JPH0477239B2 - - Google Patents

Info

Publication number
JPH0477239B2
JPH0477239B2 JP57195994A JP19599482A JPH0477239B2 JP H0477239 B2 JPH0477239 B2 JP H0477239B2 JP 57195994 A JP57195994 A JP 57195994A JP 19599482 A JP19599482 A JP 19599482A JP H0477239 B2 JPH0477239 B2 JP H0477239B2
Authority
JP
Japan
Prior art keywords
cavity
heat exchange
liquid
porous layer
exchange wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195994A
Other languages
Japanese (ja)
Other versions
JPS5986898A (en
Inventor
Kazuaki Yokoi
Hideo Nakae
Takahiro Ooguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19599482A priority Critical patent/JPS5986898A/en
Publication of JPS5986898A publication Critical patent/JPS5986898A/en
Publication of JPH0477239B2 publication Critical patent/JPH0477239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷凍機に用いるのに適した金属性の熱
交換壁の製作法に係るものであり、特に表面に多
孔質層を備えた熱交換壁の製作法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a metallic heat exchange wall suitable for use in a refrigerator, and particularly to a heat exchange wall having a porous layer on the surface. Concerning wall construction methods.

〔従来技術〕[Prior art]

従来の熱交換壁としてはパイプやプレートの表
面からこれと接触する液体例えばフロン液、液体
窒素あるいは液体酸素等へ高効率で熱伝達させる
試みとして第1図に示す熱交換壁が提案されてい
る。これは液体と接触する熱交換壁1の表皮帯域
に多数の細長い空洞2が設けられ、この空洞2は
多数の微小な貫通孔3によつて外部と連通してい
る。熱交換壁1の空洞2は一般に機械的な切削加
工あるいはロールなどによる塑性加工によつて熱
交換壁1の母材に溝を形成し、その後空洞2の側
壁間5より小さい多数の貫通孔3が空洞の真上に
来るように、多数の貫通孔3を有する多孔板4を
溝部の上にかぶせて結合することにより製作され
る。
As a conventional heat exchange wall, the heat exchange wall shown in Figure 1 has been proposed in an attempt to transfer heat with high efficiency from the surface of a pipe or plate to a liquid that comes into contact with it, such as fluorocarbon liquid, liquid nitrogen, or liquid oxygen. . A number of elongated cavities 2 are provided in the skin zone of the heat exchange wall 1 which is in contact with the liquid, and these cavities 2 communicate with the outside by a number of minute through holes 3. The cavity 2 of the heat exchange wall 1 is generally formed by forming grooves in the base material of the heat exchange wall 1 by mechanical cutting or plastic processing using rolls, etc., and then forming a large number of through holes 3 smaller than the space between the side walls 5 of the cavity 2. It is manufactured by covering and bonding a perforated plate 4 having a large number of through holes 3 over the groove so that the hole is directly above the cavity.

かかる構成の熱交換壁であれば、この壁をこれ
と接触する液体より高い温度に加熱すると、第2
図に沸騰状態を示すように空洞2内に蒸気泡6が
発生し成長する。空洞2内の蒸気圧が外部より高
くなると貫通孔3から蒸気泡6の一部は放出し離
脱する。残りの蒸気泡は空洞2内に残留し保持す
る。その際空洞2内に圧力変化が生じ、蒸気6を
放出した貫通孔3と別の貫通孔3′から液が矢印
で示すように空洞内に浸入する。浸入液は空洞2
内の四隔に毛細管力によつて流入し、極端に薄い
液膜8を形成する。この薄い液膜8の表面から蒸
発が起り空洞2内の蒸気泡6を成長させこれを繰
返す。しかしながら貫通孔3から空洞2に流入す
る液は多孔板4の裏面を通つて流れ込むために浸
入液は直接空洞2の四隔に流入できない。従つて
熱交換壁1の過熱度が大きい場合、浸入液にとつ
て流動抵抗が大きいので空洞2内の液の補給が液
膜6の蒸発に対して追いつかず、ついに空洞内は
液枯れ状態になる。従つて熱交換壁の伝熱性能を
向上させることはできない。
With a heat exchange wall having such a configuration, when this wall is heated to a higher temperature than the liquid in contact with it, the second
As shown in the figure in a boiling state, steam bubbles 6 are generated and grow within the cavity 2. When the vapor pressure inside the cavity 2 becomes higher than that outside, some of the vapor bubbles 6 are released from the through hole 3 and separated. The remaining vapor bubbles remain within the cavity 2 and are retained. At this time, a pressure change occurs in the cavity 2, and liquid enters the cavity from the through hole 3 from which the steam 6 was released and another through hole 3' as shown by the arrow. Infiltrated liquid is in cavity 2
The liquid flows into the inner quadrants by capillary force, forming an extremely thin liquid film 8. Evaporation occurs from the surface of this thin liquid film 8, causing vapor bubbles 6 to grow within the cavity 2, and this process is repeated. However, since the liquid flowing into the cavity 2 from the through hole 3 flows through the back surface of the perforated plate 4, the infiltrating liquid cannot directly flow into the four partitions of the cavity 2. Therefore, when the degree of superheating of the heat exchange wall 1 is high, the flow resistance for the infiltrating liquid is large, so that the replenishment of the liquid in the cavity 2 cannot keep up with the evaporation of the liquid film 6, and the inside of the cavity eventually becomes dry. Become. Therefore, the heat transfer performance of the heat exchange wall cannot be improved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の欠点を改良しかつ効率の
良いしかも廉価な熱交換壁の製法を提供すること
である。
The object of the present invention is to overcome the above-mentioned drawbacks and to provide an efficient and inexpensive method for producing heat exchange walls.

〔発明の特徴〕[Features of the invention]

この目的を達成するために、本発明は金属性の
熱交換壁表面に形成された多数の細長い空洞の上
部に積重ねた金属繊維に荷重を加え真空中で加熱
して、連通する細孔を備える多孔質層を熱交換壁
表面に設けることを特徴としている。
To achieve this objective, the present invention applies a load to metal fibers stacked on top of a large number of elongated cavities formed on the surface of a metal heat exchange wall and heats them in a vacuum to form communicating pores. It is characterized by providing a porous layer on the surface of the heat exchange wall.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明す
る。第3図は第1図の熱交換壁表面の溝状の細長
い空洞上に銅繊維を積層した多孔質層断面の模式
図である。このような構造の熱交換壁は容易に製
作が可能である。最初に熱交換壁の表面に機械的
切削加工あるいはロール加工等の塑性加工により
多数の細長い溝状の空洞2を設ける。空洞の大き
さは巾0.2mm以上で2mmまで、ピツチは0.4mm以上
2.2mmまで、深さは0.2mm以上1mmまでが適当であ
る。上記空洞上に直径0.18mm長さ5mmの銅線の繊
維10を個々ばらばらに積層させた後、真空中に
て915℃に加熱することにより焼結させたもので
ある。このとき、繊維積層面に単位面積当りで2
Kg/cm2の圧力を与えている。これにより多孔質層
の空障率は容積比で60%となり、表面と溝状の空
洞は多孔質層9の空孔を介して連通している。繊
維の直径は0.05mmより大きくなければならない。
この直径より小さいと伝熱上望ましい0.05mm以上
の細孔を得ることが困難となる。一方、繊維の長
さは2mm以上であらねばならない。これより短い
と、繊維が溝状の空洞中に極端にたい積し、空洞
の効果を著しく損う。
An embodiment of the present invention will be described below with reference to FIG. FIG. 3 is a schematic cross-sectional view of a porous layer in which copper fibers are laminated on the groove-like elongated cavity on the surface of the heat exchange wall shown in FIG. A heat exchange wall having such a structure can be easily manufactured. First, a large number of elongated groove-shaped cavities 2 are provided on the surface of the heat exchange wall by mechanical cutting or plastic processing such as roll processing. The size of the cavity is 0.2 mm or more in width and up to 2 mm, and the pitch is 0.4 mm or more.
The appropriate depth is 0.2 mm or more and up to 1 mm. Copper wire fibers 10 each having a diameter of 0.18 mm and a length of 5 mm were individually laminated on the cavity, and then sintered by heating to 915° C. in a vacuum. At this time, 2 per unit area on the fiber laminated surface.
A pressure of Kg/cm 2 is applied. As a result, the voidage ratio of the porous layer is 60% by volume, and the surface and the groove-like cavities are in communication through the pores of the porous layer 9. The fiber diameter must be greater than 0.05mm.
If the diameter is smaller than this, it becomes difficult to obtain pores of 0.05 mm or more, which is desirable for heat transfer. On the other hand, the fiber length must be 2 mm or more. If it is shorter than this, the fibers will accumulate excessively in the groove-like cavity, significantly impairing the effectiveness of the cavity.

上記の方法により得られる細孔は直径で0.05mm
以上で1mmまでとし、特に0.1mmから0.3mmまでが
望ましい。これは、直径が0.05mm以下では空洞内
への液の流入が困難となり、1mm以上では液の流
入が容易なために空洞を液が満たすことにより蒸
気泡の発生が困難となるためである。また、多孔
質層9の厚さは0.05mmの細孔を得るには少くとも
0.2mm以上が必要となる。
The pores obtained by the above method are 0.05mm in diameter.
The above range should be up to 1mm, and preferably 0.1mm to 0.3mm. This is because if the diameter is less than 0.05 mm, it will be difficult for liquid to flow into the cavity, and if the diameter is 1 mm or more, liquid will flow easily, and the liquid will fill the cavity, making it difficult to generate vapor bubbles. In addition, the thickness of the porous layer 9 is at least
0.2mm or more is required.

このようにして構成された熱交換壁はこれと接
触する液体より高い温度に加熱されると空洞内に
蒸気泡が発生し空洞内に充満する。この蒸気泡の
圧力が外部液よりも高くなると、多孔質層中の比
較的大きい連通孔より蒸気泡の一部が放出され、
他の蒸気泡は残留蒸気泡として空洞内に保持され
る。この際、空洞内には圧力変化が生じ、蒸気泡
を放出した連通孔以外の多数の連通孔より空洞内
に液が容易に流入する。流入した液は毛細管現象
によつて運ばれ、膜厚が極端に薄い液膜を構成す
る。このとき、空洞の隅と繊維が直接結合してい
るために、毛細管現象により液が流入し易く薄い
液膜からの蒸発に対する液の補給が円滑に行なわ
れる。また、連通孔の大きさも異なつているため
に各々の孔で流動抵抗が異なり、空洞内で発生す
る蒸気は必ず連通孔の大きい孔から放出離脱し、
細かい孔から液が流入する場所が安定するため、
結局伝熱性能を向上させる。
When the heat exchange wall constructed in this manner is heated to a higher temperature than the liquid in contact with it, vapor bubbles are generated within the cavity and fill the cavity. When the pressure of these vapor bubbles becomes higher than that of the external liquid, some of the vapor bubbles are released from relatively large communicating pores in the porous layer.
Other vapor bubbles are retained within the cavity as residual vapor bubbles. At this time, a pressure change occurs within the cavity, and the liquid easily flows into the cavity through a number of communication holes other than the communication hole through which the vapor bubbles were released. The inflowing liquid is transported by capillary action and forms an extremely thin liquid film. At this time, since the corners of the cavity and the fibers are directly connected, the liquid easily flows in due to capillary action, and the liquid is smoothly replenished against evaporation from the thin liquid film. In addition, since the communicating holes are of different sizes, the flow resistance is different for each hole, and the steam generated within the cavity is always released and separated from the large communicating holes.
Because the place where the liquid flows through the small pores becomes stable,
Ultimately, it improves heat transfer performance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば熱交換表皮下の空洞内に流入す
る液の流入抵抗を減らすことにより沸騰熱伝達特
性が向上し、しかも異なつた特性を持つた高性能
伝熱壁を製作できる等の効果がある。
According to the present invention, the boiling heat transfer characteristics are improved by reducing the inflow resistance of the liquid flowing into the cavity under the heat exchange skin, and furthermore, high performance heat transfer walls with different characteristics can be manufactured. be.

第4図は本発明の効果を示す一実験例であり、
本発明の方法により製造された伝熱壁並びに従来
の伝熱壁の沸騰性能(令媒フレオンR−11を使
用)を比較して示している。横軸は冷媒液の飽和
温度からの伝熱壁面の過熱度ΔT(℃)を、縦軸
は熱流束q(W/cm2)を示す。曲線Aは第1図に
示す構造で空洞ピツチ0.55mm深さ0.4mm貫通孔大
きさ0.1mmピツチ0.7mmの場合である。曲線Bは第
3図に示す本発明構造のもので第1図溝空洞上に
繊維直径0.18mm、長さ5mm、多孔質層厚さ1mm、
多孔質層空洞容積率60%のものである。この図よ
り明らかなように同一熱流束の場合、曲線Bの方
が過熱度が小さく、この傾向は熱流束が大きい程
顕著である。このように本発明の製作法により製
作した熱交換壁は従来の熱交換壁より高い伝熱性
能を有していることが明らかである。
FIG. 4 is an experimental example showing the effect of the present invention.
The boiling performance (using Freon R-11 reagent) of a heat transfer wall manufactured by the method of the present invention and a conventional heat transfer wall are compared and shown. The horizontal axis shows the superheat degree ΔT (°C) of the heat transfer wall surface from the saturation temperature of the refrigerant liquid, and the vertical axis shows the heat flux q (W/cm 2 ). Curve A is for the structure shown in FIG. 1, with a cavity pitch of 0.55 mm, depth of 0.4 mm, through-hole size of 0.1 mm, and pitch of 0.7 mm. Curve B is for the structure of the present invention shown in FIG. 3, with fiber diameter 0.18 mm, length 5 mm, porous layer thickness 1 mm,
The porous layer has a cavity volume ratio of 60%. As is clear from this figure, when the heat flux is the same, curve B has a smaller degree of superheating, and this tendency becomes more pronounced as the heat flux increases. As described above, it is clear that the heat exchange wall manufactured by the manufacturing method of the present invention has higher heat transfer performance than the conventional heat exchange wall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換壁を示す一部分断面にし
た斜視図、第2図は第1図の熱交換壁の沸騰状態
を説明する斜視図、第3図は本発明の製作法によ
る熱交換壁多孔質層の断面の模式図、第4図は本
発明の製作法による熱交換壁および従来の熱交換
壁の沸騰伝熱性能を示すグラフである。 1…熱交換壁、2…空洞、3…貫通孔。
Fig. 1 is a partially cutaway perspective view showing a conventional heat exchange wall, Fig. 2 is a perspective view illustrating the boiling state of the heat exchange wall in Fig. 1, and Fig. 3 is a heat exchanger according to the manufacturing method of the present invention. FIG. 4, which is a schematic cross-sectional view of a wall porous layer, is a graph showing the boiling heat transfer performance of a heat exchange wall manufactured by the manufacturing method of the present invention and a conventional heat exchange wall. 1... Heat exchange wall, 2... Cavity, 3... Through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に多数の凹凸を有する金属基材の表面に
個々ばらばらの金属繊維を積層した多孔質層を形
成する熱交換壁の製作法において、多孔質層を形
成する金属繊維は直径が0.05mmより大きくかつ長
さが2mm以上のものを用い、これらの金属繊維を
無作為に金属基材の表面に積層した後、金属繊維
の積層面上に荷重を加え、真空中で加熱し、金属
繊維同志を固着して多孔質層を形成するとともに
金属繊維と金属基材とを互いに固着し、多孔質層
は繊維間で間〓を形成し、相互に連通する直径が
0.05mmから1mmの細孔を備えることを特徴とする
熱交換壁の製作法。
1. In the method of manufacturing a heat exchange wall that forms a porous layer in which individual metal fibers are laminated on the surface of a metal base material having many irregularities on the surface, the metal fibers forming the porous layer have a diameter of 0.05 mm or more. Using large metal fibers with a length of 2 mm or more, these metal fibers are randomly laminated on the surface of a metal base material, a load is applied to the laminated surface of the metal fibers, and the metal fibers are heated in a vacuum to make the metal fibers stick together. At the same time, the metal fibers and the metal base material are fixed to each other to form a porous layer, and the porous layer forms a gap between the fibers and has a diameter that communicates with each other.
A method of manufacturing a heat exchange wall characterized by having pores of 0.05 mm to 1 mm.
JP19599482A 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof Granted JPS5986898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19599482A JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19599482A JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5986898A JPS5986898A (en) 1984-05-19
JPH0477239B2 true JPH0477239B2 (en) 1992-12-07

Family

ID=16350448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19599482A Granted JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5986898A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348264A (en) * 1976-10-14 1978-05-01 Hitachi Cable Ltd Heat transfer surface by ebullition
JPS572998A (en) * 1980-06-05 1982-01-08 Sumitomo Electric Ind Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348264A (en) * 1976-10-14 1978-05-01 Hitachi Cable Ltd Heat transfer surface by ebullition
JPS572998A (en) * 1980-06-05 1982-01-08 Sumitomo Electric Ind Ltd Heat exchanger

Also Published As

Publication number Publication date
JPS5986898A (en) 1984-05-19

Similar Documents

Publication Publication Date Title
US4602681A (en) Heat transfer surface with multiple layers
WO2023024498A1 (en) Vapor chamber and electronic device
US7814655B2 (en) Heat sink in the form of a heat pipe and process for manufacturing such a heat sink
JP2008522129A (en) Steam chamber with boil-enhancing multi-wick structure
JPH0234183B2 (en)
TW200809158A (en) A method of manufacturing a heat transfer device
JP2011007365A (en) Aluminum fiber porous sintered molding and method of manufacturing the same
CN212013418U (en) High heat flux density temperature-uniforming plate
JPS60238698A (en) Heat exchange wall
TW202117258A (en) Non-oriented vapor chamber
CN215261346U (en) Temperature equalizing plate
CN110828404A (en) Micro-channel vapor chamber with recess structure
TWM596329U (en) Enhanced boiling device
JPH0477239B2 (en)
CN211832804U (en) Porous structure subassembly and electron cigarette
JP5741361B2 (en) Loop heat pipe and manufacturing method thereof
CN116734642A (en) High heat flux modularization samming board
US4890669A (en) Porous coating for enhanced tubes
CN210805756U (en) Micro-channel vapor chamber with recess structure
JPS62106292A (en) Heat transfer tube and manufacture thereof
JPS5993190A (en) Heat exchange wall
JPS5835394A (en) Heat-exchanging wall and production thereof
TW201502457A (en) Vapor chamber structure and manufacturing method thereof
CN218864862U (en) Partitioned micro-column heat conducting structure with directional heat transfer function
EP4019252A1 (en) Heat-transfer device and method to produce such a device