JPS5986898A - Heat exchanging wall and manufacture thereof - Google Patents

Heat exchanging wall and manufacture thereof

Info

Publication number
JPS5986898A
JPS5986898A JP19599482A JP19599482A JPS5986898A JP S5986898 A JPS5986898 A JP S5986898A JP 19599482 A JP19599482 A JP 19599482A JP 19599482 A JP19599482 A JP 19599482A JP S5986898 A JPS5986898 A JP S5986898A
Authority
JP
Japan
Prior art keywords
cavities
wall
liquid
porous layer
steam bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19599482A
Other languages
Japanese (ja)
Other versions
JPH0477239B2 (en
Inventor
Kazuaki Yokoi
和明 横井
Hideo Nakae
秀雄 中江
Takahiro Oguro
崇弘 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19599482A priority Critical patent/JPS5986898A/en
Publication of JPS5986898A publication Critical patent/JPS5986898A/en
Publication of JPH0477239B2 publication Critical patent/JPH0477239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Abstract

PURPOSE:To improve boiling heat transferring properties in a heat exchanger wall by decreasing the entrance resistance to liquid which flows into the cavities under the surface of a wall, by providing a porous layer, consisting of laminated fiber, to the top of a number of slender cavities formed in the surface of a heat exchanger wall, and by interconnecting the inside of cavities with the surface of a wall by through-holes in the porous layer. CONSTITUTION:First, a number of cavities 2 in the shape of slender grooves are provided to the surface of a heat exchanger wall by a plastic work such as a mechanical cutting or a rolling. The proper size of a cavity is above 0.2mm. up to 2mm. in width, above 0.4mm. up to 2.2mm. for a pitch, and above 0.2mm. up to 1mm. in depth. Copper wire fiber of 0.18mm. in diameter and of 5mm. in length are scattered and laminated on the above-mentioned cavities, and they are sintered in vacuum at 915 deg.C by heating. By constituting the heat exchanger wall in such a manner, steam bubbles are generated in the cavities, and they are filled with the steam bubbles, when the heat exchanger wall is heated up to the higher temperature than liquid which contacts to the wall. When the pressure of steam bubbles bebecomes higher tha the liquid outside, part of the steam bubbles is discharged from the through-holes which are comparatively large among the ones in the porous layer. The other steam bubbles are left in the cavities as residual steam bubbles. At this time, a change in pressure is produced in the cavities, and liquid can easily flow into the cavities passing through a number of through-holes other than ones through which steam bubbles are discharged.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷凍機に用いるに適した熱交換壁に係るもので
あり、また本発明はそのような熱交換壁を形成する方法
にも係るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat exchange wall suitable for use in a refrigerator, and the present invention also relates to a method of forming such a heat exchange wall. It is.

〔従来技術〕[Prior art]

従来の熱交換壁としてはパイプやプレートの表面からこ
れと接触する液体例えばフロン液、液体窒素あるいは液
体酸素等へ高効率で熱伝達させる試みとして第1図に示
す熱交換壁が提案されている。これは液体と接触する熱
交換壁1の表皮帯域に多数の細長い空洞2が設けられ、
この空洞2は多数の微小な甘過孔3によって外部と連通
している。熱交換壁1の空洞2は一般に機械的な切削加
工あるいはロールなどによる塑性加工によって熱交換壁
1の母材に溝を形成し、その後空洞2の側壁間5よシ小
さい多数の貫通孔3が空洞の真上に来るように、多数の
貫通孔3を有する多孔板4を溝部の上にかぶせて結合す
ることにょシ製作される。
As a conventional heat exchange wall, the heat exchange wall shown in Figure 1 has been proposed in an attempt to transfer heat with high efficiency from the surface of a pipe or plate to a liquid that comes into contact with it, such as fluorocarbon liquid, liquid nitrogen, or liquid oxygen. . It is provided with a number of elongated cavities 2 in the skin zone of the heat exchange wall 1 in contact with the liquid,
This cavity 2 is communicated with the outside through a large number of minute holes 3. The cavity 2 of the heat exchange wall 1 is generally formed by forming grooves in the base material of the heat exchange wall 1 by mechanical cutting or plastic processing using rolls, etc., and then a large number of through holes 3 smaller than the side walls 5 of the cavity 2 are formed. A perforated plate 4 having a large number of through holes 3 is placed over the groove and bonded so as to be directly above the cavity.

かかる構成の熱交換壁であれば、この壁をこれと接触す
る液体より高い温度に加熱すると、第2図に沸騰状態を
示すように空洞2内に蒸気泡6が発生し盛長する。空洞
2内の蒸気圧が外部より高くなると貫通孔3から蒸気泡
6の一部は放出し離脱する。残シの蒸気泡は空洞2内に
残留し保持する。その際空洞2内に圧力変化が生じ、蒸
気6を放出した貫通孔3と別の貫通孔3′から液が矢印
で示すように空洞内に浸入する。浸入液は空洞2内の四
隅に毛細管力によって流入し、極端に薄い液膜8を形成
する。この薄い液膜8の表面から蒸発が起シ空洞2内の
蒸気泡6を成長させこれを繰返す。しかしながら貫通孔
3がら空洞2に流入する液は多孔板4の裏面を通って流
れ込むために浸入液は直接空洞2の四隅に流入できない
。従って熱交換壁1の過熱度が大きい場合、浸入液にと
って流動抵抗が大きいので空洞2内の液の補給が液膜6
の蒸発に対して追いつかず、ついに空洞内は液枯れ状態
になる。従って熱交換壁の伝熱性能を向上させることは
できない。
With a heat exchange wall having such a structure, when the wall is heated to a higher temperature than the liquid in contact with the wall, vapor bubbles 6 are generated in the cavity 2 and grow as shown in a boiling state in FIG. 2. When the vapor pressure inside the cavity 2 becomes higher than that outside, some of the vapor bubbles 6 are released from the through hole 3 and separated. The remaining vapor bubbles remain within the cavity 2 and are retained. At this time, a pressure change occurs in the cavity 2, and liquid enters the cavity from the through hole 3 from which the steam 6 was released and another through hole 3' as shown by the arrow. The infiltrating liquid flows into the four corners of the cavity 2 by capillary force, forming an extremely thin liquid film 8. Evaporation occurs from the surface of this thin liquid film 8, causing vapor bubbles 6 to grow within the cavity 2, and this process is repeated. However, since the liquid flowing into the cavity 2 through the through-hole 3 flows through the back surface of the perforated plate 4, the liquid cannot directly flow into the four corners of the cavity 2. Therefore, when the degree of superheating of the heat exchange wall 1 is large, the flow resistance for the infiltrating liquid is large, so that the liquid in the cavity 2 cannot be replenished by the liquid film 6.
The liquid cannot keep up with the evaporation of the liquid, and the inside of the cavity eventually dries up. Therefore, the heat transfer performance of the heat exchange wall cannot be improved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の欠点を改良しかつ効率の良いしか
も廉価な熱交換壁を提供することである。
The object of the present invention is to overcome the above-mentioned drawbacks and to provide an efficient and inexpensive heat exchange wall.

〔発明の特徴〕[Features of the invention]

この目的を達成するために、本発明は熱交換壁表面に形
成された多数の細長い空洞の上部に積重ねた繊維からな
る多孔質層を設け、この多孔質層の連通孔で空洞内部と
表面を連通するようにしたことを特徴としている。
In order to achieve this objective, the present invention provides a porous layer made of stacked fibers on top of a large number of elongated cavities formed on the surface of the heat exchange wall, and communicates the interior and surface of the cavities with the communicating holes of this porous layer. It is characterized by being connected.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。第3
図は第1図の熱交換壁表面の溝状の細長い空洞上に銅繊
維を積層した多孔質層を表面より観察した写真および断
面の模式図である。このような構造の熱交換壁は容易に
製作が可能である。
An embodiment of the present invention will be described below with reference to FIG. Third
The figure is a photograph and a schematic cross-sectional view of a porous layer in which copper fibers are laminated on the groove-like elongated cavity on the surface of the heat exchange wall shown in FIG. 1, observed from the surface. A heat exchange wall having such a structure can be easily manufactured.

最初に熱交換壁の表面に機械的切削加工あるいはロール
加工等の塑性加工により多数の細長い溝状の空洞2を設
ける。空洞の大きさは巾0.2膿以上で2脳まで、ピッ
チは0.4 tm以上2.2胴まで、深さは0.2 r
rrm、IJ上1咽までが適当である。上記空洞上に直
径0.18肺長さ5司の銅線の繊維を個々ばらばらに積
層させた後、真空中にて915Cに加熱することによシ
焼結させたものである。このとき、繊維積層面に単位面
積当シで2 Kg / cm 2の圧力を与えている。
First, a large number of elongated groove-shaped cavities 2 are provided on the surface of the heat exchange wall by mechanical cutting or plastic processing such as roll processing. The size of the cavity is 0.2 m or more in width and up to 2 brains, the pitch is 0.4 tm or more and up to 2.2 m, and the depth is 0.2 r.
rrm, up to the first pharynx above IJ is appropriate. Copper wire fibers each having a diameter of 0.18 mm and a length of 5 mm were individually laminated on the above-mentioned cavity, and then sintered by heating to 915C in a vacuum. At this time, a pressure of 2 Kg/cm 2 per unit area was applied to the fiber lamination surface.

これによシ多孔質層の空隙率は容積比で60%となシ、
表面と溝状の空洞は多孔質層9の空孔を介して連通して
いる。繊維の直径は0.05mmより大きくなければな
らない。この直径より74%さいと伝熱上望ましい0.
05WrIn以上の細孔を得ることが困難となる。一方
、繊維の長さは2胴以上であらねばならない。これよシ
短いと、繊維が溝状の空洞中に極端にたい積し、空洞の
効果を著しく損う。
As a result, the porosity of the porous layer is 60% by volume.
The surface and the groove-shaped cavities communicate with each other through the pores of the porous layer 9. The fiber diameter must be greater than 0.05 mm. 74% smaller than this diameter is desirable for heat transfer.
It becomes difficult to obtain pores larger than 0.05WrIn. On the other hand, the length of the fiber must be two or more torsos. If it is too short, the fibers will accumulate excessively in the groove-like cavity, significantly impairing the effectiveness of the cavity.

上記の方法によシ得られる細孔は直径で0,05闘以上
で1肺までとし、特に0.1fiから0.3調までが望
ましい。これは、直径が0.05ttan以下では空洞
内への液の流入が困難となり、1胴以上では液の流入が
容易なために空洞を液が満たすことにより蒸気泡の発生
が困難となるためである。また、多孔質層9の厚さは0
.05mmの細孔を得るには少くとも0.2胴以上が必
要となる。
The pores obtained by the above method have a diameter of 0.05 mm or more and up to 1 lung, preferably 0.1 fi to 0.3 mm. This is because if the diameter is less than 0.05ttan, it will be difficult for the liquid to flow into the cavity, and if the diameter is more than 1 cylinder, it will be easy for the liquid to flow in, so the liquid will fill the cavity, making it difficult to generate vapor bubbles. be. Moreover, the thickness of the porous layer 9 is 0
.. To obtain a 0.05 mm pore, at least 0.2 cylinder or more is required.

このようにして構成された熱交換壁はこれと接触する液
体より高い温度に加熱されると空洞内に蒸気泡が発生し
空洞内に充満する。この蒸気泡の圧力が外部液よりも高
くなると、多孔質層中の比較的大きい連通孔よシ蒸気泡
の一部が放出され、他の蒸気泡は残留蒸気泡として空洞
内に保持される。この際、空洞内には圧力変化が生じ、
蒸気泡を放出した連通孔以外の多数の連通孔よシ空洞内
に故が容易に流入する。流入した液は毛細管現象に、し
って運ばれ、膜厚が極端に薄い液膜を構成する。このと
き、空洞の隅ど繊維が直接結合しているために、毛細管
現象により液が流入し易く薄い液膜からの蒸発に対する
液の補給が円滑に行なわれる。また、連通孔の太きさも
異なっているために各々の孔で流動抵抗が異なシ、空洞
内で発生する蒸気は必ず連通孔の大きい孔から放出離脱
し、細かい孔から液が流入する場所が安定するため、結
局伝熱性能を向上させる。
When the heat exchange wall constructed in this manner is heated to a higher temperature than the liquid in contact with it, vapor bubbles are generated within the cavity and fill the cavity. When the pressure of the vapor bubbles becomes higher than that of the external liquid, some of the vapor bubbles are released through the relatively large communication holes in the porous layer, and other vapor bubbles are retained within the cavity as residual vapor bubbles. At this time, pressure changes occur within the cavity,
The waste easily flows into the cavity through a large number of communication holes other than the communication hole from which the vapor bubbles were released. The inflowing liquid is transported by capillary action, forming an extremely thin liquid film. At this time, since the fibers at the corners of the cavity are directly connected, the liquid can easily flow in due to capillary action, and the liquid can be smoothly replenished against evaporation from the thin liquid film. Additionally, since the diameters of the communicating holes are different, the flow resistance is different for each hole, and the steam generated within the cavity is always released from the large holes in the communicating holes, while the liquid flows in through the small holes. Because it is stable, it ultimately improves heat transfer performance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば熱交換表皮下の空洞内に流入する液の流
入抵抗を減らすことによシ沸騰熱伝達特性が向上し、し
かも異なった特性を持った高性能伝熱壁を製作できる等
の効果がある。
According to the present invention, boiling heat transfer characteristics are improved by reducing the inflow resistance of liquid flowing into the cavity under the heat exchange skin, and high performance heat transfer walls with different characteristics can be manufactured. effective.

第4図は本発明の効果を示す一実験例であり、本発明の
方法により製造された伝熱壁並びに従来の伝熱壁の沸騰
性能(令媒フレオンR−11を使用)を比較して示して
いる。横軸は冷媒液の飽和温度からの伝熱壁面の過熱度
ΔT (tZ’)を、縦軸は熱流束q(W/cnr2)
を示す。曲線Aは第1図に示す構造で空洞ピッチ0.5
5+++m深さ0.4 ran貫通孔大きさ0.1mピ
ッチ0.7 mmの場合である。曲線Bは第3図に示す
本発明構造のもので第1図溝望洞上に繊維直径0.18
m+++、長さ5m+n、多孔質層厚さ1g、多孔質層
空洞容積率60%のものである。
Figure 4 is an experimental example showing the effects of the present invention, comparing the boiling performance (using Freon R-11 reagent) of a heat transfer wall manufactured by the method of the present invention and a conventional heat transfer wall. It shows. The horizontal axis is the degree of superheating ΔT (tZ') of the heat transfer wall surface from the saturation temperature of the refrigerant liquid, and the vertical axis is the heat flux q (W/cnr2).
shows. Curve A has the structure shown in Figure 1 and has a cavity pitch of 0.5.
This is a case where the through hole size is 0.1 m, the pitch is 0.7 mm, and the depth is 0.4 RAN. Curve B is for the structure of the present invention shown in Fig. 3, and the fiber diameter is 0.18 on the groove in Fig. 1.
m+++, length 5m+n, porous layer thickness 1g, porous layer cavity volume ratio 60%.

この図より明らかなように同一熱流束の場合、曲線Bの
方が過熱度が小さく、この傾向は熱流束が大きい程顕著
である。このように本発明の熱交換壁は従来の熱交換壁
よシ高い伝熱性能を有していることが明らかである。
As is clear from this figure, when the heat flux is the same, curve B has a smaller degree of superheating, and this tendency becomes more pronounced as the heat flux increases. Thus, it is clear that the heat exchange wall of the present invention has higher heat transfer performance than conventional heat exchange walls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱交換壁を示す一部分断面にした斜視図
、第2図は第1図の熱交換壁の沸騰状態を説明する斜視
図、第3図は本発明の熱交換壁多孔質層の上面からの写
真および断面の模式図、第4図は本発明の熱交換壁およ
び従来の熱交換壁の沸騰伝熱性能を示すグラフである。 1・・・熱交換壁、2・・・空洞、3・・・貫通孔。 篤 1  図 第 ? 図 第  3  図 猶 4  図 b9−へ7貧+1  AT (−乙) 手続補正書(方式) 1事件の表示 昭和 57年6許願第 195994  弓。 3、補正をする者 シ、  I・    ’51□〕コ(;Lにン1  [
1立  製  作  所”    ’      −’
−Ill       ifイ)1′克4代 理 人 7・補正の内容3図面 1、明細書4頁16〜17行に「多孔質層を〜および断
面」とあるのを「多孔質層断面」とする。 2 同5頁4行に1繊維を」とあるのを「繊維10を」
とする。 3 同8頁3行に「孔質層の〜および断面」とあるのを
「孔質層の断面」とする。 4、凹面の男3図を別紙のとおり補正する。 以上 第 3 圀 0
Fig. 1 is a partially sectioned perspective view showing a conventional heat exchange wall, Fig. 2 is a perspective view illustrating the boiling state of the heat exchange wall in Fig. 1, and Fig. 3 is a porous heat exchange wall according to the present invention. A photograph and a schematic cross-sectional view of the layer from above, and FIG. 4 are graphs showing the boiling heat transfer performance of the heat exchange wall of the present invention and the conventional heat exchange wall. 1... Heat exchange wall, 2... Cavity, 3... Through hole. Atsushi 1 Figure 1? Figure 3 Figure 4 Figure b9-7 poverty + 1 AT (-B) Procedural amendment (method) Display of 1 case 1982 6 Permission No. 195994 Bow. 3. The person who makes the correction, I・'51□]
1st Manufacturing Company” '-'
-Ill if A) 1'Katsu 4 Representative Person 7 Contents of Amendment 3 Drawing 1, page 4 of the specification, lines 16-17, the phrase "the porous layer ... and the cross section" is replaced with "the cross section of the porous layer." do. 2. On page 5, instead of ``1 fiber in 4 lines,'' use ``10 fibers.''
shall be. 3. On page 8, line 3 of the same page, the phrase ``... and cross-section of the porous layer'' is defined as ``the cross-section of the porous layer.'' 4. Correct the concave man figure 3 as shown in the attached sheet. Above 3rd area 0

Claims (1)

【特許請求の範囲】 工6表面に多数の凹凸を有する非浸透質の基材の表面に
個々ばらばらの金属繊維又は無機繊維を集合して構成し
た浸透性の多孔質層を結着したことを特徴とする熱交換
壁。 2、特許請求の範囲第1項(でおいて浸透性の多孔質層
を形成する金属繊維又は無機繊維は直径で0.05++
rmよりも大きくかつ長さで1rrrmよりも長いもの
を用い、これらの繊維は無作為な積重シ関係で繊維同志
が互に結着し、かつ基材の凹凸面上に結着されて、0.
03+n+n〜1咽の細孔半径を有し、かつ繊維間で間
隙を形成し、また相互に連通ずる細孔を備えた多孔質層
を特徴とする熱交換壁。 3、表面に多数の凹凸を有する非浸透質の基材の表面に
金属繊維又は無機繊維を単体あるいは結合剤、助剤を加
えたものを個々ばらばらに0、2 rran以上の厚さ
が得られるように積層した後、積層面上に無荷重あるい
は所定の荷重を加えて、所定の雰囲気および温度で焼結
することを特徴とする熱交換壁の製作法。
[Claims] Technique 6: A permeable porous layer composed of aggregation of individual metal fibers or inorganic fibers is bonded to the surface of a non-permeable base material having a large number of irregularities on the surface. Features a heat exchange wall. 2. Claim 1 (in which the metal fibers or inorganic fibers forming the permeable porous layer have a diameter of 0.05++
rm and longer than 1rrrm in length, these fibers are bound to each other in a random stacking relationship, and are bound to the uneven surface of the base material, 0.
A heat exchange wall characterized by a porous layer having a pore radius of 03+n+n to 1 pore, forming gaps between fibers, and having pores that communicate with each other. 3. A thickness of 0.2 rran or more can be obtained by individually distributing metal fibers or inorganic fibers alone or with a binder or auxiliary agent added to the surface of a non-permeable base material having many irregularities on the surface. A method for producing a heat exchange wall, which is characterized in that after laminating the layers as described above, sintering is performed in a predetermined atmosphere and temperature with no load or a predetermined load applied to the laminated surfaces.
JP19599482A 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof Granted JPS5986898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19599482A JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19599482A JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5986898A true JPS5986898A (en) 1984-05-19
JPH0477239B2 JPH0477239B2 (en) 1992-12-07

Family

ID=16350448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19599482A Granted JPS5986898A (en) 1982-11-10 1982-11-10 Heat exchanging wall and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5986898A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348264A (en) * 1976-10-14 1978-05-01 Hitachi Cable Ltd Heat transfer surface by ebullition
JPS572998A (en) * 1980-06-05 1982-01-08 Sumitomo Electric Ind Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348264A (en) * 1976-10-14 1978-05-01 Hitachi Cable Ltd Heat transfer surface by ebullition
JPS572998A (en) * 1980-06-05 1982-01-08 Sumitomo Electric Ind Ltd Heat exchanger

Also Published As

Publication number Publication date
JPH0477239B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
US7718246B2 (en) Honeycomb with a fraction of substantially porous cell walls
TWI289651B (en) Method for making wick structure of heat pipe
JPS5984095A (en) Heat exchanging wall
US9464824B2 (en) Heat exchange reactor and adsorption heat pump
US4484938A (en) Total heat exchanger
WO2007098904A2 (en) Adsorption heat pump, adsorption refrigerator, and adsorber elements therefor
JP6570146B2 (en) Metal laminate having metallurgical bond and density-reduced metal core layer and method for producing the same
EP1249273B1 (en) Method for manufacturing a gas-liquid contact plate
KR102455119B1 (en) Enthalpy exchanger elements, enthalpy exchangers comprising such elements and methods for manufacturing them
KR20100005015A (en) Process for manufacturing total heat exchanger element and total heat exchanger element
JPS5986898A (en) Heat exchanging wall and manufacture thereof
JPS57207795A (en) Total heat exchanging element
CN115900404B (en) Heating flat boiling reinforced microstructure modified surface and realization method thereof
KR920007493A (en) Manufacturing method of element for total heat exchanger
US20140033924A1 (en) Heat and/or moisture exchange element
JPS59112199A (en) Heat-exchanging wall and manufacture thereof
CN112566459B (en) Manufacturing method of heat dissipation device and heat dissipation device
EP3805685A1 (en) Total heat exchange element and method for manufacturing same
CN114857967A (en) Ultrathin soaking plate, preparation method thereof and electronic equipment
JPH0532676B2 (en)
CN218605114U (en) Atomizing core, atomizer and electronic atomization device
JPS6318115B2 (en)
US3212573A (en) Composite metal structure
RU2078295C1 (en) Bank for plate heat exchanger
JPS6153638B2 (en)