JPH0477138B2 - - Google Patents

Info

Publication number
JPH0477138B2
JPH0477138B2 JP58140930A JP14093083A JPH0477138B2 JP H0477138 B2 JPH0477138 B2 JP H0477138B2 JP 58140930 A JP58140930 A JP 58140930A JP 14093083 A JP14093083 A JP 14093083A JP H0477138 B2 JPH0477138 B2 JP H0477138B2
Authority
JP
Japan
Prior art keywords
injection
amount
asynchronous
fuel injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58140930A
Other languages
Japanese (ja)
Other versions
JPS6032956A (en
Inventor
Toshiaki Isobe
Teruo Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14093083A priority Critical patent/JPS6032956A/en
Publication of JPS6032956A publication Critical patent/JPS6032956A/en
Publication of JPH0477138B2 publication Critical patent/JPH0477138B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は燃料噴射制御方法に関し、特に、機関
負荷および機関回転数に基づいて燃料噴射量を演
算するようにした車両用内燃機関に用いて好適な
燃料噴射制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control method, and more particularly to a fuel injection control method suitable for use in a vehicle internal combustion engine, in which the amount of fuel injection is calculated based on engine load and engine speed. It is something.

このような車両用内燃機関では、所定のクラン
ク角度位置に同期させて前述のようにして演算さ
れた燃料噴射量で燃料を噴射させ、一方では、一
定周期毎に機関の加速量を検出して過渡状態を判
定し、これにより、過渡状態のときには非周期増
量を行なつている。もし、過渡状態が判定される
度毎に、その非同期増量に応じて、そのときのク
ランク角度位置に無関係に非同期噴射を行なう
と、機関の各気筒間の噴射量がばらつき易く、加
速シヨツク、しやくり、加速レスポンスの低下
等、種々の問題が生ずる惧れがある。このような
燃料量のばらつきは、非同期要求の判定ルーチン
が、クランク角度に無関係に所定時間毎に起動さ
れるので機関回転数の高低によつても影響され
る。
In such a vehicle internal combustion engine, fuel is injected at the fuel injection amount calculated as described above in synchronization with a predetermined crank angle position, and on the other hand, the amount of acceleration of the engine is detected at regular intervals. A transient state is determined, and a non-periodic increase in dosage is performed when the transient state is present. If each time a transient state is determined, asynchronous injection is performed according to the asynchronous increase regardless of the crank angle position at that time, the injection amount between each cylinder of the engine will tend to vary, and the acceleration shock will be affected. There is a risk that various problems will occur, such as yawuri and a decrease in acceleration response. Such variations in fuel amount are also affected by the engine speed, since the asynchronous request determination routine is activated at predetermined time intervals regardless of the crank angle.

本発明の目的は、このような従来の問題点を解
消し、非同期噴射に伴う各気筒間の噴射量のばら
つきを少なくするようにした燃料噴射制御方法を
提案することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such conventional problems and to propose a fuel injection control method that reduces variations in injection amount between cylinders due to asynchronous injection.

本発明は、機関負荷と機関回転数とに基づいて
燃料噴射量を演算し、所定のクランク角度に同期
させて燃料噴射量に応じた量の同期噴射を行なう
とともに、機関の過渡運転に応答させてクランク
角度に無関係に所定量の非同期噴射を行なう燃料
噴射制御方法において、機関の加速量を演算し、
その加速量が所定の基準値以上であるときに過渡
運転における非同期要求と判定し、連続した非同
期要求のうちの第一回目の非同期要求時には非同
期噴射を実行し、第二回目以降で次に来る同期噴
射信号発生前までの非同期要求には、その判定の
度毎に前記所定量を加算し、次に来る同期噴射に
際してその加算結果を前記燃料噴射量に加算して
噴射を行い、さらに同期噴射信号発生中に発生し
た非同期要求には、その判定の度毎に前記所定量
を加算し、その次に来る同期噴射に際してその加
算結果を前記燃料噴射量に加算して噴射を行うこ
とを特徴とする。
The present invention calculates the amount of fuel injection based on the engine load and engine speed, performs synchronous injection in an amount corresponding to the amount of fuel in synchronization with a predetermined crank angle, and responds to transient operation of the engine. In a fuel injection control method that performs a predetermined amount of asynchronous injection regardless of the crank angle, the amount of acceleration of the engine is calculated,
When the amount of acceleration is greater than or equal to a predetermined reference value, it is determined that it is an asynchronous request during transient operation, and asynchronous injection is executed at the first asynchronous request among consecutive asynchronous requests, and at the second and subsequent asynchronous requests. For the asynchronous request before the synchronous injection signal is generated, the predetermined amount is added every time the determination is made, and the addition result is added to the fuel injection amount for the next synchronous injection, and the injection is performed, and then the synchronous injection is performed. The predetermined amount is added to the asynchronous request generated during the signal generation every time the determination is made, and the addition result is added to the fuel injection amount at the time of the next synchronous injection and the injection is performed. do.

本発明の技術的課題は、非同期噴射の要求回数
に応じた噴射量を次回の同期噴射量に積算しても
解決できるが、その場合に比べて、第1回目の非
同期噴射要求に応答して非同期噴射を行なうよう
にしたので、過渡応答性を向上できる。
The technical problem of the present invention can be solved by integrating the injection amount corresponding to the number of requests for asynchronous injection into the next synchronous injection amount. Since asynchronous injection is performed, transient response can be improved.

機関負荷は例えば、吸気管圧力、吸入空気量、
アクセル踏込量、スロツトル弁の開度により表わ
すことができ、また機関の加速量は、例えば吸気
管圧力、アクセル踏込量、スロツトル弁の開度の
時間変化量で表わすことができる。
Engine load is, for example, intake pipe pressure, intake air amount,
It can be expressed by the amount of accelerator depression and the opening degree of the throttle valve, and the acceleration amount of the engine can be expressed by, for example, the amount of change over time in the intake pipe pressure, the amount of accelerator depression, and the opening degree of the throttle valve.

以下図面に基づいて本発明の実施例について詳
細に説明する。
Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明を適用した電子制御燃料噴射式
内燃機関の一例を示し、符号10は機関本体、1
2は吸気通路、14は燃焼室、16は排気通路を
それぞれ示している。スロツトル弁18の下流の
吸気通路12に設けられている吸気管絶対圧力セ
ンサ20は、信号線l1を介して制御回路22に
接続され、吸気管絶対圧力に応じた電圧を発生す
る。吸気温センサ21はスロツトル弁18の上流
の吸気通路12に設けられ、信号線l2を介して
制御回路22に接続されていて吸気温度に応じた
電圧を発生する。図示しないエアクリーナを介し
て吸入され、図示しないアクセルペダルに連動す
るスロツトル弁18によつて流量制御された吸入
空気は、サージタンク24及び吸気弁25を介し
て各気筒の燃焼室14に導かれる。
FIG. 1 shows an example of an electronically controlled fuel injection type internal combustion engine to which the present invention is applied, in which reference numeral 10 indicates an engine body;
Reference numeral 2 indicates an intake passage, 14 a combustion chamber, and 16 an exhaust passage. An intake pipe absolute pressure sensor 20 provided in the intake passage 12 downstream of the throttle valve 18 is connected to a control circuit 22 via a signal line l1, and generates a voltage according to the intake pipe absolute pressure. The intake air temperature sensor 21 is provided in the intake passage 12 upstream of the throttle valve 18, is connected to the control circuit 22 via a signal line l2, and generates a voltage according to the intake air temperature. Intake air is sucked in through an air cleaner (not shown) and whose flow rate is controlled by a throttle valve 18 (not shown) linked to an accelerator pedal (not shown), and is led to the combustion chamber 14 of each cylinder via a surge tank 24 and an intake valve 25.

燃料噴射弁26は各気筒毎に設けられており、
信号線l3を介して制御回路22から供給される
電気的な駆動パルスに応じて開閉制御され、図示
しない燃料供給系から送られる加圧燃料を吸気弁
25近傍の吸気通路12内、即ち吸気ポート部に
間欠的に噴射する。燃焼室14において燃焼した
後の排気ガスは排気弁28、排気通路16及び三
元触媒コンバータ30を介して大気中に排出され
る。
A fuel injection valve 26 is provided for each cylinder,
The opening/closing is controlled in response to electrical drive pulses supplied from the control circuit 22 via the signal line l3, and pressurized fuel sent from a fuel supply system (not shown) is fed into the intake passage 12 near the intake valve 25, that is, the intake port. Inject intermittently into the area. The exhaust gas after being combusted in the combustion chamber 14 is discharged into the atmosphere via the exhaust valve 28, the exhaust passage 16, and the three-way catalytic converter 30.

機関のデイストリビユータ38には、クランク
角センサ40及び42が取り付けられており、こ
れらのセンサ40,42は信号線l6,l7を介
して制御回路22に接続されている。これらのセ
ンサ40,42は、クランク軸が30度、360度回
転する毎にパルス信号をそれぞれ出力し、これら
のパルス信号は信号線l6,l7をそれぞれ介し
て制御回路22に供給される。
Crank angle sensors 40 and 42 are attached to the distributor 38 of the engine, and these sensors 40 and 42 are connected to the control circuit 22 via signal lines 16 and 17. These sensors 40 and 42 output pulse signals each time the crankshaft rotates 30 degrees and 360 degrees, respectively, and these pulse signals are supplied to the control circuit 22 via signal lines l6 and l7, respectively.

デイストリビユータ38はイグナイタ39に接
続され、イグナイタ39は信号線l8を介して制
御回路22に接続されている。
The distributor 38 is connected to an igniter 39, and the igniter 39 is connected to the control circuit 22 via a signal line l8.

符号44は、スロツトル弁18と連動し、スロ
ツトル弁18が略全閉しているときに閉成される
アイドルスイツチ(LLスイツチ)であり、信号
線l8aを介して制御回路22と接続されてい
る。
The reference numeral 44 designates an idle switch (LL switch) that operates in conjunction with the throttle valve 18 and is closed when the throttle valve 18 is substantially fully closed, and is connected to the control circuit 22 via a signal line l8a. .

排気通路16には、排気ガス中の酸素濃度に応
答した信号を出力する、即ち、空燃比が理論空燃
比に対してリーン側にあるかリツチ側にあるかに
応じて互に異なる二値の出力電圧を発生するO2
センサ46が設けられ、その出力信号は信号線l
9を介して制御回路22に接続されている。三元
触媒コンバータ30は、このO2センサ46の下
流に設けられており、排気ガス中の三つの有害成
分であるHC、CO、NOx成分を同時に浄化する。
The exhaust passage 16 outputs a signal responsive to the oxygen concentration in the exhaust gas, that is, a signal with two different values depending on whether the air-fuel ratio is on the lean side or rich side with respect to the stoichiometric air-fuel ratio. O2 that generates the output voltage
A sensor 46 is provided, the output signal of which is connected to the signal line l.
It is connected to the control circuit 22 via 9. The three-way catalytic converter 30 is provided downstream of the O 2 sensor 46 and simultaneously purifies three harmful components, HC, CO, and NOx, in the exhaust gas.

また、符号48は機関の冷却水温度を検出し、
その温度に応じた電圧を発生する水温センサであ
り、シリンダブロツク50に取り付けられてい
て、信号線l10を介して制御回路22に接続さ
れている。
Further, reference numeral 48 detects the engine cooling water temperature,
This is a water temperature sensor that generates a voltage according to the temperature, and is attached to the cylinder block 50 and connected to the control circuit 22 via a signal line l10.

制御回路22は、第2図に示すように、各種機
器を制御する中央演算処理装置(CPU)22a、
予め各種の数値やプログラムが書き込まれたリー
ドオンリメモリ(ROM)22b、演算過程の数
値やフラグが所定の領域に書き込まれるランダム
アクセスメモリ(RAM)22c、アナログマル
チプレクサ機能を有し、アナログ入力信号をデイ
ジタル信号に変換するA/Dコンバータ(ADC)
22d、各種デイジタル信号が入力される入出力
インターフエイス(I/O)22e、各種デイジ
タル信号が出力される入出力インターフエイス
(I/O)22f、エンジン停止時に補助電源か
ら給電されて記憶を保持するバツクアツプメモリ
(BU−RAM)22g、及びこれら各機器がそれ
ぞれ接続されるバスライン22hから構成されて
いる。
As shown in FIG. 2, the control circuit 22 includes a central processing unit (CPU) 22a that controls various devices;
It has a read-only memory (ROM) 22b in which various numerical values and programs are written in advance, a random access memory (RAM) 22c in which numerical values and flags in the calculation process are written in a predetermined area, and an analog multiplexer function, and can accept analog input signals. A/D converter (ADC) that converts to digital signals
22d, input/output interface (I/O) 22e to which various digital signals are input, input/output interface (I/O) 22f to which various digital signals are output, is supplied with power from the auxiliary power source and retains memory when the engine is stopped. It is composed of a backup memory (BU-RAM) 22g, and a bus line 22h to which each of these devices is connected.

ROM22b内には、メイン処理ルーチンプロ
グラム、燃料噴射パルス幅演算用の割込処理ルー
チンプログラム、空燃比フイードバツク補正係数
等の係数演算用の割込処理ルーチンプログラム、
後述する同期ルーチンプログラム、非同期ルーチ
ンプログラム、及びその他の各種プログラム、さ
らにそれらの演算処理に必要な種々のデータが予
め記憶されている。
The ROM 22b contains a main processing routine program, an interrupt processing routine program for calculating fuel injection pulse width, an interrupt processing routine program for calculating coefficients such as air-fuel ratio feedback correction coefficients,
A synchronous routine program, an asynchronous routine program, and other various programs to be described later, as well as various data necessary for their arithmetic processing, are stored in advance.

そして、圧力センサ20、吸気温センサ21、
O2センサ46及び水温センサ48はA/Dコン
バータ22dと接続され、各センサからの電圧信
号S1、S2、S3、S4がCPU22aからの指示に応
じて、順次、二進信号に変換される。
Then, a pressure sensor 20, an intake temperature sensor 21,
The O 2 sensor 46 and the water temperature sensor 48 are connected to the A/D converter 22d, and voltage signals S1, S2, S3, S4 from each sensor are sequentially converted into binary signals according to instructions from the CPU 22a.

クランク角センサ40からのクランク角30度毎
のパルス信号S5、クランク角センサ42からの
クランク角360度毎のパルス信号S6、アイドルス
イツチ44からのオン・オフ信号S7は、それぞ
れ、I/O22eを介して制後回路22に取込ま
れる。パルス信号S5に基づいてエンジン回転数
を表わす二進信号が形成され、パルス信号S5お
よびS6が協働して燃料噴射パル幅演算のための
割込要求信号、燃料噴射開始信号および気筒判別
信号などが形成される。
A pulse signal S5 for every 30 degrees of crank angle from the crank angle sensor 40, a pulse signal S6 for every 360 degrees of crank angle from the crank angle sensor 42, and an on/off signal S7 from the idle switch 44 respectively control the I/O 22e. The signal is taken into the post-control circuit 22 via the control circuit 22. A binary signal representing the engine speed is formed based on the pulse signal S5, and the pulse signals S5 and S6 work together to generate an interrupt request signal for fuel injection pulse width calculation, a fuel injection start signal, a cylinder discrimination signal, etc. is formed.

I/O22fからは、各種演算により形成され
た燃料噴射パルス信号S10および点火信号S11が、
それぞれ燃料噴射弁26a〜26d、およびイグ
ナイタ39に出力される。
From the I/O 22f, a fuel injection pulse signal S10 and an ignition signal S11 formed by various calculations are
They are output to the fuel injection valves 26a to 26d and the igniter 39, respectively.

このように構成された本発明方法が適用された
内燃機関においては、第3図に示す同期噴射ルー
チンに従つて同期噴射が実行される。
In the internal combustion engine to which the method of the present invention configured as described above is applied, synchronous injection is performed according to the synchronous injection routine shown in FIG.

第3図は所定のクランク角度毎に生起する上述
の割込要求信号により起動され、その手順S1に
おいて、吸気管圧力PMとエンジン回転数NEと
に基づいて基本燃料噴射時間TPが演算され、こ
の基本燃料噴射時間TPに対して種々の補正演算
が施されて最終的な燃料噴射量τが求められる。
そして、手順S2において、その燃焼噴射量τに、
後述する第4図のルーチンで求められている非同
期加算分ΣτASYを加算し、その加算結果により生
成された噴射信号S10を用いて手順S3で噴射弁2
6の開弁時刻と噴射終了時刻を設定する。これに
より、噴射弁26が所定時間だけ開弁される。次
いで、手順S4において、非同期加算分ΣτASYを零
としてこのルーチンを終了する。
Fig. 3 is activated by the above-mentioned interrupt request signal that occurs at every predetermined crank angle, and in step S1, the basic fuel injection time TP is calculated based on the intake pipe pressure PM and the engine speed NE. Various correction calculations are performed on the basic fuel injection time TP to determine the final fuel injection amount τ.
Then, in step S2, the combustion injection amount τ is
The asynchronous addition Στ ASY determined in the routine shown in FIG.
6. Set the valve opening time and injection end time. As a result, the injection valve 26 is opened for a predetermined period of time. Next, in step S4, the asynchronous addition Στ ASY is set to zero and this routine ends.

非同期噴射は、所定周期、例えば30ms毎の時
間割込ルーチンである、第4図の非同期噴射ルー
チンにより実行される。まず、手順S11におい
て、吸気管圧力PMの時間変化に従つた一階微分
値△PMが、予め定めた判定レベルR以上か否か
を判定し、肯定判定されると、手順S12におい
て、フラグFLGが“1”が否かを判定する。
“0”が設定されていれば、連続する非同期要求
のうちの第1回目の非同期要求であり、手順S13
において、予め定めた所定量の非同期噴射量τASY
に応じた噴射信号S10を生成して噴射弁26を駆
動し、以て非同期噴射を実行する。次いで、手順
S14において、フラグFLGに“1”を設定する。
手順S11で否定判定されると手順S16でフラグ
FLGを“0”とする。
The asynchronous injection is executed by the asynchronous injection routine shown in FIG. 4, which is a time interrupt routine at predetermined intervals, for example, every 30 ms. First, in step S11, it is determined whether the first-order differential value ΔPM according to the time change of the intake pipe pressure PM is equal to or higher than a predetermined determination level R. If an affirmative determination is made, in step S12, the flag FLG is “1” or not.
If “0” is set, it is the first asynchronous request among consecutive asynchronous requests, and step S13
, a predetermined amount of asynchronous injection τ ASY
The injection signal S10 is generated in accordance with the injection signal S10 to drive the injection valve 26, thereby executing asynchronous injection. Then the steps
In S14, the flag FLG is set to "1".
If a negative determination is made in step S11, a flag is set in step S16.
Set FLG to “0”.

手順S12においてフラグFLGが“1”と判定さ
れる場合は、手順S11で判定された非同期要求が
連続する非同期要求のうちの第2回目以降の非同
期要求であり、手順S15を通過する度毎に非同期
噴射量τASYを加算してΣτASYを求め、このルーチン
を終了する。
If the flag FLG is determined to be "1" in step S12, the asynchronous request determined in step S11 is the second or subsequent asynchronous request among consecutive asynchronous requests, and the The asynchronous injection amount τ ASY is added to obtain Στ ASY , and this routine ends.

このように本発明方法の一手順例によれば、連
続する非同期噴射要求のうち、第1回目の非同期
要求以外の要求時には、非同期噴射を実行するこ
となく、所定の非同期噴射分を積算し、次回の同
期噴射時にその積算分の燃料を噴射するようにし
た。また、同期噴射中の非同期噴射要求について
も、同様に処理した。
As described above, according to one procedure example of the method of the present invention, when a request other than the first asynchronous request among consecutive asynchronous injection requests is made, a predetermined amount of asynchronous injection is accumulated without executing the asynchronous injection, The cumulative amount of fuel will be injected during the next synchronous injection. Further, an asynchronous injection request during synchronous injection was also processed in the same way.

このような本発明方法の一実施例を第5図A,
Bを参照して詳述する。
An example of such a method of the present invention is shown in FIG.
This will be explained in detail with reference to B.

図において、τ1〜τ3は同期噴射を示し、a〜h
は非同期噴射要求を示す。連続して非同期噴射要
求a、b、cが出されると、まず第1回目の非同
期要求aに応答して非同期噴射τASY1を実行し、
他の非同期要求b、cの非同期噴射分は積算され
てΣτASYで表わされ、次の同期噴射τ2と共に噴射
される。この2回目の同期噴射中にa、b、cに
連続して非同期要求d、eが出されると、次の3
回目の同期噴射τ3に加算すべくΣτASYを、第4図
の手順S1において実行する。そして、いつたん
連続した非同期要求がとだえて、次の第1回目の
非同期要求fが出されると、その要求に応答して
非同期噴射τASY2を実行し、次に連続して非同期
要求g、hが出されると、先の非同期要求d、e
と同様に、第3回目の同期噴射τ3において加算す
べきΣτASYを、第4図の手順S15において実行す
る。
In the figure, τ1 to τ3 indicate synchronous injection, and a to h
indicates an asynchronous injection request. When asynchronous injection requests a, b, and c are issued in succession, first, asynchronous injection τ ASY 1 is executed in response to the first asynchronous request a,
The asynchronous injection portions of the other asynchronous requests b and c are integrated and expressed as Στ ASY , and are injected together with the next synchronous injection τ2. If asynchronous requests d and e are issued consecutively to a, b, and c during this second synchronous injection, the following three
Στ ASY is executed in step S1 of FIG. 4 in order to add it to the synchronous injection τ3 of the second time. Then, when the continuous asynchronous requests stop and the next first asynchronous request f is issued, the asynchronous injection τ ASY 2 is executed in response to that request, and the next consecutive asynchronous request g, When h is issued, the previous asynchronous requests d, e
Similarly, Στ ASY to be added in the third synchronous injection τ3 is executed in step S15 of FIG. 4.

従つて、第2回目の同期噴射時には、非同期要
求b、cの分も同時に噴射され、第3回目の同期
噴射時には、非同期要求d、e、g、hの分が同
時に噴射される。また、第5図A,Bにおいて非
同期要求f、g、hがない状態、即ち加速から定
速へ減速する状態では、もしも2回目の同期噴射
中の非同期要求d、eの分を3回目の同期噴射τ3
に加算せずに、2回目の同期噴射τ2に加算噴射す
ると、ある気筒では極度なリツチから急にリーン
となりサージングが発生する可能性がある。本発
明の制御方法によれば、このような加速から定速
に移る状態では、非同期要求d、eの分を3回目
の同期噴射τ3に加算するので、燃料噴射量が漸減
されサージングの発生を抑制でき、過渡応答性を
向上できる効果を奏する。
Therefore, during the second synchronous injection, the asynchronous requests b and c are simultaneously injected, and during the third synchronous injection, the asynchronous requests d, e, g, and h are simultaneously injected. In addition, in a state where there are no asynchronous requests f, g, and h in Fig. 5A and B, that is, in a state where the speed is decelerated from acceleration to constant speed, if the asynchronous requests d and e during the second synchronous injection are Synchronous injection τ3
If additional injection is performed at the second synchronous injection τ2 without adding to , there is a possibility that a certain cylinder will suddenly go from extremely rich to lean and surging may occur. According to the control method of the present invention, in such a state where acceleration shifts to constant speed, the amount of asynchronous requests d and e is added to the third synchronous injection τ3, so the fuel injection amount is gradually reduced to prevent the occurrence of surging. This has the effect of suppressing this and improving transient response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を適用した燃料噴射式内
燃機関の一実施例を示す構成図、第2図はその制
御回路の詳細例を示すブロツク図、第3図は同期
噴射ルーチンの一例を示すフローチヤート、第4
図は非同期噴射ルーチンの一例を示すフローチヤ
ート、第5図A,Bは非同期要求と、噴射信号
S10をそれぞれ示すタイムチヤートである。 10……機関本体、20……吸気圧センサ、2
2……制御回路、26……噴射弁、40,42…
…クランク角センサ。
Fig. 1 is a block diagram showing an embodiment of a fuel injection type internal combustion engine to which the method of the present invention is applied, Fig. 2 is a block diagram showing a detailed example of its control circuit, and Fig. 3 is an example of a synchronous injection routine. Flowchart showing, No. 4
The figure is a flowchart showing an example of an asynchronous injection routine, and Fig. 5A and B show an asynchronous request and an injection signal.
These are time charts showing each S10. 10... Engine body, 20... Intake pressure sensor, 2
2... Control circuit, 26... Injection valve, 40, 42...
...Crank angle sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 機関負荷と機関回転数とに基づいて燃料噴射
量を演算し、所定のクランク角度に同期させて前
記燃料噴射量に応じた量の同期噴射を行うととも
に、機関の過渡運転に応答させて前記クランク角
度に無関係に所定量の非同期噴射を行う燃料噴射
制御方法において、機関の加速量を演算し、その
加速量が所定の基準値以上であるときに過渡運転
における非同期要求と判定し、連続した非同期要
求のうちの第1回目の非同期要求時には非同期噴
射を実行し、第2回目以降で次に来る同期噴射信
号発生前までの非同期要求には、その判定の度毎
に前記所定量を加算し、次に来る同期噴射に際し
てその加算結果を前記燃料噴射量に加算して噴射
を行い、さらに同期噴射信号発生中に発生した非
同期要求には、その判定の度毎に前記所定量を加
算し、その次に来る同期噴射に際してその加算結
果を前記燃料噴射量に加算して噴射を行うことを
特徴とする燃料噴射制御方法。
1 Calculates the fuel injection amount based on the engine load and engine speed, performs synchronous injection in an amount corresponding to the fuel injection amount in synchronization with a predetermined crank angle, and injects the fuel in an amount corresponding to the fuel injection amount in response to transient operation of the engine. In a fuel injection control method that performs a predetermined amount of asynchronous injection regardless of the crank angle, the amount of acceleration of the engine is calculated, and when the amount of acceleration is greater than or equal to a predetermined reference value, it is determined that an asynchronous request in transient operation has occurred. Asynchronous injection is executed at the first asynchronous request among the asynchronous requests, and the predetermined amount is added each time the asynchronous request is determined from the second time onwards until the next synchronous injection signal is generated. , during the next synchronous injection, the addition result is added to the fuel injection amount and the injection is performed, and the predetermined amount is added to the asynchronous request that occurs during the generation of the synchronous injection signal every time the determination is made, A fuel injection control method characterized by adding the addition result to the fuel injection amount and performing the injection at the time of the next synchronous injection.
JP14093083A 1983-08-01 1983-08-01 Controlling method of fuel injection Granted JPS6032956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14093083A JPS6032956A (en) 1983-08-01 1983-08-01 Controlling method of fuel injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14093083A JPS6032956A (en) 1983-08-01 1983-08-01 Controlling method of fuel injection

Publications (2)

Publication Number Publication Date
JPS6032956A JPS6032956A (en) 1985-02-20
JPH0477138B2 true JPH0477138B2 (en) 1992-12-07

Family

ID=15280118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14093083A Granted JPS6032956A (en) 1983-08-01 1983-08-01 Controlling method of fuel injection

Country Status (1)

Country Link
JP (1) JPS6032956A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627040A (en) * 1979-08-14 1981-03-16 Nissan Motor Co Ltd Fuel feed device
JPS56124637A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Method of controlling acceleration of engine
JPS575524A (en) * 1980-06-11 1982-01-12 Honda Motor Co Ltd Fuel correcting device in acceleration of efi engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627040A (en) * 1979-08-14 1981-03-16 Nissan Motor Co Ltd Fuel feed device
JPS56124637A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Method of controlling acceleration of engine
JPS575524A (en) * 1980-06-11 1982-01-12 Honda Motor Co Ltd Fuel correcting device in acceleration of efi engine

Also Published As

Publication number Publication date
JPS6032956A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JPS6134330A (en) Air-fuel ratio controller for internal-combustion engine
JPS6338537B2 (en)
JPH057548B2 (en)
JPH0512538B2 (en)
JPH0477138B2 (en)
JP2841806B2 (en) Air-fuel ratio control device for engine
JPH0465223B2 (en)
JPH0372824B2 (en)
JPH023019B2 (en)
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPS6067747A (en) Air-fuel ratio controlling method
JPS6019942A (en) Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine
JP3116426B2 (en) Fuel injection amount control device for internal combustion engine
JPH0475382B2 (en)
JPH0557422B2 (en)
JPS5827849A (en) Air-fuel ratio controlling method for internal combustion engine
JPH0510493B2 (en)
JPS6035155A (en) Control method of fuel injection
JPS58150042A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6035154A (en) Control method of fuel injection
JPH0828336A (en) Transient time fuel injection control method
JPS59206629A (en) Method of controlling fuel injection
JPH0459459B2 (en)
JPS6238840A (en) Fuel injection controller for internal combustion engine
JPH059621B2 (en)