果、2
つの一次処理画像の欠陥周囲部の1ラインは、それぞれ
図10(i)のx1 ,x2 となり、欠陥位置で双方が正
の比較的大きい濃度値となる。次に、一次処理画像x
1 ,x2 内の同じ画素位置の濃度値の乗算を、画像内全
ての画素について行った後、短時間相互相関関数演算用
重みw(i,j)を、
In the case of the vertical crack defect detection of this example, the moving average weighting coefficient in the camera scanning direction is b a1 (i), b in FIG. 9 for the FIR filter elements 12, 16 in FIG. 13, respectively.
a2 (i) is set, and the moving average weighting coefficient in the slab length direction is set to bb (i) in FIG. 8 for both the FIR filter elements 14 and 18 in FIG. Two
One line around the defect in each of the primary processed images becomes x 1 and x 2 in FIG. 10 (i), and both have a relatively large density value that is positive at the defect position. Next, the primary processed image x
After multiplying the density values at the same pixel positions in 1 and x 2 for all pixels in the image, the short-time cross-correlation function calculation weight w (i, j) is

【0028】[0028]

【数6】 (Equation 6)

【0029】に設定したFIRフィルタ21で演算処理
を行って得られた欠陥強調画像の1ラインを取り出すと
図11となり、欠陥部分のみが他と比較して正の大きな
値を得ることが可能となる。
FIG. 11 is obtained when one line of the defect-emphasized image obtained by performing the arithmetic processing with the FIR filter 21 set to is obtained, and it is possible to obtain a large positive value only for the defective portion as compared with the other. Become.

【0030】次に、連続鋳造機で鋳造され、サイジング
ミルと呼ばれる幅圧延機で粗圧延した表面欠陥(縦割
れ)の発生しているスラブについて、本実施例と前記特
開平1−253639号公報とで表面欠陥の調査を行っ
た結果を図14の(a)(b)に示す。図14(a)は
特開平1−253639号公報(従来法)で提案の方法
で、図14(b)は本実施例の方法で調査したものであ
る。これから判るように、過検出率0%の検査レベルに
おいては、従来法を用いた場合の欠陥検出率は20%程
度であったものが本実施例は95%程度にまで向上し
た。
Next, regarding a slab cast by a continuous casting machine and rough-rolled by a width rolling mill called a sizing mill and having surface defects (vertical cracks), this embodiment and the above-mentioned Japanese Patent Laid-Open No. 1-253639. The results of the surface defect investigation by and are shown in FIGS. 14 (a) and 14 (b). FIG. 14 (a) is the method proposed in Japanese Patent Application Laid-Open No. 1-253639 (conventional method), and FIG. 14 (b) is the method investigated in the present embodiment. As can be seen from the above, at the inspection level with an overdetection rate of 0%, the defect detection rate when the conventional method was used was about 20%, but in the present embodiment, it was improved to about 95%.

【0031】また、検出率95%の検査レベルにおいて
は、従来法を用いた場合の過検出率は100%(すなわ
ち全ての画像で欠陥ありと判断する)であったものが、
本実施例では0%に抑制することが可能となった。な
お、本例ではスラブ上面側の縦割れ欠陥検出のみ示した
が、スラブ下面側についても別の照明及びカメラを設置
し、ここで得られた信号に対して同様な信号処理を行う
構成とする場合には同時に両面を検査することも可能で
あるし、例えばエッジ割れ、横割れ等のスラブ長さ方向
と垂方向に発生する欠陥の検出のためには、カメラ走査
方向の移動平均用重み係数を図8のbb (i)、スラブ
長さ方向の移動平均用重み係数を各系統でそれぞれ、図
9のba1(i)、ba2(i)とすることで対応可能なこ
とは勿論である。
At the inspection level with a detection rate of 95%, the overdetection rate when the conventional method was used was 100% (that is, all images were judged to be defective).
In this example, it was possible to suppress the amount to 0%. Although only the vertical crack defect detection on the upper surface side of the slab is shown in this example, another illumination and camera are installed on the lower surface side of the slab, and the same signal processing is performed on the signal obtained here. In this case, it is possible to inspect both sides at the same time, and for detecting defects such as edge cracks and lateral cracks that occur in the slab length direction and the vertical direction, a weighting coefficient for moving average in the camera scanning direction is used. the b b in FIG. 8 (i), respectively the moving average for the weighting coefficients of the slab longitudinal direction in each line, b a1 (i) of FIG. 9, of course it can be coped with by a b a2 (i) Is.

【0032】[0032]

【発明の効果】本発明では原画像に対して2次元重み付
き移動平均、所謂空間フィルタ−を施した後、検出対象
である鋼板表面の情報を用いて重み付き自己相関あるい
は相互相関を求めて欠陥強調画像を得るため、照明むら
やスケ−ル、油滴のような背景濃度の急変があっても検
出対象である欠陥のみを高精度で検出することが可能と
なる。
According to the present invention, a two-dimensional weighted moving average, that is, a so-called spatial filter is applied to the original image, and then the weighted autocorrelation or cross-correlation is obtained using the information of the surface of the steel sheet to be detected. Since the defect-enhanced image is obtained, it is possible to detect only the defect to be detected with high accuracy even if there is a sudden change in background density such as uneven illumination, scale, or oil drop.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における欠陥強調画像を得るための画像
処理手順を示すフローチャートである。
FIG. 1 is a flowchart showing an image processing procedure for obtaining a defect-enhanced image according to the present invention.

【図2】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、表面画像の濃度分布の3次元表示図。
FIG. 2 is a three-dimensional display diagram of the density distribution of the surface image, showing the transition of the image along with the processing flow from the surface image to the defect emphasized image in the present invention, using an actual image example of the vertical crack defect.

【図3】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、一次処理画像を得るのに用いた移動平均
用重み係数を示す図。
FIG. 3 shows a transition of images according to a processing flow from a surface image to a defect-enhanced image in the present invention by using an example of an actual image of a vertical crack defect, and a moving average weight used for obtaining a primary processed image. The figure which shows a coefficient.

【図4】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、一次出力画像の3次元表示図。
FIG. 4 is a three-dimensional display diagram of a primary output image, showing a transition of an image along with a processing flow from a surface image to a defect-enhanced image in the present invention, using an actual image example of a vertical crack defect.

【図5】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、一次処理画像の欠陥に垂直な1ラインを
取りだした図。
FIG. 5 shows an image transition along with the processing flow from the surface image to the defect-enhanced image in the present invention by using an example of an actual image of a vertical crack defect, and one line perpendicular to the defect of the primary processed image is extracted. Fig.

【図6】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、1系統の一次処理画像を用いる際の短時
間自己相関関数の重み係数を示す図。
FIG. 6 shows a transition of images according to a processing flow from a surface image to a defect-enhanced image according to the present invention by using an example of an actual image of a vertical crack defect, and shows a short-time self-time when a primary processed image of one system is used. The figure which shows the weighting coefficient of a correlation function.

【図7】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、欠陥強調画像濃度の3次元表示図。
FIG. 7 is a three-dimensional display diagram of defect-enhanced image densities showing transitions of images according to a flow of processing from a surface image to a defect-enhanced image in the present invention, using an example of an actual image of a vertical crack defect.

【図8】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、移動平均用重み係数の疵に平行な成分と
垂直な成分を示す図。
FIG. 8 shows a transition of images according to a flow of processing from a surface image to a defect-enhanced image in the present invention by using an actual image example of a vertical crack defect, and shows a component parallel to a flaw of a moving average weighting coefficient, Of various components.

【図9】縦割れ欠陥の実画像例を用いて、本発明おける
表面画像から欠陥強調画像までの処理の流れに伴う画像
の推移を示し、移動平均用重み係数の疵に平行な成分と
垂直な成分を示す図。
FIG. 9 shows an image transition accompanying a processing flow from a surface image to a defect-enhanced image according to the present invention, using an example of an actual image of a vertical crack defect, showing a component parallel to a flaw of a moving average weighting coefficient Of various components.

【図10】縦割れ欠陥の実画像例を用いて、本発明おけ
る表面画像から欠陥強調画像までの処理の流れに伴う画
像の推移を示し、2系統の一次処理画像から欠陥に垂直
な1ラインを取りだした図。
FIG. 10 shows a transition of images according to the flow of processing from the surface image to the defect-enhanced image in the present invention by using an example of an actual image of a vertical crack defect, and shows one line perpendicular to the defect from the primary processed image of two systems. The figure which took out.

【図11】縦割れ欠陥の実画像例を用いて、本発明おけ
る表面画像から欠陥強調画像までの処理の流れに伴う画
像の推移を示し、欠陥強調画像内の欠陥に垂直な1ライ
ンを取りだした図。
FIG. 11 shows a transition of an image according to a processing flow from a surface image to a defect-enhanced image according to the present invention by using an actual image example of a vertical crack defect, and one line perpendicular to the defect in the defect-enhanced image is extracted. The figure.

【図12】本実施例の設備配置を示す模式図。FIG. 12 is a schematic diagram showing the equipment arrangement of the present embodiment.

【図13】本実施例における画像処理手順を示すフロー
チャート。
FIG. 13 is a flowchart showing an image processing procedure in this embodiment.

【図14】従来、および本発明の欠陥検出方法による未
検出率、過検出率を示すグラフ。
FIG. 14 is a graph showing a non-detection rate and an over-detection rate according to the conventional and defect detection methods of the present invention.

【符号の説明】[Explanation of symbols]

1 スラブ 2 搬送テーブル 3 照明光源 4 ラインセンサカメラ 5 駆動装置 6 エンコーダ 7 画像処理装置 1 Slab 2 Transport table 3 Illumination light source 4 Line sensor camera 5 Driving device 6 Encoder 7 Image processing device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年1月12日[Submission date] January 12, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】[0016]

【数3】 (Equation 3)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】[0028]

【数6】 (Equation 6)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査物の表面画像を得て、該表面画像
を画像処理して前記被検査物の表面欠陥を検出する欠陥
検出方法において、前記表面画像に2種類の2次元重み
付き移動平均を施した2つの信号系列に対して、遅延の
異なる複数の短時間相互相関関数を求め、これらの重み
付き和を各画素の濃度値として構成した画像を得ること
を特徴とする欠陥検出方法。
1. A defect detection method for obtaining a surface image of an object to be inspected and image-processing the surface image to detect a surface defect of the object to be inspected, wherein two kinds of two-dimensional weighted movement are performed on the surface image. A defect detection method, characterized in that a plurality of short-time cross-correlation functions with different delays are obtained for two averaged signal sequences, and an image in which the weighted sum of these is configured as the density value of each pixel is obtained. .
【請求項2】 被検査物の表面画像を得て、該表面画像
を画像処理して前記被検査物の表面欠陥を検出する欠陥
検出方法において、前記表面画像に2種類の2次元重み
付き移動平均を施した2つの信号系列に対して、両信号
の乗算を行って欠陥部のみを強調した画像を得ることを
特徴とする欠陥検出方法。
2. A defect detection method for obtaining a surface image of an object to be inspected and image-processing the surface image to detect surface defects of the object to be inspected, wherein two kinds of two-dimensional weighted movements are applied to the surface image. A defect detection method, wherein an image in which only a defective portion is emphasized is obtained by multiplying both signals by averaging two signal sequences.
JP35233495A 1995-12-28 1995-12-28 Defect detection method Expired - Fee Related JP3145296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35233495A JP3145296B2 (en) 1995-12-28 1995-12-28 Defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35233495A JP3145296B2 (en) 1995-12-28 1995-12-28 Defect detection method

Publications (2)

Publication Number Publication Date
JPH09184812A true JPH09184812A (en) 1997-07-15
JP3145296B2 JP3145296B2 (en) 2001-03-12

Family

ID=18423350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35233495A Expired - Fee Related JP3145296B2 (en) 1995-12-28 1995-12-28 Defect detection method

Country Status (1)

Country Link
JP (1) JP3145296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196982A (en) * 2010-03-17 2011-10-06 Cognex Kk Defect detection method, defect detection device, and program
JP2013122431A (en) * 2011-12-12 2013-06-20 Shimadzu Corp Data processing device for scanning probe microscope
JP2017182561A (en) * 2016-03-31 2017-10-05 キヤノン株式会社 Signal extraction processing device and signal extraction processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196982A (en) * 2010-03-17 2011-10-06 Cognex Kk Defect detection method, defect detection device, and program
JP2013122431A (en) * 2011-12-12 2013-06-20 Shimadzu Corp Data processing device for scanning probe microscope
JP2017182561A (en) * 2016-03-31 2017-10-05 キヤノン株式会社 Signal extraction processing device and signal extraction processing method

Also Published As

Publication number Publication date
JP3145296B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
EP0594220B1 (en) Roll mark inspection apparatus
JP5347661B2 (en) Belt surface inspection apparatus, surface inspection method, and program
JPH06148098A (en) Surface defect inspection apparatus
JPH09184812A (en) Flaw detection method
EP0488188B1 (en) Method of and apparatus for inspecting the width of a wiring line on a printed board
JP5157575B2 (en) Defect detection method
JPH01209307A (en) Method for inspecting surface configuration of welded portion
JP2962171B2 (en) Surface flaw inspection equipment
JP2686053B2 (en) Defect inspection method by visual inspection
JP2965370B2 (en) Defect detection device
JPS6250775B2 (en)
JP3340879B2 (en) Surface defect detection method and apparatus
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JP4863117B2 (en) High temperature steel surface inspection equipment
JPH09145638A (en) Method and device for detecting surface defect
JPS5981544A (en) Detecting method of internal defect
JP2000035321A (en) Inspection device for surface of metal zone
JPH0569536A (en) Defect detecting method and defect detecting circuit in inspection device for printed matter
JPH0755723A (en) Surface inspection and device used therefor
JPH0815180A (en) Apparatus and method for detecting surface flaw
JP3127087B2 (en) Method and apparatus for edge detection processing of gray image
JP2536745B2 (en) PCB cut condition inspection method
JP2005265639A (en) Method and device of detecting roll scratch in strip body
JP2508662Y2 (en) Flaw detection device
JP3146882B2 (en) Picture inspection method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

LAPS Cancellation because of no payment of annual fees