JPH0474767B2 - - Google Patents

Info

Publication number
JPH0474767B2
JPH0474767B2 JP57106831A JP10683182A JPH0474767B2 JP H0474767 B2 JPH0474767 B2 JP H0474767B2 JP 57106831 A JP57106831 A JP 57106831A JP 10683182 A JP10683182 A JP 10683182A JP H0474767 B2 JPH0474767 B2 JP H0474767B2
Authority
JP
Japan
Prior art keywords
silicon substrate
head
substrate
insulating substrate
preamplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57106831A
Other languages
Japanese (ja)
Other versions
JPS58224430A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10683182A priority Critical patent/JPS58224430A/en
Publication of JPS58224430A publication Critical patent/JPS58224430A/en
Publication of JPH0474767B2 publication Critical patent/JPH0474767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は混成薄膜集積ヘツドに係り、さらに詳
しくは、磁気抵抗効果素子(以下、MR素子と略
称する)を用いた退成膜集積ヘツドに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid thin film integration head, and more particularly to a retrograde film integration head using a magnetoresistive element (hereinafter abbreviated as MR element).

記録密度を増大させ、周波数特性の向上のため
に薄膜磁気ヘツドが広く採用されてきている。
Thin film magnetic heads have been widely adopted to increase recording density and improve frequency characteristics.

例えば、この薄膜磁気ヘツドは、デジタルオー
デイオレコーダのように、多チヤンネル化の要望
に応えるために、ヘツド素子の数が多く、ヘツド
素子1個の集積度の高いものが要求される磁気ヘ
ツドとして最適なものとされている。
For example, this thin-film magnetic head is ideal for magnetic heads that require a large number of head elements and a high degree of integration for each head element in order to meet the demands for multi-channel use, such as in digital audio recorders. It is considered a thing.

ところが、再生ヘツドについてみると、従来多
く使用されていた磁気誘導型の薄膜磁気ヘツドの
再生電圧はヘツドと磁気記録媒体間の相対速度に
比例しているため、低速度の場合、再生出力も低
くなり、これに対応するにはコイルの巻き数を数
百〜千ターンと多くする必要があり、薄膜再生ヘ
ツドとして使用するには実用上困難であつた。
However, when looking at playback heads, the playback voltage of the magnetic induction type thin-film magnetic head that has been widely used in the past is proportional to the relative speed between the head and the magnetic recording medium, so at low speeds, the playback output is also low. In order to accommodate this, it is necessary to increase the number of turns of the coil, from several hundreds to thousands of turns, making it practically difficult to use it as a thin film reproducing head.

一方、このような薄膜磁気ヘツドに対応するた
めに、ヘツドと磁気記録媒体間の相対速度に関係
のない磁束応答型の磁気抵抗効果素子を用いた薄
膜磁気ヘツド(以下、MRヘツドと略称)が注目
をあびてきている。
On the other hand, in order to support such thin-film magnetic heads, thin-film magnetic heads (hereinafter abbreviated as MR heads) using magnetic flux-responsive magnetoresistive elements, which are unrelated to the relative speed between the head and the magnetic recording medium, have been developed. It is attracting attention.

このようなMRヘツドの一例を、第1図に拡大
して示す。
An example of such an MR head is shown enlarged in FIG.

第1図において、符号1で示すものは基板で、
その側面には磁気記録媒体側に臨んでMR素子2
が薄膜堆積法などにより形成されており、MR素
子2の両端は同様な方法で基板上に形成された導
電部3に接続されている。
In FIG. 1, what is indicated by the reference numeral 1 is a substrate;
On its side, facing the magnetic recording medium side, there is an MR element 2.
is formed by a thin film deposition method or the like, and both ends of the MR element 2 are connected to conductive parts 3 formed on the substrate by a similar method.

以上のような構造を有するMRヘツドのMR素
子2に導電部3を介して一定電流を供給しておく
と、外部磁界が接近した場合、MR素子2の持つ
抵抗値が変化し、電圧変化として磁界の強さを取
り出すことができる。この時の再生出力電圧ΔV
はΔV=ΔRIで表わされる。ΔRは外部磁界により
MR素子の抵抗変化分で、IはMR素子に加えら
れた一定電流の値である。MR素子2が外部磁界
によつて抵抗変化を生じる変化率は、一般にNi
−Fe、Ni−Coなどから成るMR素子で1〜3%
である。
If a constant current is supplied to the MR element 2 of the MR head having the above structure through the conductive part 3, when an external magnetic field approaches, the resistance value of the MR element 2 will change, resulting in a change in voltage. The strength of the magnetic field can be extracted. Reproduction output voltage ΔV at this time
is expressed as ΔV=ΔRI. ΔR is due to the external magnetic field
In the resistance change of the MR element, I is the value of a constant current applied to the MR element. The rate of change in resistance of the MR element 2 caused by an external magnetic field is generally
-1 to 3% for MR elements made of Fe, Ni-Co, etc.
It is.

従つて、再生出力を大きく得るためにはMR素
子の絶対抵抗値を大きくすることが必要である。
MR素子の抵抗値Rは、一般に次の(1)式で表わさ
れる。
Therefore, in order to obtain a large reproduction output, it is necessary to increase the absolute resistance value of the MR element.
The resistance value R of the MR element is generally expressed by the following equation (1).

R=ρMR×l/w×t ……(1) (1)式においてρMRはMR素子の固有抵抗値、l
はMR素子の長さ、wは幅、tは厚みを示す。第
(1)式からも明らかなように、MR素子の抵抗値を
大きくするためにはMR素子の長さを大きくし、
幅及び厚さを小さくすることが必要である。
R=ρ MR ×l/w×t...(1) In equation (1), ρ MR is the specific resistance value of the MR element, l
represents the length of the MR element, w represents the width, and t represents the thickness. No.
As is clear from equation (1), in order to increase the resistance value of the MR element, the length of the MR element must be increased,
It is necessary to reduce the width and thickness.

しかし、MR素子の厚さは素子を薄膜技術で作
成しているため、製作上あまり薄くはできず、
MR素子の幅についてはフオトエツチング技術上
の制約があり、あまり小さくすることができな
い。
However, the thickness of the MR element cannot be made very thin because the element is created using thin film technology.
The width of the MR element cannot be made very small due to limitations in photoetching technology.

また、MR素子の長さは再生ヘツドのトラツク
幅に相当し、最近の磁気記録再生技術の高密度化
のために多チヤンネル化し、高集積度が要求さ
れ、トラツク幅を小さくすること、すなわちMR
素子の長さを小さくすることが要求されている。
この結果、第(1)式から明らかなように、再生出力
も小さくなつてしまう欠点がある。
In addition, the length of the MR element corresponds to the track width of the read head, and as the recent high-density magnetic recording and playback technology requires multichannel and high integration, it is necessary to reduce the track width.
There is a need to reduce the length of elements.
As a result, as is clear from equation (1), there is a drawback that the reproduced output also becomes smaller.

さらに、MR素子を実装する場合には、導電部
をフレキシブルなリード線で接合させ、プリアン
プ回路部に接続して再生出力信号を取る必要があ
る。
Furthermore, when mounting an MR element, it is necessary to connect the conductive part with a flexible lead wire and connect it to the preamplifier circuit part to obtain a reproduced output signal.

この結果、導電部、リード線の抵抗値も無視で
きないものとなり、S/N比の悪い出力となつて
しまう。そして、導電部やリード線が長くなつて
しまうために、実際に再生信号を検出する場合、
周囲のノイズの誘導を受ける原因となつている。
As a result, the resistance values of the conductive parts and lead wires cannot be ignored, resulting in an output with a poor S/N ratio. Since the conductive parts and lead wires become long, when actually detecting the reproduced signal,
This causes noise to be induced in the surrounding area.

本発明は以上のような従来の欠点を除去するた
めになされたもので、S/N比を向上させ、外部
ノイズの誘導を少なくできるように構成したMR
素子を用いた薄膜磁気ヘツドを提供することを目
的としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology.
The object of the present invention is to provide a thin film magnetic head using the device.

上記の目的を達成するため、本発明の混成薄膜
集積ヘツドによれば、シリコン基板上に磁気抵抗
効果素子及び導電部で形成した複数のヘツド部を
配置し、前記シリコン基板よりも大きな寸法の第
1の絶縁性基板上に、該複数のヘツド部が配置さ
れているシリコン基板を固定し、該シリコン基板
上の磁気抵抗効果素子の部分は第2の絶縁性基板
で覆われると共に、前記第1の絶縁性基板上のシ
リコン基板が存在しない部分に、プリアンプ回路
及びパツド部を含む集積回路チツプを固定し、該
シリコン基板上の導電部と、前記第1の絶縁性基
板上に固定されている集積回路チツプのパツド部
がワイヤボンデイングで接続された構成を採用し
た。
In order to achieve the above object, according to the hybrid thin film integrated head of the present invention, a plurality of head parts formed of magnetoresistive elements and conductive parts are arranged on a silicon substrate, and a plurality of head parts having dimensions larger than the silicon substrate are arranged. A silicon substrate on which the plurality of head portions are arranged is fixed on the first insulating substrate, and a portion of the magnetoresistive element on the silicon substrate is covered with a second insulating substrate, and the first An integrated circuit chip including a preamplifier circuit and a pad portion is fixed to a portion of the insulating substrate where the silicon substrate is not present, and is fixed to the conductive portion on the silicon substrate and the first insulating substrate. We adopted a configuration in which the pads of the integrated circuit chip are connected by wire bonding.

以下、図面に示す実施例に基づいて、本発明の
詳細を説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第2図において符号4で示すものは絶縁性基板
で、ガラス、石英、アルミナ、フエライトなどか
ら形成される。
The reference numeral 4 in FIG. 2 is an insulating substrate made of glass, quartz, alumina, ferrite, or the like.

符号5で示すものはMRヘツド部で、シリコ
ン、ガラス、アルミナ、フエライト等の絶縁性基
板上にMR素子2及び電極となる導電部3が薄膜
堆積法により形成し、この上記絶縁性基板を基板
4上に固定してある。
5 is an MR head section, in which an MR element 2 and a conductive section 3 serving as an electrode are formed on an insulating substrate made of silicon, glass, alumina, ferrite, etc. by a thin film deposition method, and this insulating substrate is used as a substrate. 4 is fixed on top.

このMRヘツド部5は基板4上に固定され、そ
の先端部、すなわち磁気記録媒体側は、MR素子
部分を保護するための絶縁性基板5aによつて覆
われている。この絶縁性基板6もガラス、石英、
アルミナ、フエライトなどから成る。
This MR head section 5 is fixed on a substrate 4, and its tip end, that is, the magnetic recording medium side, is covered with an insulating substrate 5a for protecting the MR element section. This insulating substrate 6 is also made of glass, quartz,
It consists of alumina, ferrite, etc.

一方、符号7で示すものは半導体集積回路チツ
プで、シリコン基板上に磁気信号検出回路やプリ
アンプなどの回路が形成されており、基板4上に
固定されている。そして、この半導体集積回路チ
ツプ7の接続端子電極となるパツド部8と、前記
MRヘツド部5の導電部3との間はアルミニウム
や金などの細線9を用い、ワイヤボンデイング法
などにより電気的に接続されている。
On the other hand, the reference numeral 7 is a semiconductor integrated circuit chip, which has circuits such as a magnetic signal detection circuit and a preamplifier formed on a silicon substrate, and is fixed on the substrate 4. The pad portion 8 which becomes the connection terminal electrode of the semiconductor integrated circuit chip 7 and the
The MR head section 5 and the conductive section 3 are electrically connected to each other by a wire bonding method using a thin wire 9 made of aluminum, gold, or the like.

第4図には、その一部であるプリアンプ回路の
等価回路図が示されている。第4図において符号
10で示す部分がMR素子部で、その両端の符号
A,Bで示す部分はそれぞれ第3図に示すパツド
部8及び導電部3に相当する。
FIG. 4 shows an equivalent circuit diagram of a preamplifier circuit, which is a part of the preamplifier circuit. In FIG. 4, the portion designated by the reference numeral 10 is the MR element portion, and the portions designated by the symbols A and B at both ends thereof correspond to the pad portion 8 and the conductive portion 3 shown in FIG. 3, respectively.

そして、MR素子部11の抵抗変化によつて生
じる電圧変化はトランジスタT1、T2によつて検
出され、トランジスタT3〜T5によつて増幅され、
出力OUTとして取り出され、外部回路へと送ら
れる。
The voltage change caused by the resistance change of the MR element section 11 is detected by the transistors T 1 and T 2 and amplified by the transistors T 3 to T 5 .
It is taken out as the output OUT and sent to the external circuit.

本実施例は以上のように構成されているため、
MR素子とプリアンプ集積回路部が極めて近接し
て形成されるので、両者間の距離を短縮すること
ができ、再生信号のS/N比を向上させることが
できる。
Since this embodiment is configured as described above,
Since the MR element and the preamplifier integrated circuit section are formed extremely close to each other, the distance between them can be shortened, and the S/N ratio of the reproduced signal can be improved.

MRヘツドを使用する場合、MR素子とプリア
ンプを接続する信号線に誘導磁界が交差すること
により発生するノイズが問題となるが、このノイ
ズの大きさは信号線が形成する閉ループの断面積
に比例する。
When using an MR head, noise generated by the induced magnetic field crossing the signal line connecting the MR element and preamplifier becomes a problem, but the magnitude of this noise is proportional to the cross-sectional area of the closed loop formed by the signal line. do.

このため、従来例ではMR素子と離れた位置に
あるプリアンプとをフレキシブルリード線のよう
なリード線によつて接続していたため、前述した
閉ループの断面積が大きくなり、ノイズ量も多か
つた。
For this reason, in the conventional example, the MR element and the preamplifier located at a remote location were connected by a lead wire such as a flexible lead wire, which resulted in a large cross-sectional area of the aforementioned closed loop and a large amount of noise.

これに反し、本発明になる薄膜磁気ヘツドで
は、MR素子とプリアンプの部分が極めて近接し
て配置されるため、両者間を結ぶ信号線が形成す
る閉ループの断面積はほとんど無視でき、ノイズ
量も著しく減少させることができる。
On the other hand, in the thin-film magnetic head of the present invention, the MR element and preamplifier are arranged extremely close to each other, so the cross-sectional area of the closed loop formed by the signal line connecting them can be almost ignored, and the amount of noise can also be reduced. can be significantly reduced.

一方、プリアンプの出力端から次段の入力端ま
では従来通りにリード線で接続することになり、
この部分において誘導磁界によるノイズを発生す
るが、本発明構造においては信号成分がプリアン
プにより増幅された後であるため、この部分にお
いて従来と同量のノイズ量が発生しても、あらか
じめ信号が増幅されている分だけS/N比の向上
がはかれる。
On the other hand, the connection from the output end of the preamplifier to the input end of the next stage will be connected with a lead wire as before.
Noise is generated in this part due to the induced magnetic field, but in the structure of the present invention, the signal component is amplified by the preamplifier, so even if the same amount of noise is generated in this part as in the conventional case, the signal is amplified in advance. The S/N ratio can be improved by that amount.

また、MR素子から信号を取り出す導電部及び
リード線の抵抗はノイズ発生源となるが、このノ
イズについても従来構造ではプリアンプの前段の
信号電圧の小さい段階で発生していたため、S/
N比の低下を招いていた。
Furthermore, the resistance of the conductive part and lead wire that extracts the signal from the MR element is a source of noise, but in the conventional structure, this noise was generated at a stage where the signal voltage is small before the preamplifier, so the S/
This resulted in a decrease in the N ratio.

ところが、本発明構造においては、リード線部
分の抵抗がプリンアンプの後段に位置するため、
これによるノイズを無視して考えることができ
る。
However, in the structure of the present invention, since the resistance of the lead wire portion is located after the preamplifier,
The noise caused by this can be ignored.

さらに、従来構造においては、n個のMR素子
を用いた場合、接続端子数は2n個必要であり、
MR素子からプリアンプ部ヘフレキシブルリード
線で接続する場合にも、2n本のリード線が必要
である。
Furthermore, in the conventional structure, when using n MR elements, the number of connection terminals is 2n,
Even when connecting the MR element to the preamplifier section using flexible lead wires, 2n lead wires are required.

これに対し、本発明構造ではプリアンプ回路の
共通の駆動電圧印加端子1本、共通アース端子1
本、出力端子n本の合計n+2本の端子数です
む。この結果、実装されるMR素子の数が2個以
上に増大するほど端子数は少なくてすむため、本
発明構造のほうが有利になり、上述したS/N比
の改善ばかりでなく、小型化もはかれる。
In contrast, in the structure of the present invention, the preamplifier circuit has one common drive voltage application terminal and one common ground terminal.
A total of n + 2 terminals (n output terminals) is sufficient. As a result, as the number of MR elements mounted increases to two or more, the number of terminals is reduced, so the structure of the present invention becomes more advantageous, and not only improves the S/N ratio mentioned above, but also reduces the size. It is measured.

以上の説明から明らかなように、本発明の混成
薄膜集積ヘツドによれば、シリコン基板上に磁気
抵抗効果素子及び導電部で形成した複数のヘツド
部を配置し、前記シリコン基板よりも大きな寸法
の第1の絶縁性基板上に、該複数のヘツド部が配
置されているシリコン基板を固定し、該シリコン
基板上の磁気抵抗効果素子の部分は第2の絶縁性
基板で覆われると共に、前記第1の絶縁性基板上
のシリコン基板が存在しない部分に、プリアンプ
回路及びパツド部を含む集積回路チツプを固定
し、該シリコン基板上の導電部と、前記第1の絶
縁性基板上に固定されている集積回路チツプのパ
ツド部がワイヤボンデイングで接続された構成を
採用したので、ノイズの誘導を少なくでき、S/
N比を向上させることができると共に、小型化が
可能で複数チヤンネルの高密度実装を実現するこ
とができる。
As is clear from the above description, according to the hybrid thin film integrated head of the present invention, a plurality of head parts formed of magnetoresistive elements and conductive parts are arranged on a silicon substrate, and the head part has a size larger than that of the silicon substrate. A silicon substrate on which the plurality of head parts are arranged is fixed on a first insulating substrate, and a portion of the magnetoresistive element on the silicon substrate is covered with a second insulating substrate, and An integrated circuit chip including a preamplifier circuit and a pad portion is fixed to a portion of the first insulating substrate where the silicon substrate is not present, and a conductive portion on the silicon substrate and the integrated circuit chip fixed to the first insulating substrate are fixed. Since the pads of the integrated circuit chips are connected by wire bonding, noise induction can be reduced and S/
The N ratio can be improved, miniaturization is possible, and high-density packaging of multiple channels can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造を説明する一部拡大平面図、
第2図〜第4図は本発明の一実施例を説明するも
ので、第2図は薄膜磁気ヘツドの側面図、第3図
は薄膜磁気ヘツドの一部拡大平面図、第4図は集
積回路部のプリアンプ部分の等価回路図である。 2……MR素子、3……導電部、5……MRヘ
ツド部、7……半導体集積回路チツプ、8……パ
ツド部、9……細線。
Figure 1 is a partially enlarged plan view illustrating the conventional structure;
2 to 4 illustrate one embodiment of the present invention, in which FIG. 2 is a side view of a thin film magnetic head, FIG. 3 is a partially enlarged plan view of the thin film magnetic head, and FIG. 4 is an integrated FIG. 3 is an equivalent circuit diagram of a preamplifier portion of the circuit section. 2...MR element, 3...Conductive part, 5...MR head part, 7...Semiconductor integrated circuit chip, 8...Pad part, 9...Thin wire.

Claims (1)

【特許請求の範囲】 1 シリコン基板上に磁気抵抗効果素子及び導電
部で形成した複数のヘツド部を配置し、 前記シリコン基板よりも大きな寸法の第1の絶
縁性基板上に、該複数のヘツド部が配置されてい
るシリコン基板を固定し、 該シリコン基板上の磁気抵抗効果素子の部分は
第2の絶縁性基板で覆われると共に、 前記第1の絶縁性基板上のシリコン基板が存在
しない部分に、プリアンプ回路及びパツド部を含
む集積回路チツプを固定し、 該シリコン基板上の導電部と、前記第1の絶縁
性基板上に固定されている集積回路チツプのパツ
ド部がワイヤボンデイングで接続された構成を特
徴とする混成薄膜集積ヘツド。
[Claims] 1. A plurality of head portions formed of a magnetoresistive element and a conductive portion are arranged on a silicon substrate, and the plurality of head portions are arranged on a first insulating substrate having a larger size than the silicon substrate. a silicon substrate on which the magnetoresistive element is placed is fixed, a portion of the magnetoresistive element on the silicon substrate is covered with a second insulating substrate, and a portion of the first insulating substrate where the silicon substrate is not present; An integrated circuit chip including a preamplifier circuit and a pad portion is fixed to the silicon substrate, and the conductive portion on the silicon substrate and the pad portion of the integrated circuit chip fixed on the first insulating substrate are connected by wire bonding. A hybrid thin film integration head featuring a unique configuration.
JP10683182A 1982-06-23 1982-06-23 Hybrid thin film integrated head Granted JPS58224430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10683182A JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10683182A JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Publications (2)

Publication Number Publication Date
JPS58224430A JPS58224430A (en) 1983-12-26
JPH0474767B2 true JPH0474767B2 (en) 1992-11-27

Family

ID=14443685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10683182A Granted JPS58224430A (en) 1982-06-23 1982-06-23 Hybrid thin film integrated head

Country Status (1)

Country Link
JP (1) JPS58224430A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071528B2 (en) * 1983-12-29 1995-01-11 ソニー株式会社 Magnetic head device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138711U (en) * 1976-04-16 1977-10-21
JPS5552620U (en) * 1978-10-02 1980-04-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head

Also Published As

Publication number Publication date
JPS58224430A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
KR0181708B1 (en) An integrated magnetoresistive head mounted on a slider with mr strife, its manufacturing methodand magnetic medium drive including the unit
US4616279A (en) Electrical connections for thin film transducer heads
US5027245A (en) Magnetic head for multi-track recording having read and write transducers formed by thin-film technology
KR920004215B1 (en) Integrated magnetostric tive-piezoelectric metal oxide semiconductor magnetic playback head
US4499515A (en) Integrated magnetostrictive-piezoresistive magnetic recording playback head
US5187623A (en) Thin film magnetic head with symmetrical wire connections
JPS58118017A (en) Magnetic head
JP2806378B2 (en) Magnetic head slider
JPH0474767B2 (en)
JPH0474766B2 (en)
KR100379045B1 (en) Magnetic head provided with write elements and read elements
US6700751B2 (en) Multi-channel magnetoresistive head device
JPS61126618A (en) Thin film head of magnetoresistance effect type
JP2507710B2 (en) Yoke type thin film magnetic head
JPS63298809A (en) Magnetic head device
JP2761680B2 (en) Multi-track thin film magnetic head
JPS6386109A (en) Magnetic head device for magnetic disk device
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JP2602203B2 (en) Magnetoresistive magnetic head
JPH10149518A (en) Magneto-resistance effect type head device
JPH05159248A (en) Multitrack magnetoresistance effect type magnetic head
JPH01243214A (en) Multi-channel thin film magnetic head and its manufacture
JPH08171709A (en) Thin-film magnetic head
JPS60143417A (en) Magnetic head device
JPH06124420A (en) Magnetoresistance effect type head and signal reproducing apparatus for magnetoresistance effect type head