JPS6019942A - Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine - Google Patents

Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine

Info

Publication number
JPS6019942A
JPS6019942A JP12590283A JP12590283A JPS6019942A JP S6019942 A JPS6019942 A JP S6019942A JP 12590283 A JP12590283 A JP 12590283A JP 12590283 A JP12590283 A JP 12590283A JP S6019942 A JPS6019942 A JP S6019942A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
lower limit
ratio feedback
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12590283A
Other languages
Japanese (ja)
Other versions
JPH0429855B2 (en
Inventor
Kazuyoshi Mizuno
水野 和好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12590283A priority Critical patent/JPS6019942A/en
Publication of JPS6019942A publication Critical patent/JPS6019942A/en
Publication of JPH0429855B2 publication Critical patent/JPH0429855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To quickly return to an air-fuel ratio at the time of shifting from a decelerating or on-highland operation to a stationary or accelerating operation, by making the lower limit of a compensation coefficient equal to a normal value when a demanded injection quantity is larger than a minimum injection quantity and by making said lower limit higher than the normal value when the demanded injection quantity is smaller than the minimum injection quantity. CONSTITUTION:When an exact feedback compensation is performed as a calculated demanded injection quantity Qa is larger than a minimum injection quantity Qb determined by the minimum valve opening time of an injector 26, a normal value D is applied as the lower limit FAFmin of an air-fuel feedback compensation coefficient. When the exact feedback compensation is not performed, a value E higher than the normal value D is applied as the lower limit FAFmin of the compensation coefficient. The air- fuel ratio feedback compensation coefficient FAF is guarded by the lower limit FAFmin to complete a routine. Since the air-fuel ratio feedback compensation coefficient is thus guarded in a decelerating operation by the lower limit higher than the normal value, the compensation coefficient is quickly returned to a control region when a stationary operation is resumed.

Description

【発明の詳細な説明】 本発明は、電子制御燃料噴射式エンジンの空燃比フィー
ドバック制御方法に係り、特に、空燃比センサ及び三元
触媒を用いて排気ガス浄化対策が施された、電子制御燃
料噴1iFl装置を備えた自動車用エンジンに用いるの
に好適な、エンジン回転速喰及びエンジン負荷等からめ
られる燃料噴射量に、設定空燃比と実空燃比の偏差に応
じた空燃比フィードバック補正を加えて、要求噴射−を
めるようにした電子制御燃料噴射式エンジンの空燃比フ
ィードバック制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio feedback control method for an electronically controlled fuel injection engine, and particularly relates to an electronically controlled fuel injection engine in which exhaust gas purification measures are taken using an air-fuel ratio sensor and a three-way catalyst. Suitable for use in automobile engines equipped with an injection 1iFl device, the fuel injection amount is determined from engine rotational speed and engine load, and air-fuel ratio feedback correction is added in accordance with the deviation between the set air-fuel ratio and the actual air-fuel ratio. This invention relates to an improvement in an air-fuel ratio feedback control method for an electronically controlled fuel injection engine that increases the required injection.

内燃機関、特に、三元触媒を用いて排気ガス浄化対策が
施された自動車用エンジンにおいては、排気空燃比を厳
密に理論空燃比近傍に保持づる必要があり、そのため、
例えば、排気ガス中の酸素濃庇から排気空燃比のリッチ
−リーン状態を感知する酸素濃度センサと、燃料噴9A
量を制御llすることによって混合気の空燃比を制御す
る電子制御燃料噴射装置とを備え、例えばエンジン回転
速度及びエンジン負荷等からめられる燃料噴射量に、前
記空燃比センサの出力に応じて判定される空燃比のリッ
チ−リーン状態に応じた空燃比フィードバック補正を加
えて、要求噴射量をめることにより、前記電子制御燃料
噴射装置の燃料噴射量、即ち、空燃比をフィードバック
制御して、排気ガス中の酸素濃度を、設定空燃比、例え
ば、理論空燃比の混合気を燃焼させた場合の酸素濃度と
等しくするようにしたものが実用化されている。
In internal combustion engines, especially automobile engines that use three-way catalysts to purify exhaust gas, it is necessary to maintain the exhaust air-fuel ratio strictly close to the stoichiometric air-fuel ratio.
For example, an oxygen concentration sensor that detects the rich-lean state of the exhaust air-fuel ratio from the oxygen-rich eaves in the exhaust gas, and a fuel injection 9A
and an electronically controlled fuel injection device that controls the air-fuel ratio of the air-fuel mixture by controlling the amount, and the fuel injection amount is determined based on the output of the air-fuel ratio sensor, which is determined from, for example, engine rotational speed and engine load. By adding air-fuel ratio feedback correction according to the rich-lean state of the air-fuel ratio and adjusting the required injection amount, the fuel injection amount of the electronically controlled fuel injection device, that is, the air-fuel ratio, is feedback-controlled and the exhaust gas is adjusted. A device in which the oxygen concentration in the gas is made equal to the oxygen concentration when a mixture at a set air-fuel ratio, for example, a stoichiometric air-fuel ratio is combusted, has been put into practical use.

このような空燃比フィードバック制御によれは、エンジ
ン運転状態の変化に拘わらず、良好な排気ガス浄化性能
を得ることができるという特徴を有する。
Such air-fuel ratio feedback control is characterized in that good exhaust gas purification performance can be obtained regardless of changes in engine operating conditions.

又、前記の電子制御燃料噴射装置においては、通常、排
気ガス浄化性能を向上すると共に、燃料消費量を節減す
るため、エンジンの減速運転時に、所定の燃料カット条
件が成立した場合には、燃料噴射量を零として、いわゆ
る燃料カットを行うようにされている。
Furthermore, in the electronically controlled fuel injection device described above, in order to improve exhaust gas purification performance and reduce fuel consumption, when a predetermined fuel cut condition is met during deceleration operation of the engine, the fuel is A so-called fuel cut is performed by setting the injection amount to zero.

しかしながら、前記燃料カット条件が成立しない減速運
転時には、第1図に実線Aで示づ如く、要求噴射量Qa
が、インジェクタの機械的又は電気的な最小開弁時間に
より定まる最小咄刻量。1)以下となる場合がある。こ
の場合、当該減速運転時にお【プる燃料l1ji射鑞は
、最小嗅耐足Qbで固定され、その時の空燃比は、同じ
く第1図に実hAAで示J如く、設定空燃比よりもリッ
チ側のままとなる。従って、この状態で空燃比フィード
バック補正を実行舊ると、その補正係数FAトは、第1
図に実線Aで示す如く、その下限値D 、t ′c−低
下してしまう。従って、エンジンが減速運転から再び定
・常運転又は加速運転に移行した際に、空燃比フィード
バック補正係@FAFが適正値に戻るまでの間、空燃比
が、第1図に斜線Bで示づ°如く、一時的にオーバーリ
ーンとなり、排気エミッションが増加したり、ドライバ
ビリティが悪化づるという問題点をhしていた。
However, during deceleration operation where the fuel cut condition is not satisfied, the required injection amount Qa
is the minimum ejection amount determined by the minimum mechanical or electrical opening time of the injector. 1) The following may occur. In this case, during the deceleration operation, the amount of fuel supplied is fixed at the minimum tolerance level Qb, and the air-fuel ratio at that time is richer than the set air-fuel ratio, as shown by the actual hAA in Fig. 1. It will remain on the side. Therefore, if air-fuel ratio feedback correction is executed in this state, the correction coefficient FA
As shown by the solid line A in the figure, the lower limit value D and t'c decrease. Therefore, when the engine transitions from deceleration operation to steady/normal operation or acceleration operation, the air-fuel ratio will not change as indicated by the diagonal line B in Figure 1 until the air-fuel ratio feedback correction factor @FAF returns to the appropriate value. As in the previous example, the engine temporarily became over-lean, resulting in an increase in exhaust emissions and a worsening of drivability.

このような問題点を解消するべく、定常運転から減速運
転に移行した際に、第1図に一点鎖1fAcで示す如く
、空燃比フィードバック補正係数FAFを基準ff11
.Oに固定して、減速運転時の空燃比フィードバック補
正を停止することも考えられる。しかしながら、この場
合には、空燃比フィードバック補正係数FAFが1.0
以下の値から1゜0迄増大されることによって、要求噴
射量Qaが最小噴9AIQbを越え、これにより空燃比
フィードバック補正が再開されて、再び停止するという
状態を繰返すことになり、空燃比がハンチングして不安
定になる恐れがあった。
In order to solve this problem, when transitioning from steady operation to deceleration operation, the air-fuel ratio feedback correction coefficient FAF is changed to the reference ff11, as shown by the chain 1fAc in Fig. 1.
.. It is also conceivable to fix the value to O and stop air-fuel ratio feedback correction during deceleration operation. However, in this case, the air-fuel ratio feedback correction coefficient FAF is 1.0.
By increasing the value below to 1°0, the required injection amount Qa exceeds the minimum injection 9AIQb, which causes the air-fuel ratio feedback correction to restart and stop again, which causes the air-fuel ratio to increase. There was a risk that it would become unstable due to hunting.

このような問題は、減速運転時だけでなく、高地走行時
にも発生する恐れがあった。
Such a problem could occur not only during deceleration driving but also when driving at high altitudes.

本発明は、前記従来の問題点を解消するべくなされたも
ので、減速運転時や高地走行時における空燃比を不安定
化することなく、減速運転や高地走行から定常運転又は
加速運転に移行した際に、迅速に適正空燃比を得ること
ができる電子制御燃料@割成エンジンの空燃比フィード
バック制御り法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and is capable of transitioning from deceleration driving or high-altitude driving to steady or accelerated driving without destabilizing the air-fuel ratio during decelerating driving or high-altitude driving. The purpose of the present invention is to provide an air-fuel ratio feedback control method for an electronically controlled fuel@split engine that can quickly obtain an appropriate air-fuel ratio.

本発明は、エンジン回転速度及びエンジン負荷等からめ
られる燃料噴!111に、設定空燃比と実空燃比の偏差
に応じた空燃比フィードバック補正を加えて、要求噴射
量をめるようにした電子制御燃料噴射式エンジンの空燃
比フィードバック制御方法において、第2図にその要旨
を示す如く、前記要求噴9A鮒が、インジェクタの最小
開弁時間により定まる最小噴射間を越えているが否かを
判定する手順と、要求噴射量が最小噴射量を越えている
時は、空燃比フィードバック補正係数のト限値を通常値
とする手順と、要求噴eA量が最小噴射量以下である時
は、空燃比フィードバック補正係数の下限値を前記通常
値よりも大きな値とづる手順と、前記下限値により空燃
比フィードバック補正係数の下限をガードする手順と、
を含むことにより、前記目的を達成したものである。
The present invention focuses on fuel injection that takes into account engine speed, engine load, etc. Fig. 2 shows an air-fuel ratio feedback control method for an electronically controlled fuel injection engine in which the required injection amount is adjusted by adding air-fuel ratio feedback correction according to the deviation between the set air-fuel ratio and the actual air-fuel ratio to 111. As shown in the summary, the procedure for determining whether or not the required injection 9A carton exceeds the minimum injection interval determined by the minimum opening time of the injector, and the procedure for determining whether the required injection amount exceeds the minimum injection amount. , the procedure for setting the upper limit value of the air-fuel ratio feedback correction coefficient to the normal value, and when the required injection amount eA is less than the minimum injection amount, setting the lower limit value of the air-fuel ratio feedback correction coefficient to a value larger than the normal value. a procedure for guarding the lower limit of the air-fuel ratio feedback correction coefficient using the lower limit value;
By including this, the above objective has been achieved.

本発明においては、要求噴射量が最小噴則量以下である
時は、空燃比フィードバック補正係数の下限値を、通常
値よりも大きな値とJるようにしたので、減速運転時や
高地走行時に空燃比フィードバック補正係数が異常に低
下してしまうことがなく、従って、減速運転15高地走
行から定常運転又は加速運転に移行した際に、迅速に適
正空燃比を得ることができる。
In the present invention, when the required injection amount is less than the minimum injection amount, the lower limit value of the air-fuel ratio feedback correction coefficient is set to a value larger than the normal value. The air-fuel ratio feedback correction coefficient does not fall abnormally, and therefore, the appropriate air-fuel ratio can be quickly obtained when transitioning from deceleration operation 15 high altitude driving to steady operation or acceleration operation.

以下図面を参照して、本発明に係る電子制御燃料噴射式
エンジンの空燃比フィードバック&ilJ御方法が採用
された、吸気管圧力感知式の電子制御燃料噴射装置を備
えた自動車用エンジンの実施例を詳細に説明づる。
Below, with reference to the drawings, an embodiment of an automobile engine equipped with an intake pipe pressure sensing type electronically controlled fuel injection device in which the air-fuel ratio feedback & ILJ control method for an electronically controlled fuel injection type engine according to the present invention is adopted will be described. Explain in detail.

本実施例は、第3図に示す如く、外部から吸入される吸
入空気の温度を検出するだめの吸気温センサ12と、ス
ロットルボディ14に配設され、運転席に配設されたア
クセルペダル(図示省略)と運動して開閉づるようにさ
れl〔、吸入空気の流幇を制御するためのスロットル弁
16と、該スロットル弁16の開度を検出するためのス
ロットルセンサ18と、吸気干渉を防止するためのサー
ジタンク20と、該サージタンク20内の吸入空気の圧
力を検出するための吸気管圧力センサ22と、吸気マニ
ホルド24に配設された、エンジン10の各気筒の吸気
ボートに向けて、加圧燃料を間欠的に噴射するためのイ
ンジェクタ26と、エンジン燃焼苗10A内に導入され
た混合気に着火するための点火プラグ28と、排気マニ
ホルド3oに配設された、排気空燃比のリッチ−リーン
状態を検出プるためのM索21度センサ(以下o2セン
サと称する)31と、該02センサ31の下流側に配設
された、例えば三元触媒が充填された触媒コンバータ3
2と、点火コイル33で発生された高圧の点火2次信号
をエンジン1oの各気筒の点火プラグ28に配電するた
めの、エンジン1oのクランク軸の回転と連動して回転
するデストリピユータ軸34Aを有するデストリピユー
タ34と、該デストリピユータ34に内蔵された、前記
デストリピユータ軸34Aの回転状態からエンジン10
の回転状態を検知するためのクランク角度センサ36と
、エンジン10のシリンダブロック10Bに配設された
、エンジン冷却水温を検知するための水温センサ38と
、前記吸気管圧力センサ22出力から検知されるエンジ
ン負荷や前記クランク角度センサ36出力からめられる
エンジン回転速度等に応じて燃料噴射量を計算し、該燃
料噴61 mに、設定空燃比と実空燃比の偏差に応じた
空燃比フィードバック補正を加えて要求噴射量を計算し
、該要求噴射量が得られるよう前記インジェクタ26に
開弁時間信号を出力する電子制御ユニット(以下ECU
と称づる>40と、がら構成されている。
As shown in FIG. 3, this embodiment includes an intake temperature sensor 12 for detecting the temperature of intake air taken in from the outside, an accelerator pedal ( A throttle valve 16 for controlling the flow of intake air, a throttle sensor 18 for detecting the opening degree of the throttle valve 16, and a throttle valve 16 for controlling the intake air interference. A surge tank 20 for preventing surges, an intake pipe pressure sensor 22 for detecting the pressure of intake air in the surge tank 20, and an intake boat for each cylinder of the engine 10 disposed in the intake manifold 24. An injector 26 for intermittently injecting pressurized fuel, a spark plug 28 for igniting the air-fuel mixture introduced into the engine combustion seedling 10A, and an exhaust air-fuel ratio disposed in the exhaust manifold 3o. an M-line 21 degree sensor (hereinafter referred to as O2 sensor) 31 for detecting the rich-lean state of
2, and a detripulator shaft 34A that rotates in conjunction with the rotation of the crankshaft of the engine 1o, for distributing the high-voltage secondary ignition signal generated by the ignition coil 33 to the spark plugs 28 of each cylinder of the engine 1o. The engine 10 is determined from the rotating state of the destroyer 34 and the destroyer shaft 34A built in the destroyer 34.
Detected from the crank angle sensor 36 for detecting the rotational state of the engine, the water temperature sensor 38 disposed in the cylinder block 10B of the engine 10 for detecting the engine cooling water temperature, and the output of the intake pipe pressure sensor 22. The fuel injection amount is calculated according to the engine load and the engine rotation speed determined from the output of the crank angle sensor 36, and an air-fuel ratio feedback correction is added to the fuel injection 61 m according to the deviation between the set air-fuel ratio and the actual air-fuel ratio. An electronic control unit (hereinafter referred to as ECU) calculates a required injection amount and outputs a valve opening time signal to the injector 26 so that the required injection amount is obtained.
It is composed of a total of 40.

前記ECtJ40は、第4図に詳細に示す如く、各種演
算処理を行うための、例えばマイクロプロセッサからな
る中央処理ユニット(以下CPUと称する)40Aと、
制御プログラムや各種データ等を記憶づるためのリード
オンリーメモリ(以下ROMと称−fる’)40B、!
:、前記CPU40Ak:おける演算データ等を一時的
に記憶するためのランダムアクセスメモリ(以下RAM
と称する)40Cと、前記吸気温センサ12、吸気管圧
力センサ22.02センサ31、水温センサ38等から
入力されるアナログ信号をデジタル信号に変換して順次
取込むための、マルチプレクサ機能を備えたアナログ−
デジタル変換器(以下A/Dコンバータと称する)40
Eと、前記スロットルセンサ18、クランク角度センサ
36等から入力されるデジタル信号を取込むとともに、
CPLJ40Aの演算結果に応じて、前記インジェクタ
26等に制御信号を出力するための、バッファ機能を備
えた入出力ポート(以下I10ボートと称する)40F
と、前記各構成機器間を接続して、データや命令を転送
づるためのコモンバス40Gと、がら構成されている。
As shown in detail in FIG. 4, the ECtJ 40 includes a central processing unit (hereinafter referred to as CPU) 40A consisting of, for example, a microprocessor for performing various arithmetic processing;
Read-only memory (hereinafter referred to as ROM) 40B for storing control programs and various data, etc.
:, random access memory (hereinafter referred to as RAM) for temporarily storing calculation data etc. in the CPU 40Ak:.
) 40C, and a multiplexer function for converting analog signals inputted from the intake temperature sensor 12, intake pipe pressure sensor 22, 02 sensor 31, water temperature sensor 38, etc. into digital signals and sequentially importing the digital signals. Analog-
Digital converter (hereinafter referred to as A/D converter) 40
E, and receives digital signals input from the throttle sensor 18, crank angle sensor 36, etc.
An input/output port (hereinafter referred to as I10 port) 40F with a buffer function for outputting a control signal to the injector 26 etc. according to the calculation result of CPLJ40A.
and a common bus 40G for connecting the respective component devices and transferring data and instructions.

以下作用を説明づる。The action will be explained below.

本実施例における空燃比フィードバック補正係数FAF
の下限ガードは、第5図に示づような流れ図に従って実
行される。即ち、まずステップ110で、前記クランク
角度センサ36出力がらめられるエンジン回転速度及び
前記吸気管圧力センサ22出力からめられる吸気管圧力
等から、エンジン1回転毎又は単位時間当りの燃料噴射
量を算出し、該燃料噴射量に、既に算出されている、設
定空燃比と実空燃比の偏差に応じた前回の空燃比フィー
ドバック補正係数FAFを乗することによって、今回の
要求噴!)J I Q aを算出する。つぃでステップ
112に進み、前記02センサ31の出力に応じて、今
回の空燃比フィードバック補正係数FAFを算出づる。
Air-fuel ratio feedback correction coefficient FAF in this embodiment
The lower limit guard of is performed according to a flowchart as shown in FIG. That is, first, in step 110, the fuel injection amount per engine revolution or per unit time is calculated from the engine rotation speed, which is determined from the output of the crank angle sensor 36, and the intake pipe pressure, which is determined from the output of the intake pipe pressure sensor 22. , by multiplying the fuel injection amount by the previous air-fuel ratio feedback correction coefficient FAF, which corresponds to the deviation between the set air-fuel ratio and the actual air-fuel ratio, which has already been calculated, the current requested injection! ) Calculate J I Q a. The program then proceeds to step 112, in which the current air-fuel ratio feedback correction coefficient FAF is calculated according to the output of the 02 sensor 31.

ついでステップ114に進み、前出ステップ110で算
出された要求噴射ff1Qaが、予め単体評価等でめら
れている、前記インジェクタ26の最小開弁時間により
定まる最小噴射Q Q bを越えているか否かを判定づ
る。
Next, the process proceeds to step 114, and it is determined whether or not the required injection ff1Qa calculated in step 110 exceeds the minimum injection Q Q b determined by the minimum valve opening time of the injector 26, which has been determined in advance by individual evaluation or the like. Determine.

判定結果が正である場合、即ち、正確なフィードバック
補正が行われていると判断される時には、ステップ11
6に進み、空燃比フィードバック補正係数の下限値FA
Fminとして、通常値りを入れる。一方、前出ステッ
プ114の判定結果が否であり、正確なフィードバック
補正が1′:iわれないと判断される詩には、ステップ
118に進み、空燃比フィードバック補正係数の下限M
FAFn+inとして、前記通常値りよりも大きな値E
(’E>D)を入れる。この値Eとしては、例えば、要
512嗅割量Qaと最小@剣四Q l)が略一致するよ
うな値とづることができる。
If the determination result is positive, that is, if it is determined that accurate feedback correction is being performed, step 11
Proceed to step 6, the lower limit value FA of the air-fuel ratio feedback correction coefficient
Enter the normal price as Fmin. On the other hand, if the determination result in step 114 is negative and it is determined that accurate feedback correction is not applied to the poem, the process proceeds to step 118, and the lower limit M of the air-fuel ratio feedback correction coefficient is
As FAFn+in, a value E larger than the above normal value
Insert ('E>D). This value E can be set, for example, to a value such that the required amount Qa and the minimum @Kenshi Ql) substantially match.

助出ステップ116又は118終了後、ステップ120
に進み、その時の下限ffiFAFminにより、空燃
比フィードバック補正WN数FAFの下限をガードして
、このルーチンを終了でる。
After the rescue step 116 or 118, step 120
Then, the lower limit of the air-fuel ratio feedback correction WN number FAF is guarded by the lower limit ffiFAFmin at that time, and this routine ends.

このルーチンによって決定された空燃比フィードバック
補正係数FAFは、次回の要求噴射量Qaの算出の際に
用いられる。
The air-fuel ratio feedback correction coefficient FAF determined by this routine is used when calculating the next required injection amount Qa.

本実施例における、定常運転から減速運転に移行し、再
び定常運転に戻った際の空燃肚フィードバック補正係数
FAF、要求1131!)l鯖Qa、空燃比の変化状態
の一例を、前出第1図に1iftI線Fで示す。
In this embodiment, the air-fuel feedback correction coefficient FAF when transitioning from steady operation to deceleration operation and returning to steady operation again, request 1131! ) An example of how the air-fuel ratio changes is shown by the 1iftI line F in FIG. 1 mentioned above.

図から明らかな如く、本実施例においては、減(運転時
の空燃比フィードバック補正係数FAFが、通常値りよ
りも大ぎな値Eでガードされるため、再び定常運転に復
帰した際に、空燃比フィードバック補正係数FAFが迅
速にフィードバック制御領域まで戻り、第1図に実1i
!Aで示した従来例のような、大ぎなオーバーリーン領
域Bが解消される。又、同じく第1図に一点鎖線Cで示
した比較例のように、減速運転時に空燃比がハンチング
して不安定になることもない。
As is clear from the figure, in this embodiment, the air-fuel ratio feedback correction coefficient FAF during operation is guarded at a value E that is larger than the normal value, so when the steady operation is resumed, the air-fuel ratio feedback correction coefficient FAF is The fuel ratio feedback correction coefficient FAF quickly returns to the feedback control area, and as shown in Fig.
! The large over-lean region B, as in the conventional example shown in A, is eliminated. Further, unlike the comparative example shown by the dashed line C in FIG. 1, the air-fuel ratio does not become unstable due to hunting during deceleration operation.

本実施例においては、空燃比フィードバック補正係数の
下限値F A F mlnを2値としていたので、10
グラムが単純である。なお空燃比フィードバック補正係
数の下限値を変える方法はこれに限定されず、例えば3
値以上とすることも可能である。
In this embodiment, the lower limit value F A F mln of the air-fuel ratio feedback correction coefficient was set to a binary value, so 10
Gram is simple. Note that the method of changing the lower limit value of the air-fuel ratio feedback correction coefficient is not limited to this, for example, 3
It is also possible to make it greater than the value.

前記実施例においては、本発明が、吸気管圧力感知式の
電子制御燃料噴射装置を備えた自動車用エンジンに適用
されていたが、本発明の適用範囲はこれに限定されず、
例えば、吸入空気量感知式の電子制御燃料噴射装置を備
えた自動車用エンジンや、他の型式の電子制御燃料噴射
式エンジンにも同様に適用できることは明らかである。
In the above embodiment, the present invention was applied to an automobile engine equipped with an electronically controlled fuel injection device that senses intake pipe pressure, but the scope of application of the present invention is not limited to this.
For example, it is obvious that the present invention can be similarly applied to automobile engines equipped with an electronically controlled fuel injection device that senses the amount of intake air, and other types of electronically controlled fuel injection engines.

以上説明した通り、本発明によれば、減速運転時や高地
走行時における空燃比を不安定化することなく、減速運
転や高地走行から定常運転又は加速運転に移行した際に
、迅速に適正な空燃比を得ることができる。従って、そ
の際の排気エミッションを低減すると共に、ドライバビ
リティを向上づることができるという優れた効果を有づ
る。
As explained above, according to the present invention, the air-fuel ratio is not destabilized during deceleration driving or high-altitude driving, and when transitioning from decelerating driving or high-altitude driving to steady or accelerated driving, the air-fuel ratio can be quickly adjusted to the appropriate level. The air-fuel ratio can be obtained. Therefore, it has the excellent effect of reducing exhaust emissions and improving drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来例、比較例及び本発明の実施例における
、定常運転から減速運転に移行し、再び定常運転に復帰
した際の、空燃比フィードバック補正係数、要求@銅量
、空燃比の変化状態の関係の例を比較して承り絵図、第
2図は、本発明に係る電子制御燃料噴射式エンジンの空
燃比ノイートーバツク制御方法の要旨を示づ流れ図、第
3図は、本発明が採用された、吸気管圧力感知式の電子
制御燃料噴射装置を備えた自動車用エンジンの実hl!
1例の構成を示す、一部ブロック線図を含む断面図、第
4図は、前記実施例で用いられている亀子制御ユニット
の構成を示づブロック線図、第5図は、同じく、空燃比
フィードバック補正係数の下限ガードを行うためのルー
チンの要部を示4゛流れ図である。 Qa・・・要求噴射量、Qb・・・最小噴射鯖、FAF
・・・空燃比フィードバック補正係数、F A F m
in・・・下限値、 D・・・通常値、E・・・通常値
よりも大きな値、 10・・・エンジン、 22・・・吸気管圧力センサ、
26・・・インジェクタ、 31・・・酸素濃度センサ(02センサ)、32・・・
触媒」ンバータ、 36・・・クランク角度センサ、 40・・・電子制御ユニット(ECU)。 代理人 高 矢 論 (ほか1名)
Figure 1 shows the air-fuel ratio feedback correction coefficient, demand@copper amount, and air-fuel ratio when transitioning from steady operation to deceleration operation and returning to steady operation in a conventional example, a comparative example, and an example of the present invention. Fig. 2 is a flowchart showing the gist of the air-fuel ratio noise back control method for an electronically controlled fuel injection engine according to the present invention, and Fig. 3 is a pictorial diagram comparing examples of relationships between changing states. An actual example of an automobile engine equipped with an electronically controlled fuel injection system that senses intake pipe pressure!
FIG. 4 is a cross-sectional view including a partial block diagram showing the configuration of one example; FIG. 4 is a block diagram showing the configuration of the Kameko control unit used in the embodiment; FIG. FIG. 4 is a flowchart showing the main part of a routine for guarding the lower limit of the fuel ratio feedback correction coefficient. Qa...required injection amount, Qb...minimum injection amount, FAF
...Air-fuel ratio feedback correction coefficient, F A F m
in...lower limit value, D...normal value, E...value larger than the normal value, 10...engine, 22...intake pipe pressure sensor,
26... Injector, 31... Oxygen concentration sensor (02 sensor), 32...
catalytic converter, 36... crank angle sensor, 40... electronic control unit (ECU). Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)エンジン回転速度及びエンジン負荷等からめられ
る燃料噴射量に、設定空燃比と実空燃比の偏差に応じた
空燃比フィードバック補正を加えて、要求噴射量をめる
ようにした電子制御燃料噴射式エンジンの空燃比フィー
ドバック制御方法において、前記要求噴射量が、インジ
ェクタの最小開弁時間により定まる最小噴射量を越えて
いるか否かを判定プる手順と、要求噴射量が最小@装置
を越えている時は、空燃比フィードバック補正係数の下
限値を通常値とする手順と、要求噴則曾が最小噴射量舅
下である時は、空燃比フィードバック補正係数の下限値
を前記通常値よりも大きな値と覆る手順と、前記下限値
により空燃比フィードバック補正係数の下限をガードす
る手順と、を含むことを特徴とする電子制御燃料噴射式
エンジンの空燃比フィードバック制御方法。
(1) Electronically controlled fuel injection in which the required injection amount is determined by adding air-fuel ratio feedback correction according to the deviation between the set air-fuel ratio and the actual air-fuel ratio to the fuel injection amount determined from engine speed, engine load, etc. In the air-fuel ratio feedback control method for a type engine, a procedure for determining whether the required injection amount exceeds the minimum injection amount determined by the minimum valve opening time of the injector; If the required injection rate is below the minimum injection amount, the lower limit value of the air-fuel ratio feedback correction coefficient should be set to a higher value than the normal value. 1. An air-fuel ratio feedback control method for an electronically controlled fuel injection engine, characterized in that the air-fuel ratio feedback control method for an electronically controlled fuel injection engine includes the steps of: overriding the air-fuel ratio feedback correction coefficient; and guarding the lower limit of the air-fuel ratio feedback correction coefficient using the lower limit value.
JP12590283A 1983-07-11 1983-07-11 Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine Granted JPS6019942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12590283A JPS6019942A (en) 1983-07-11 1983-07-11 Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12590283A JPS6019942A (en) 1983-07-11 1983-07-11 Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine

Publications (2)

Publication Number Publication Date
JPS6019942A true JPS6019942A (en) 1985-02-01
JPH0429855B2 JPH0429855B2 (en) 1992-05-20

Family

ID=14921731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12590283A Granted JPS6019942A (en) 1983-07-11 1983-07-11 Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine

Country Status (1)

Country Link
JP (1) JPS6019942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215466A (en) * 1982-06-08 1983-12-14 Honny Chem Ind Co Ltd Matte electrodeposition coating method
JPS6332140A (en) * 1986-07-28 1988-02-10 Mazda Motor Corp Air-fuel ratio controller for engine
JP4726481B2 (en) * 2002-05-06 2011-07-20 ローズマウント インコーポレイテッド Barometric pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215466A (en) * 1982-06-08 1983-12-14 Honny Chem Ind Co Ltd Matte electrodeposition coating method
JPS6310744B2 (en) * 1982-06-08 1988-03-09 Hanii Kasei Kk
JPS6332140A (en) * 1986-07-28 1988-02-10 Mazda Motor Corp Air-fuel ratio controller for engine
JP4726481B2 (en) * 2002-05-06 2011-07-20 ローズマウント インコーポレイテッド Barometric pressure sensor

Also Published As

Publication number Publication date
JPH0429855B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
JPH0615834B2 (en) Engine controller
JPH0158334B2 (en)
JPS5934441A (en) Control method of air-fuel ratio of internal-combustion engine
US4502448A (en) Method for controlling control systems for internal combustion engines immediately after termination of fuel cut
JPS6019942A (en) Method of feedback control of air-fuel ratio of electronically controlled fuel injection engine
US4493300A (en) Method of controlling the fuel supply to an internal combustion engine at deceleration
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS60132042A (en) Injection time controlling method of electronically controlled fuel injection engine
GB2121215A (en) Automatic control of the fuel supply to an internal combustion engine immediately after termination of fuel cut
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JP2531157B2 (en) Fuel supply amount control device for electronic fuel injection engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS6022053A (en) Air-fuel ratio feedback control method for electronically controlled fuel injection engine
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JP2873506B2 (en) Engine air-fuel ratio control device
JP2770322B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0571381A (en) Fuel feed control device for internal combustion engine
JPS6053644A (en) Acceleration fuel increasing method of electronically controlled fuel injection engine
JPS59126048A (en) Air-fuel ratio controlling method for internal- combustion engine for vehicle
JPS63170536A (en) Fuel cut control device for internal combustion engine
JPS60135641A (en) Method of increasing fuel supply rate for preventing overheating of exhaust gas of electronically controlled engine
JPS6232336B2 (en)
JPH09317526A (en) Warming-up correction control method for internal combustion engine
JPS59203835A (en) Fuel injection controlling method
JPS58152148A (en) Air-fuel ratio control method for internal combustion engine