JPS59126048A - Air-fuel ratio controlling method for internal- combustion engine for vehicle - Google Patents

Air-fuel ratio controlling method for internal- combustion engine for vehicle

Info

Publication number
JPS59126048A
JPS59126048A JP23367282A JP23367282A JPS59126048A JP S59126048 A JPS59126048 A JP S59126048A JP 23367282 A JP23367282 A JP 23367282A JP 23367282 A JP23367282 A JP 23367282A JP S59126048 A JPS59126048 A JP S59126048A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
vehicle
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23367282A
Other languages
Japanese (ja)
Other versions
JPH0429856B2 (en
Inventor
Hisao Nishiguchi
西口 尚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP23367282A priority Critical patent/JPS59126048A/en
Publication of JPS59126048A publication Critical patent/JPS59126048A/en
Publication of JPH0429856B2 publication Critical patent/JPH0429856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent rough idling operation of an engine and generation of irritant odor from catalyst, by stopping feedback control of the air-fuel ratio and correcting the air-fuel ratio to make air-fuel mixture lean when the vehicle is stopped and the engine temperature is higher than the ordinary level. CONSTITUTION:When an engine is in operation, an engine control unit 48 controls the air-fuel ratio to an aimed value by way of feedback control by obtaining a datum injection pulse signal Tp from the amount of intake air detected by an air-flow meter 14 and the engine speed detected from a primary ignition signal Ig and controlling operation of an injector 26 by correcting the signal Tp appropriately according to the output of an O2-sensor 30, etc. Here, if it is detected from the output of a vehicle-speed sensor 44 that the vehicle is at rest and the output of a water-temperature sensor 36 is higher than an ordinary value, feedback control of the air-fuel ratio is stopped. Further, control is executed to make air-fuel mixture lean by reducing the air-fuel ratio correction factor by about 5-10% uniformly, for instance, by reducing the correction factor by 5%.

Description

【発明の詳細な説明】 本発明は、車両用内燃機関の空燃比制御方法に係9、特
に、空燃比センサおよび三元触媒を用いて排気ガス浄化
対策が施された自動車用エンジンに用いるのに好適な、
排気空燃比の状態に応じて空燃比tフィードバック制御
して、空燃比が目標空燃比となるようにした車両用内燃
機関の空燃比制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method for an internal combustion engine for a vehicle, and particularly for use in an automobile engine in which exhaust gas purification measures are taken using an air-fuel ratio sensor and a three-way catalyst. suitable for
The present invention relates to an improvement in an air-fuel ratio control method for a vehicle internal combustion engine that performs air-fuel ratio t feedback control according to the state of the exhaust air-fuel ratio so that the air-fuel ratio becomes a target air-fuel ratio.

内燃機関1%に、三元触媒を用いて排気ガス浄化対策が
施された自動車用エンジンにおいては。
In automobile engines, 1% of internal combustion engines are equipped with exhaust gas purification measures using three-way catalysts.

排気空燃比を厳密に理論空燃比近傍に保持する必要があ
り、そのため1例えば、排気ガス中の酸素濃度から排気
空燃比のリッチ−リーン状態を感知する酸素濃度センサ
からなる空燃比セイサと、燃料噴射fLヲ制御すること
によって混合気の空燃比音制御する電子制御燃料噴射装
置からなる空燃比制御手段とを備え、前記空燃比センサ
の出力に応じて判定される空燃比のりツチーリーン状態
に応じて、前記寛子制御燃料噴射装置の燃料噴射量。
It is necessary to maintain the exhaust air-fuel ratio strictly near the stoichiometric air-fuel ratio, and for this purpose, for example, an air-fuel ratio sensor consisting of an oxygen concentration sensor that detects the rich-lean state of the exhaust air-fuel ratio from the oxygen concentration in the exhaust gas, and a fuel an air-fuel ratio control means consisting of an electronically controlled fuel injection device that controls the air-fuel ratio sound of the air-fuel mixture by controlling the injection fL; , a fuel injection amount of the Hiroko control fuel injection device.

即ち、空燃比をフィードバック制御して、排気ガス中の
酸素a度を、目標空燃比、例えば、理論空燃比の混合気
を燃焼させた場合の酸素濃度と等しくするようにしたも
のが実用化されている。
That is, a system in which the air-fuel ratio is feedback-controlled to make the oxygen a degree in the exhaust gas equal to the oxygen concentration when a mixture at a target air-fuel ratio, for example, a stoichiometric air-fuel ratio is combusted, has been put into practical use. ing.

このような空燃比制御によれば、エンジン運転状態の変
化にかかわらず、′良好な排気ガス浄化性能を得ること
ができるという特徴上布する。
This type of air-fuel ratio control has the advantage that it is possible to obtain good exhaust gas purification performance regardless of changes in engine operating conditions.

しかしながら従来は、高温条件下で長時間高速走行tし
た後、急に車両を停車してアイドル運転状態で放置した
場合や、車両を停車していて、アクセルのオンオフを何
回も繰返した場合に、空燃比がリッチ側にずれてしまい
、エンジンがラフアイドル状態となるだけでなく、触媒
から刺激臭が発生することがあるという問題点を有して
いた。
However, conventionally, after driving at high speed for a long time under high temperature conditions, the vehicle suddenly stops and is left in an idling state, or when the vehicle is stopped and the accelerator is repeatedly turned on and off. However, the air-fuel ratio shifts to the rich side, which not only causes the engine to idle roughly, but also causes the catalyst to emit an irritating odor.

即ち、第1図(A)に示す如く2例えば大気温40℃1
日射有り、風無し若しくは追い風という高温条件下で、
高速高負荷走行をした後、急に車両を停車して、アイド
ル運転状態で放置した場合、高速走行状態では、走行風
もあシ、エンジンのサーモスタットの働きで、エンジン
冷却水温が上昇。
That is, as shown in FIG.
Under high temperature conditions with sunlight, no wind, or a tailwind,
If you suddenly stop the vehicle after driving at high speed and under high load and leave it idling, the engine cooling water temperature will rise due to the wind and the engine thermostat while driving at high speed.

下降を繰返しながら1通常状態上限以下の温度に制御さ
れているか、この場合のような状況下で、急にアイドル
運転状態で放置すると、冷却ファンは回っていても、走
行風が全く無くなるため、エンジン冷却水温は制御不可
能となり、第1図(B)に示す如く、異常に高くなる。
If the temperature is controlled to be below the normal state upper limit while repeatedly descending, or if you suddenly leave it in idling mode under such conditions as in this case, even if the cooling fan is running, there will be no running air at all. The engine cooling water temperature becomes uncontrollable and becomes abnormally high as shown in FIG. 1(B).

又、エンジンルーム内の温度が上昇するため一吸気温度
が高くなり。
Also, as the temperature in the engine compartment increases, the intake air temperature increases.

特に、吸入空気i感知式電子制御燃料噴射装置を備えた
エンジンにおいては、空気の密度が低下すること、及び
、酸素濃度センサの温度が高くなるため、制御周波数が
高くなり、リッチと判定してう。従って、エンジン回転
速度も、第1図(O)に番線↓4示す如く、正規のアイ
ドル回転、速度よシも低く且つ不安定となり、いわゆる
ラフアイドル状態となる。この時、当然触媒温度も高い
ため。
In particular, in engines equipped with intake air i-sensing electronically controlled fuel injection systems, the density of the air decreases and the temperature of the oxygen concentration sensor increases, so the control frequency increases and the engine is judged to be rich. cormorant. Therefore, the engine rotational speed, as shown by the number ↓4 in FIG. 1(O), becomes lower and unstable than the normal idle rotation and speed, resulting in a so-called rough idle state. Naturally, at this time, the catalyst temperature is also high.

触媒で発生するHCによる刺激臭もみられる。There is also an irritating odor due to HC generated by the catalyst.

又、車両に停車していて、アクセルのオンオフを何回も
繰返した場合も、アイドルスイッチがオフとなった時の
非同期噴射が何回も行われるため、空燃比がリッチ−リ
ーンを繰返しながらリッチ側にずれ、且つ、エンジン冷
却水温及び触媒温度も異常に上昇してゆき、その後、ア
イドル状態に戻しても、空燃比はリッチずれして、ラフ
アイドルとなったシ、刺激臭が発生することがあった。
Also, if the vehicle is stopped and the accelerator is turned on and off many times, asynchronous injection is performed many times when the idle switch is turned off, so the air-fuel ratio changes rich and lean repeatedly. In addition, the engine cooling water temperature and catalyst temperature also rise abnormally, and even after returning to the idle state, the air-fuel ratio shifts to rich, resulting in a rough idle and a pungent odor. was there.

本発明は、前記従来の問題点食解消するべくなされたも
ので、高温条件下で長時間高速走行した後に急に車両を
停車してアイドル放置した場合や。
The present invention has been made to solve the above-mentioned conventional problems, such as when a vehicle is suddenly stopped and left idling after driving at high speed for a long time under high temperature conditions.

車両を停車していてアクセルのオンオフを何回も繰返し
た場合の、ラフアイドルや触媒刺激臭の発生を防止する
ことができる車両用内燃機関の空燃比制御方法を提供す
ることを目的とする。
To provide an air-fuel ratio control method for a vehicle internal combustion engine capable of preventing rough idling and catalyst irritating odor from occurring when the accelerator is repeatedly turned on and off while the vehicle is stopped.

本発明は、排気空燃比の状態に応じて空燃比をフィード
バック制御して、空燃比が目標空燃比となるようにした
車両用内燃機関の空燃比制御方法において、第2図りこ
その袈旨を示す如く、車両が停車状態にあり、且つ、エ
ンジン温度が通常以上に高い時は、前6じフィードバッ
ク制御を停止し−且つ、空燃比’z IJ−ン補正して
、空燃北上リーン化するようにして一前部目的を達成し
たものである。
The present invention provides an air-fuel ratio control method for a vehicle internal combustion engine in which the air-fuel ratio is feedback-controlled according to the state of the exhaust air-fuel ratio so that the air-fuel ratio becomes a target air-fuel ratio. As shown, when the vehicle is stopped and the engine temperature is higher than normal, the previous feedback control is stopped and the air-fuel ratio is corrected to make the air-fuel ratio leaner. In this way, the purpose of the first part was achieved.

以下1図面を参照して1本発明に係る車両用内燃機関の
空燃比制御方法が採用された自動車用エンジンの吸入空
気量感知式電子制御燃料噴射装置の実施例を詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electronically controlled fuel injection system that senses the amount of intake air for an automobile engine, in which the air-fuel ratio control method for an internal combustion engine for a vehicle according to the present invention is adopted, will be described in detail below with reference to one drawing.

本実施例は、第3図に示すごとく、大気を取り入れるた
めのエアクリーナ12と、該エアクリーナ12により吸
気管13に取り入れられた吸入空気の流量ヲ検出するた
めのエアフローメータ14と、核エアフローメータ14
に内蔵された。吸入空気の温度を検出するための吸気温
センサ16と。
As shown in FIG. 3, this embodiment includes an air cleaner 12 for taking in atmospheric air, an air flow meter 14 for detecting the flow rate of intake air taken into the intake pipe 13 by the air cleaner 12, and a nuclear air flow meter 14.
built into. and an intake air temperature sensor 16 for detecting the temperature of intake air.

スロットルボディ18に配設され、運転席に配設された
アクセルペダル(図示省略)と連動して開閉するように
された。吸入空気の流at副制御るためのスロットル弁
20と、該スロットル弁20が全閉状態にある時にオン
となるアイドルスイッチを含むスロットルセンサ22と
、吸気マニホルド24に配設された。エンジン10の各
気筒の吸気ボートに向けて燃料を噴射するためのインジ
ェクタ26と、排気マニホルド28に配設された、排気
ガス中の酸素濃度がら空燃比上検知するための酸素濃度
センサ(以下02センサと称する)30と、排気管32
の途中に配設された三元触媒コンバータ34と、エンジ
ン10のシリンダブロックに配設された、エンジン冷却
水温を検知するための水温センサ36と、エンジンlO
のクランク軸の回転と連動して回転するデストリピユー
タ軸(図示省略)を有し、エンジン回転に応じて所定ク
ランク角毎に点火1次信号Ig?r発生すると共に、該
点火1次信号Igに応じて点火コイル38で発生された
高圧の点火2次信号會各気筒の点火プラグ39に配電す
るためのデストリピユータ40と、変速機42の出力軸
の回転速度から。
It is arranged on the throttle body 18 and opened and closed in conjunction with an accelerator pedal (not shown) arranged on the driver's seat. A throttle valve 20 for sub-controlling the flow of intake air, a throttle sensor 22 including an idle switch that is turned on when the throttle valve 20 is in a fully closed state, and an intake manifold 24 are provided. An injector 26 for injecting fuel toward the intake boats of each cylinder of the engine 10 and an oxygen concentration sensor (hereinafter referred to as 02 (referred to as a sensor) 30, and an exhaust pipe 32.
a three-way catalytic converter 34 disposed in the middle of the engine 10, a water temperature sensor 36 disposed in the cylinder block of the engine 10 for detecting the engine cooling water temperature, and an engine lO
It has a destroyer shaft (not shown) that rotates in conjunction with the rotation of the crankshaft, and the primary ignition signal Ig? r, and a high-pressure ignition secondary signal generated by the ignition coil 38 in accordance with the ignition primary signal Ig. From rotation speed.

エンジンlOが搭載された自動車の走行速度上検知する
ための車速センサ44と、バッテリ46と一前記エアフ
ローメータ14出力の吸入空気量と前記点火1次信号1
gから求められるエンジン回転速度に応じて、所定クラ
ンク角毎に基本噴射時間に対応するパルス幅の基本噴射
パルス信号Tpを発生すると共に、該基本噴射パルス信
号Tpに各a補正を加えて萌虻インジェクタ26にイン
ジェクタ駆動パルス信号Tiを出力するアナログ演算回
路、及び、該アナログ演算回路から出力される基本噴射
パルス信号Tpに、前記02センサ30出力の空燃比の
リッチ−リーン状態に応じたフィードバック補正、前H
Cスロットルセンサ22の出力に応じた補正等を加える
ための補正信号Vf i形成すると共に、エンジン運転
状態が所定運転状態となった時、例えば、前記スロット
ルセンサ22のアイドルスイッチがオフとなった時は、
即座に非同期噴射パルス信号Ta f発生するデジタル
演算回路上台むハイブリッド型のエンジン制御装置48
とを備えた自動車用4気筒エンジンIOの吸入空気儀感
知式電子制御燃料噴射装、置において、前記エンジン制
御装置48内で、自動車が停車状態にあシ、且つ、エン
ジン冷却水温が通常以上に高い時は、前dピッイードバ
ック補正を停止し。
A vehicle speed sensor 44 for detecting the running speed of an automobile equipped with an engine 1O, a battery 46, an intake air amount output from the air flow meter 14, and the ignition primary signal 1.
A basic injection pulse signal Tp having a pulse width corresponding to the basic injection time is generated at every predetermined crank angle according to the engine rotational speed determined from An analog calculation circuit outputs an injector drive pulse signal Ti to the injector 26, and a feedback correction is made to the basic injection pulse signal Tp output from the analog calculation circuit in accordance with the rich-lean state of the air-fuel ratio output from the 02 sensor 30. , previous H
In addition to forming a correction signal Vf i for applying correction etc. according to the output of the C throttle sensor 22, when the engine operating state reaches a predetermined operating state, for example, when the idle switch of the throttle sensor 22 is turned off. teeth,
A hybrid engine control device 48 mounted on a digital arithmetic circuit that immediately generates an asynchronous injection pulse signal Taf.
In the intake air meter sensing type electronically controlled fuel injection system for a four-cylinder automobile engine IO, which is equipped with the above-mentioned engine control device 48, when the automobile is in a stopped state and the engine cooling water temperature is higher than normal. When it is high, stop the front d pitch feedback correction.

且つ、空燃比補正係数全−律に5〜lO%程度。In addition, the air-fuel ratio correction coefficient is generally about 5 to 10%.

例えば5%減少させて、空燃比?lr ’J−ン化する
ようにしたものである。
For example, reduce the air-fuel ratio by 5%? It is designed to convert into lr'J-n.

前記エンジン制御装置48は、第4図に詳細に示すごと
く、前記デストリピユータ40から入力される点火1次
信号Igk分局して所定クランク角毎の信号とするため
の分周回路50と、該分周回路50出力および前@ビニ
アフローメータ14から入力される吸入空気量信号に応
じて、基本噴射時間に対応するパルス幅の基本噴射パル
ス信号Tp f所定クランク角毎に発生する基本噴射パ
ルス生成回路52と、ダイオード54ケ介して入力され
る基本噴射パルス信号Tpに対して、前記吸気温センサ
16出力の吸気温信号、前記水温センサ36出力のエン
ジン冷却水温信号および後出デジタル制御回路出力の補
正信号Vfに応じて補正を施すための乗算補正回路56
と、該乗算補正回路56出力のインジェクタ駆動パルス
信号Ti と後出デジタル匍(御回路出力の非同期噴射
パルス信号Taとの論理和を出力するOR回路58と、
該OR回路58出力によって駆動され、削口Cインジェ
クタ26に通電するためのインジェクタ駆動トランジス
タ60と、各積演算処理を行うための。
As shown in detail in FIG. 4, the engine control device 48 includes a frequency dividing circuit 50 for dividing the primary ignition signal Igk inputted from the distributor 40 into a signal for each predetermined crank angle, and A basic injection pulse generation circuit that generates a basic injection pulse signal Tpf with a pulse width corresponding to the basic injection time at every predetermined crank angle according to the output of the circuit 50 and the intake air amount signal input from the front @vinia flow meter 14. 52 and the basic injection pulse signal Tp inputted through the diodes 54, correction of the intake temperature signal output from the intake temperature sensor 16, the engine cooling water temperature signal output from the water temperature sensor 36, and the output from the digital control circuit described later. Multiplication correction circuit 56 for performing correction according to signal Vf
and an OR circuit 58 that outputs the logical sum of the injector drive pulse signal Ti output from the multiplication correction circuit 56 and the asynchronous injection pulse signal Ta output from the digital signal control circuit,
An injector drive transistor 60 is driven by the output of the OR circuit 58 and is used to supply current to the cut hole C injector 26, and is used to perform each product calculation process.

例えはマイクロプロセッサからなる中央処理装置(以下
CPUと称する)62a−各種時間信号を発生するため
のタイマ62b、前記基本噴射パルス生成回路52出力
の基本噴射パルス信号Tpに応じて割込みを行うための
割込み制御部62c、前記02センサ30出力の空燃比
信号、前記スロットルセンサ22の出力、前bピ車速セ
ンサ44の出力等を取り込むためのデジタル入力ポート
ロ2d、前記エアフローメータ14から入力される吸入
空気竜信号−前記水温センサ36から入力されるエンジ
ン冷却水温信号等をデジタル信号に変換して取り込むた
めのアナログーデジタルコンノ(−タ(以下A / D
コンバータと称する)fi2e−CPU62aにおける
演算データ等を一時的に記憶するためのランダムアクセ
スメモリ(以下RAMと称する)621制御プログラム
や各種定数等ヲ紀憶するためのリードオンリーメモリ(
以下ROMと称する)62 g、 的1dCPU62a
における演算結果に応じて、非同期噴射パルス信号Ta
を前記OR回路58に出力するためのデジタル出力ポー
トロ2h、同じく前記CPU62aにおける演算結果に
応じて得られるデジタル補正信号をアナログ補正信号v
fに変換して#記乗算補正回路56に出力するためのデ
ジタル−アナログコンバータ(以下D/Aコンバータと
称する)621、キイスイッチ49を介して印加され墓
前記バッテリ46の電圧を各構成機器に供給するための
電源回路62j、および、前記バッテリ46から直接印
加される電圧を前記RAM62fに供給するための電源
回路62kからなるデジタル制御回路62とから構成さ
れている。第3図において。
For example, a central processing unit (hereinafter referred to as CPU) 62a consisting of a microprocessor, a timer 62b for generating various time signals, and a timer 62b for making an interrupt in response to the basic injection pulse signal Tp output from the basic injection pulse generation circuit 52. An interrupt control section 62c, a digital input port 2d for taking in the air-fuel ratio signal output from the 02 sensor 30, the output from the throttle sensor 22, the output from the front b-speed sensor 44, etc., and the intake air input from the air flow meter 14. Dragon signal - Analog-digital controller (hereinafter referred to as A/D) for converting the engine cooling water temperature signal etc. input from the water temperature sensor 36 into a digital signal and taking it in.
Random access memory (hereinafter referred to as RAM) 621 for temporarily storing calculation data etc. in the fi2e-CPU 62a (referred to as converter) 621 Read-only memory (referred to as RAM) for storing control programs and various constants, etc.
(hereinafter referred to as ROM) 62 g, target 1d CPU 62a
The asynchronous injection pulse signal Ta
The digital output port 2h for outputting to the OR circuit 58, and the digital correction signal obtained according to the calculation result in the CPU 62a as an analog correction signal v
A digital-to-analog converter (hereinafter referred to as a D/A converter) 621 converts the voltage into f and outputs it to the multiplication correction circuit 56 marked #, and applies the voltage of the battery 46 to each component through the key switch 49. A digital control circuit 62 includes a power supply circuit 62j for supplying voltage, and a power supply circuit 62k for supplying voltage directly applied from the battery 46 to the RAM 62f. In fig.

64は、プルアップ抵抗、66は、インジェクタ用レジ
スタである。
64 is a pull-up resistor, and 66 is an injector resistor.

以下作用を説明する。The action will be explained below.

本実施例における空燃比のリーン補正は、第5図に示す
ようなルーチンに従って実行される。即ち、まず、ステ
ップ101で、前記車速センサ44の出力に応じて、車
速が所定値、例えば7 Km/hJ9下であるか否かを
判定する。判定結果が正である場合、即ち、自動車が停
車状態にあると判断される時には、ステップ102に進
み、前記水温センサ36の出力に応じて、エンジン冷却
水温が、通常状態上限よりも高い所定値以上であるか否
かを判定する。判定結果が正である場合、即ち、エンジ
ン冷却水温が通常以上に高いと判断される時には、ステ
ップ103に進み、前記02 センサ30の出力による
空燃比フィードバック補正を停止する。次いでステップ
104に進み一空燃比補正係数を−例えば、−律に5%
減少して、燃料噴射時間が一律に減らされるようにし、
空燃比がリーン化されるようにして−このルーチンを終
了する。
The lean correction of the air-fuel ratio in this embodiment is executed according to a routine as shown in FIG. That is, first, in step 101, it is determined based on the output of the vehicle speed sensor 44 whether the vehicle speed is below a predetermined value, for example, 7 Km/hJ9. When the determination result is positive, that is, when it is determined that the vehicle is in a stopped state, the process proceeds to step 102, and the engine cooling water temperature is set to a predetermined value higher than the normal state upper limit according to the output of the water temperature sensor 36. It is determined whether or not the value is greater than or equal to the value. If the determination result is positive, that is, if it is determined that the engine cooling water temperature is higher than normal, the process proceeds to step 103, and the air-fuel ratio feedback correction based on the output of the 02 sensor 30 is stopped. Next, the process proceeds to step 104, and the air-fuel ratio correction coefficient is set to 5%, for example.
decrease so that the fuel injection time is uniformly reduced,
The air-fuel ratio is made lean - and this routine ends.

一方、前出ステップ101又は102の判定結果が否で
ある場合、即ち5通常運転状態にあると判断される時に
は、ステップ105に進み、前記02センサ30の出力
にもとづいて空燃比補正係数を求め、フィードバック補
正が行われるようにして、このルーチンを終了する。
On the other hand, if the determination result in step 101 or 102 is negative, that is, if it is determined that the 5 normal operating state is present, the process proceeds to step 105, and an air-fuel ratio correction coefficient is calculated based on the output of the 02 sensor 30. , the feedback correction is performed, and this routine ends.

本実施例における。高温条件下で高速高荷走行をした後
にアイドル放置した場合の空燃比及び空燃比補正係数の
変化状態上−前出第1図(D) −(E)中に破線Bで
示す。
In this example. Changes in the air-fuel ratio and air-fuel ratio correction coefficient when the vehicle is left idling after high-speed, high-load driving under high-temperature conditions are indicated by broken lines B in FIGS. 1(D)-(E).

本実施例によれば、空軸比のリッチずれが防止され、従
って、ラフアイドルや触媒刺激臭の発生が防止される。
According to this embodiment, a rich shift in the air-to-axis ratio is prevented, and therefore, rough idle and catalyst irritating odor are prevented from occurring.

前記実施例においては、エンジン冷却水温からエンジン
温度を検知するようにしていたが、エンジン温度を検知
する方法はこれに限定されず、例えはエンジン油温から
エンジン温度を検知するように構成することも可能であ
る1、 なお、先に述べたように、停車中に何回もアクセルオン
オフを繰返した場合も、同様な状態となるため、本発明
にょシ対処できる。
In the embodiment described above, the engine temperature was detected from the engine cooling water temperature, but the method for detecting the engine temperature is not limited to this, and for example, the engine temperature may be configured to be detected from the engine oil temperature. As mentioned above, even if the accelerator is turned on and off many times while the vehicle is stopped, a similar situation will occur, and the present invention can also be used to deal with this situation.

前記実施例においては、本発明が、ハイブリッド型のエ
ンジン制御装置を備えた吸入空気量感知式電子制御燃料
噴射装置に適用されていたが、本発明の通用範囲はこれ
に限定されず、完全にデジタル化されたデジタル型エン
ジン制御装置を備えた吸入空気量感知式電子制御燃料噴
射エンジン、あるいは、吸気管圧力感知式電子制御燃料
噴射エンジン、更には、一般の内燃機関にも同様に適用
できることは明らかである。
In the above embodiment, the present invention was applied to an intake air amount sensing type electronically controlled fuel injection device equipped with a hybrid type engine control device, but the scope of the present invention is not limited to this, and is completely applicable to the present invention. It can be similarly applied to an intake air amount sensing type electronically controlled fuel injection engine equipped with a digitalized engine control device, an intake pipe pressure sensing type electronically controlled fuel injection engine, and even general internal combustion engines. it is obvious.

以上説明した通り、本発明によれば、高温条件下で高速
高負荷走行した後にアイドル放置した場合や、停車中に
アクセルオンオフを何回も繰返した場合の空燃比のリッ
チずれが防止でき、従って。
As explained above, according to the present invention, it is possible to prevent the air-fuel ratio from becoming rich when left idling after driving at high speed and under high load under high temperature conditions, or when the accelerator is repeatedly turned on and off while stopped. .

ラフアイドルや触媒刺激臭の発生が防止できる。Rough idle and catalyst odor can be prevented.

又、実用上の燃費性能も向上することができる等の優れ
た効果を有する。
Moreover, it has excellent effects such as being able to improve practical fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例及び本発明の実施例における、高温条
件下で高速高負荷走行をした後にアイドル放置した時の
、車速、エンジン冷却水温、エンジン回転速度、空燃比
及び空燃比補正係数の関係の例を比較して示す線図、第
2図は、本発明に係る車両用内燃機関の空燃比制御方法
の要旨會示す流tL図、第3図は、本発明が採用された
。自動車用エンジンの吸入空気量感知式電子制御燃料噴
射装置4の実施例の構成ケ示す、一部所面図を含む平面
図、第4図は一前把実施例で用いられているエンジン制
御装置の構成を示すブロック線図、第5図は、同じく、
車速及びエンジン冷却水温に応じて空燃比のリーン補正
全行うためのルーチンの要部を示す流れ図である。 lO・・・エンジン、2o・・・スロットル弁。 22・・・スロットルセンサ、26・・・インジェクタ
、30・・・酸素濃度センタ(02センサ)、34・・
・三元触媒コンバータ、36・・・水温センサー40・
・・デストリピユータ、42・・・変速様、44・・・
車速センサ48・・・エンジン制御装置。 代理人  高 矢    論 (ほか1名) 第1図 第2図 第5図
Figure 1 shows the vehicle speed, engine cooling water temperature, engine rotational speed, air-fuel ratio, and air-fuel ratio correction coefficient when left idling after driving at high speed and under high load under high temperature conditions in a conventional example and an embodiment of the present invention. 2 is a flowchart showing a summary of the air-fuel ratio control method for a vehicle internal combustion engine according to the present invention, and FIG. 3 is a diagram showing an example of the relationship in comparison. A plan view including some partial views showing the configuration of an embodiment of an intake air amount sensing type electronically controlled fuel injection device 4 for an automobile engine, and FIG. 4 is an engine control device used in the embodiment. The block diagram, FIG. 5, showing the configuration of
2 is a flowchart showing the main part of a routine for performing lean correction of the air-fuel ratio according to vehicle speed and engine cooling water temperature. lO...engine, 2o...throttle valve. 22... Throttle sensor, 26... Injector, 30... Oxygen concentration center (02 sensor), 34...
・Three-way catalytic converter, 36...Water temperature sensor 40・
...Distributor, 42...Dear shifter, 44...
Vehicle speed sensor 48...engine control device. Agent Takaya Ron (and 1 other person) Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)  排気空燃比の状態に応じて空燃比をフィード
バック制御して、空燃比が目標空燃比となるようにした
車両用内燃機関の空燃比制御方法において、車両が停車
状態にあり、且つ、エンジン温度か通常以上に高い時は
、前記フィードバック制御ケ停止し、且つ、空燃比k 
IJ−ン補正して、空燃北上リーン化するようにしたこ
とを特徴とする車両用内燃機関の空燃比制御方法、
(1) In an air-fuel ratio control method for a vehicle internal combustion engine, in which the air-fuel ratio is feedback-controlled according to the state of the exhaust air-fuel ratio so that the air-fuel ratio becomes a target air-fuel ratio, the vehicle is in a stopped state, and When the engine temperature is higher than normal, the feedback control is stopped and the air-fuel ratio k
An air-fuel ratio control method for an internal combustion engine for a vehicle, characterized in that the air-fuel ratio is made northward lean by performing IJ-ton correction,
JP23367282A 1982-12-29 1982-12-29 Air-fuel ratio controlling method for internal- combustion engine for vehicle Granted JPS59126048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367282A JPS59126048A (en) 1982-12-29 1982-12-29 Air-fuel ratio controlling method for internal- combustion engine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367282A JPS59126048A (en) 1982-12-29 1982-12-29 Air-fuel ratio controlling method for internal- combustion engine for vehicle

Publications (2)

Publication Number Publication Date
JPS59126048A true JPS59126048A (en) 1984-07-20
JPH0429856B2 JPH0429856B2 (en) 1992-05-20

Family

ID=16958717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367282A Granted JPS59126048A (en) 1982-12-29 1982-12-29 Air-fuel ratio controlling method for internal- combustion engine for vehicle

Country Status (1)

Country Link
JP (1) JPS59126048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986070A (en) * 1988-03-14 1991-01-22 Toyota Jidosha Kabushiki Kaisha Purge control device for use in an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629154A (en) * 1979-08-20 1981-03-23 Nissan Motor Co Ltd Control unit for air fuel ratio

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629154A (en) * 1979-08-20 1981-03-23 Nissan Motor Co Ltd Control unit for air fuel ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986070A (en) * 1988-03-14 1991-01-22 Toyota Jidosha Kabushiki Kaisha Purge control device for use in an internal combustion engine

Also Published As

Publication number Publication date
JPH0429856B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
US8251042B2 (en) Control unit and control method for torque-demand-type internal combustion engine
JPH0670388B2 (en) Air-fuel ratio controller
JPS5848728A (en) Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine
JPS59126048A (en) Air-fuel ratio controlling method for internal- combustion engine for vehicle
JP4888368B2 (en) Control device for internal combustion engine
JPH045818B2 (en)
JPS582443A (en) Engine air-fuel control
JPS6254975B2 (en)
JPS6231180B2 (en)
JPH0419377B2 (en)
JPH0429855B2 (en)
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JPS59101555A (en) Fuel cut method of internal-combustion engine
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JPS6324142B2 (en)
JPS6232336B2 (en)
JPS59126042A (en) Air-fuel ratio controlling method for internal- combustion engine for vehicle
JPS62344B2 (en)
JPH0459459B2 (en)
JPH0251055B2 (en)
JPS61200364A (en) Intake secondary air supply device of internal-combustion engine
JPH08261032A (en) Air-fuel ratio control method for lean combustion engine
JPH0510493B2 (en)