JPH0474766B2 - - Google Patents

Info

Publication number
JPH0474766B2
JPH0474766B2 JP57106830A JP10683082A JPH0474766B2 JP H0474766 B2 JPH0474766 B2 JP H0474766B2 JP 57106830 A JP57106830 A JP 57106830A JP 10683082 A JP10683082 A JP 10683082A JP H0474766 B2 JPH0474766 B2 JP H0474766B2
Authority
JP
Japan
Prior art keywords
head
silicon substrate
preamplifier
substrate
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57106830A
Other languages
Japanese (ja)
Other versions
JPS58224429A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10683082A priority Critical patent/JPS58224429A/en
Publication of JPS58224429A publication Critical patent/JPS58224429A/en
Publication of JPH0474766B2 publication Critical patent/JPH0474766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は薄膜集積ヘツドに係り、さらに詳しく
は、磁気抵抗効果素子(以下MR素子と略称す
る)を用いた薄膜集積ヘツドに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film integration head, and more particularly to a thin film integration head using a magnetoresistive element (hereinafter abbreviated as MR element).

記録密度を増大させ、周波数特性の向上のため
は薄膜磁気ヘツドが広く採用されてきている。
Thin film magnetic heads have been widely adopted to increase recording density and improve frequency characteristics.

例えば、この薄膜磁気ヘツドは、デジタルオー
デイオレコーダのように、多チヤンネル化の要望
に応えるために、ヘツド素子の数が多く、ヘツド
素子1個の集積度の高いものが要求される磁気ヘ
ツドとして最適なものとされている。
For example, this thin-film magnetic head is ideal for magnetic heads that require a large number of head elements and a high degree of integration for each head element in order to meet the demands for multi-channel use, such as in digital audio recorders. It is considered a thing.

ところが、再生ヘツドについてみると、従来多
く使用されていた磁気誘導型の薄膜磁気ヘツドの
再生電圧はヘツドと磁気記録媒体間の相対速度に
比例しているため、低速度の場合、再生出力も低
くなり、これに対応するにはコイルの巻き数を数
百〜千ターンと多くする必要があり、薄膜再生ヘ
ツドとして使用するには実用上困難であつた。
However, when looking at playback heads, the playback voltage of the magnetic induction type thin-film magnetic head that has been widely used in the past is proportional to the relative speed between the head and the magnetic recording medium, so at low speeds, the playback output is also low. In order to accommodate this, it is necessary to increase the number of turns of the coil, from several hundreds to thousands of turns, making it practically difficult to use it as a thin film reproducing head.

一方、このような薄膜磁気ヘツドに対応するた
めに、ヘツドと磁気記録媒体間の相対速度に関係
のない磁束応答型の磁気抵抗効果素子を用いた薄
膜磁気ヘツド(以下MRヘツドと略称)が注目を
あびてきている。
On the other hand, in order to support such thin-film magnetic heads, thin-film magnetic heads (hereinafter referred to as MR heads) that use magnetic flux-responsive magnetoresistive elements that are unrelated to the relative velocity between the head and the magnetic recording medium are attracting attention. It's been a long time since I've been in the middle of a long time since I've been in the middle of a long time.

このようなMRヘツドの一例を、第1図に拡大
して示す。
An example of such an MR head is shown enlarged in FIG.

第1図において、符号1で示すものは基板で、
その側面には磁気記録媒体側に臨んでMR素子2
が薄膜堆積法などにより形成されており、MR素
子2の両端は、同様な方法で基板上に形成された
導電部3に接続されている。
In FIG. 1, what is indicated by the reference numeral 1 is a substrate;
On its side, facing the magnetic recording medium side, there is an MR element 2.
is formed by a thin film deposition method or the like, and both ends of the MR element 2 are connected to conductive parts 3 formed on the substrate by a similar method.

以上のような構造を有するMRヘツドのMR素
子2に導電部3を介して一定電流を供給しておく
と、外部磁界が接近した場合、MR素子2の持つ
抵抗値が変化し、電圧変化として磁界の強さを取
り出すことができる。この時の再生出力電圧ΔV
はΔV=ΔRIで表わされる。ΔRは外部磁界により
MR素子の抵抗変化分で、IはMR素子に加えら
れた一定電流の値である。MR素子2が外部磁界
によつて抵抗変化を生じる変化率は、一般にNi
−Fe、Ni−Coなどから成るMR素子で1〜3%
である。
If a constant current is supplied to the MR element 2 of the MR head having the above structure through the conductive part 3, when an external magnetic field approaches, the resistance value of the MR element 2 will change, resulting in a change in voltage. The strength of the magnetic field can be extracted. Reproduction output voltage ΔV at this time
is expressed as ΔV=ΔRI. ΔR is due to the external magnetic field
In the resistance change of the MR element, I is the value of a constant current applied to the MR element. The rate of change in resistance of the MR element 2 caused by an external magnetic field is generally
-1 to 3% for MR elements made of Fe, Ni-Co, etc.
It is.

従つて、再生出力を大きく得るためにMR素子
の絶対抵抗値を大きくすることが必要である。
MR素子の抵抗値Rは、一般に次の(1)式で表わさ
れる。
Therefore, in order to obtain a large reproduction output, it is necessary to increase the absolute resistance value of the MR element.
The resistance value R of the MR element is generally expressed by the following equation (1).

R=ρMR×l/w×t ……(1) (1)式においてρMRはMR素子の固有抵抗値、l
はMR素子の長さ、wは幅、tは厚みを示す。第
(1)式からも明らかなように、MR素子の抵抗値を
大きくするためにはMR素子の長さを大きくし、
幅及び厚さを小さくすることが必要である。
R=ρ MR ×l/w×t...(1) In equation (1), ρ MR is the specific resistance value of the MR element, l
represents the length of the MR element, w represents the width, and t represents the thickness. No.
As is clear from equation (1), in order to increase the resistance value of the MR element, the length of the MR element must be increased,
It is necessary to reduce the width and thickness.

しかし、MR素子の厚さは素子を薄膜技術で作
成しているため、製作上あまり薄くはできず、
MR素子の幅についてはフオトエツチング技術上
の制約があり、あまり小さくすることができな
い。
However, the thickness of the MR element cannot be made very thin because the element is created using thin film technology.
The width of the MR element cannot be made very small due to limitations in photoetching technology.

また、MR素子の長さは再生ヘツドのトラツク
幅に相当し、最近の磁気記録再生技術の高密度化
のために多チヤンネル化し、高集積度が要求さ
れ、トラツク幅を小さくすること、すなわちMR
素子の長さを小さくすることが要求されている。
この結果、第(1)式から明らかなように、再生出力
も小さくなつてしまう欠点がある。
In addition, the length of the MR element corresponds to the track width of the read head, and as the recent high-density magnetic recording and playback technology requires multichannel and high integration, it is necessary to reduce the track width.
There is a need to reduce the length of elements.
As a result, as is clear from equation (1), there is a drawback that the reproduced output also becomes smaller.

さらに、MR素子を実装する場合には、導電部
をフレキシブルなリード線で接合させ、プリアン
プ回路部に接続して再生出力信号を取る必要があ
る。
Furthermore, when mounting an MR element, it is necessary to connect the conductive part with a flexible lead wire and connect it to the preamplifier circuit part to obtain a reproduced output signal.

この結果、導電部、リード線の抗効値も無視で
きないものとなり、S/N比の悪い出力となつて
しまう。そして、導電部やリード線が長くなつて
しまうために、実際に再生信号を検出する場合、
周囲のノイズの誘導を受ける原因となつている。
As a result, the resistance value of the conductive portion and the lead wire cannot be ignored, resulting in an output with a poor S/N ratio. Since the conductive parts and lead wires become long, when actually detecting the reproduced signal,
This causes noise to be induced in the surrounding area.

本発明は以上のような従来の欠点を除去するた
めになされたもので、S/N比を向上させ、外部
ノイズの誘導を少なくできるように構成したMR
素子を用いた薄膜磁気ヘツドを提供することを目
的としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology.
The object of the present invention is to provide a thin film magnetic head using the device.

上記の目的を達成するため、本発明によれば、
同一のシリコン基板上に、磁気抵抗効果素子で形
成した複数のヘツド部と、プリアンプ回路を含む
集積回路部と、複数の出力側電極部とをそれぞれ
配置した薄膜集積ヘツドにおいて、前記シリコン
基板よりも大きな寸法の第1の絶縁性基板上に該
シリコン基板を固定し、該シリコン基板上のヘツ
ド部は前記集積回路部のプリアンプ回路に接続さ
れ、かつ第2の絶縁性基板で覆われると共に、前
記第1の絶縁性基板上のシリコン基板が存在しな
い部分にフレキシブルリード線を固定し、該シリ
コン基板上の出力側電極部と該フレキシブルリー
ド線とをワイヤで接続した構造を採用した。
In order to achieve the above object, according to the present invention,
In a thin film integrated head in which a plurality of head sections formed of magnetoresistive elements, an integrated circuit section including a preamplifier circuit, and a plurality of output side electrode sections are arranged on the same silicon substrate, The silicon substrate is fixed on a first insulating substrate of large dimensions, the head portion on the silicon substrate is connected to the preamplifier circuit of the integrated circuit section, and is covered with a second insulating substrate, and A structure was adopted in which a flexible lead wire was fixed to a portion of the first insulating substrate where the silicon substrate was not present, and the output side electrode portion on the silicon substrate and the flexible lead wire were connected with a wire.

以下、図面に示す実施例に基づいて、本発明の
詳細を説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第2図において符号4で示すものは絶縁性基板
で、ガラス、石英、アルミナ、フエライトなどか
ら形成される。
The reference numeral 4 in FIG. 2 is an insulating substrate made of glass, quartz, alumina, ferrite, or the like.

符号5で示すものは集積ヘツド部で、シリコン
基板上にMR素子及び集積回路部が形成されてい
る。
Reference numeral 5 designates an integrated head section in which an MR element and an integrated circuit section are formed on a silicon substrate.

この集積ヘツド部5は基板4上に固定され、そ
の先端部、すなわち磁気記録媒体側は、MR素子
部分を保護するための絶縁性基板6によつて覆わ
れている。この絶縁性基板6もガラス、石英、ア
ルミナ、フエライトなどから成る。
This integrated head section 5 is fixed on a substrate 4, and its tip end, that is, the magnetic recording medium side, is covered with an insulating substrate 6 for protecting the MR element part. This insulating substrate 6 is also made of glass, quartz, alumina, ferrite, or the like.

一方、符号7で示すものは集積ヘツド部5に形
成された集積回路と外部回路とを電気的に接続す
るためのリード線で、集積回路部との間はワイヤ
8をボンデイングして電気的な結合がはかられて
いる。
On the other hand, what is indicated by the reference numeral 7 is a lead wire for electrically connecting the integrated circuit formed in the integrated head section 5 to an external circuit. The connection is being made.

第3図は集積ヘツド部5を一部拡大して示すも
ので、図中第1図と同一部分には同一符号が付さ
れている。
FIG. 3 shows a partially enlarged view of the collecting head section 5, and the same parts as in FIG. 1 are given the same reference numerals.

第3図において、符号9で示すものは電極部
で、入力側端子となる部分である。また符号10
で示すものは集積回路の出力側電極部である。
In FIG. 3, the reference numeral 9 is an electrode portion, which is a portion that becomes an input terminal. Also code 10
What is shown by is the output side electrode part of the integrated circuit.

第3図においてX−X線とY−Y線で挾まれた
部分が集積回路部分で、第4図にその一部である
プリアンプ回路の等価回路図が示されている。第
4図において符号11で示す部分がMR素子部
で、その両端の符号A,Bで示す部分はそれぞれ
第3図に示す電極部9及び導電部3に相当する。
In FIG. 3, the part between the lines X-X and Y-Y is the integrated circuit part, and FIG. 4 shows an equivalent circuit diagram of the preamplifier circuit that is part of the integrated circuit part. In FIG. 4, the portion designated by reference numeral 11 is the MR element portion, and the portions designated by symbols A and B at both ends thereof correspond to the electrode portion 9 and the conductive portion 3 shown in FIG. 3, respectively.

そして、MR素子部11の抵抗変化によつて生
じる電圧変化はトランジスタT1,T2によつて検
出され、トランジスタT3〜T5によつて増幅され、
出力OUTとして取り出され、外部回路へと送ら
れる。
The voltage change caused by the resistance change of the MR element section 11 is detected by the transistors T 1 and T 2 and amplified by the transistors T 3 to T 5 .
It is taken out as the output OUT and sent to the external circuit.

次に、このような構造を有する集積ヘツド部5
の製造方法の概略について述べる。
Next, the integration head section 5 having such a structure will be described.
An outline of the manufacturing method is described below.

集積ヘツド部5のプリアンプは、一般のIC製
造プロセスと同じで、電極部9,10以外はリン
酸ガラス等の絶縁層で電気的に保護した状態にし
ておく。
The preamplifier of the integrated head section 5 is the same as the general IC manufacturing process, except for the electrode sections 9 and 10, which are electrically protected by an insulating layer such as phosphate glass.

次に、その上にパーマロイ、Ni/Co合金等か
ら成るMR素子部及びアルミ・銅・金などから成
る導電部をスパツタリング法、蒸着法、メツキ法
などにより形成し、フオトエツチング法により導
電部3、電極部9、MR素子2を選択エツチング
により形成すればよい。
Next, an MR element part made of permalloy, Ni/Co alloy, etc. and a conductive part made of aluminum, copper, gold, etc. are formed thereon by a sputtering method, vapor deposition method, plating method, etc., and the conductive part 3 is formed by a photoetching method. , the electrode portion 9, and the MR element 2 may be formed by selective etching.

本実施例は以上のように構成されているため、
MR素子とプリアンプ集積回路部が同一シリコン
基板上に形成され、両者間の距離を短縮すること
ができ、再生信号のS/N比を向上させることが
できる。
Since this embodiment is configured as described above,
Since the MR element and the preamplifier integrated circuit section are formed on the same silicon substrate, the distance between them can be shortened, and the S/N ratio of the reproduced signal can be improved.

MRヘツドを使用する場合、MR素子とプリア
ンプを接続する信号線に誘導磁界が交差すること
により発生するノイズが問題となるが、このノイ
ズの大きさは信号線が形成する閉ループの断面積
に比例する。
When using an MR head, noise generated by the induced magnetic field crossing the signal line connecting the MR element and preamplifier becomes a problem, but the magnitude of this noise is proportional to the cross-sectional area of the closed loop formed by the signal line. do.

このため、従来例ではMR素子と離れた位置に
あるプリアンプとをフレキシブルリード線のよう
なリード線によつて接続していたため、前述した
閉ループの断面積が大きくなり、ノイズ量も多か
つた。
For this reason, in the conventional example, the MR element and the preamplifier located at a remote location were connected by a lead wire such as a flexible lead wire, which resulted in a large cross-sectional area of the aforementioned closed loop and a large amount of noise.

これに反し、本発明になる薄膜磁気ヘツドで
は、MR素子とプリアンプの部分が極めて近接し
て配置されるため、両者間を結ぶ信号線が形成す
る閉ループの断面積はほとんど無視でき、ノイズ
量も著しく減少させることができる。
On the other hand, in the thin-film magnetic head of the present invention, the MR element and preamplifier are arranged extremely close to each other, so the cross-sectional area of the closed loop formed by the signal line connecting them can be almost ignored, and the amount of noise can also be reduced. can be significantly reduced.

一方、プリアンプの出力端から次段の入力端ま
では従来通りにリード線で接続することになり、
この部分において誘導磁界によるノイズを発生す
るが、本発明構造においては信号成分がプリアン
プにより増幅された後であるため、この部分にお
いて従来と同量のノイズ量が発生しても、あらか
じめ信号が増幅されている分だけS/N比の向上
がはかれる。
On the other hand, the connection from the output end of the preamplifier to the input end of the next stage will be connected with a lead wire as before.
Noise is generated in this part due to the induced magnetic field, but in the structure of the present invention, the signal component is amplified by the preamplifier, so even if the same amount of noise is generated in this part as in the conventional case, the signal is amplified in advance. The S/N ratio can be improved by that amount.

また、MR素子から信号を取り出す導電部及び
リード線の抵抗はノイズの発生源となるが、この
ノイズについても従来構造ではプリアンプの前段
の信号電圧の小さい段階で発生していたため、
S/N比の低下を招いていた。
Furthermore, the resistance of the conductive parts and lead wires that take out signals from the MR element is a source of noise, but in the conventional structure, this noise also occurred at a stage where the signal voltage was small before the preamplifier.
This caused a decrease in the S/N ratio.

ところが、本発明構造においては、リード線部
分の抵抗がプリアンプの後段に位置するため、こ
れによるノイズを無視して考えることができる。
However, in the structure of the present invention, since the resistor of the lead wire portion is located at the subsequent stage of the preamplifier, the noise caused by this can be ignored.

さらに、従来構造においては、n個のMR素子
を用いた場合、接続端子数は2n個必要であり、
MR素子からプリアンプ部へフレキシブルリード
線で接続する場合にも2n本のリード線が必要で
ある。
Furthermore, in the conventional structure, when using n MR elements, the number of connection terminals is 2n,
2n lead wires are also required when connecting the MR element to the preamplifier section using flexible lead wires.

これに対し、本発明構造ではプリアンプ回路の
共通の駆動電圧印加端子1本、共通アース端子1
本、出力端子n本の合計n+2本の端子数です
む。この結果、実装されるMR素子の数が2個以
上に増大するほど端子数は少なくてすむため、本
発明構造のほうが有利になり、上述したS/N比
の改善ばかりでなく、小型化もはかれる。
In contrast, in the structure of the present invention, the preamplifier circuit has one common drive voltage application terminal and one common ground terminal.
A total of n + 2 terminals (n output terminals) is sufficient. As a result, as the number of MR elements mounted increases to two or more, the number of terminals is reduced, so the structure of the present invention becomes more advantageous, and not only improves the S/N ratio mentioned above, but also reduces the size. It is measured.

以上の説明から明らかなように、本発明によれ
ば、同一のシリコン基板上に、磁気抵抗効果素子
で形成した複数のヘツド部と、プリアンプ回路を
含む集積回路部と、複数の出力側電極部とをそれ
ぞれ配置した薄膜集積ヘツドにおいて、前記シリ
コン基板よりも大きな寸法の第1の絶縁性基板上
に該シリコン基板を固定し、該シリコン基板上の
ヘツド部は前記集積回路部のプリアンプ回路に接
続され、かつ第2の絶縁性基板で覆われると共
に、前記第1の絶縁性基板上のシリコン基板が存
在しない部分にフレキシブルリード線を固定し、
該シリコン基板上の出力側電極部と該フレキシブ
ルリード線とをワイヤで接続した構造を採用した
ので、ノイズの誘導を少なくでき、S/N比を向
上させることができると共に、小型化が可能で複
数チヤンネルの高密度実装を実現することができ
る。またフレキシブルリード線の接続を確実に行
なえる。
As is clear from the above description, according to the present invention, a plurality of head parts formed of magnetoresistive elements, an integrated circuit part including a preamplifier circuit, and a plurality of output side electrode parts are formed on the same silicon substrate. and a thin film integration head in which the silicon substrate is fixed on a first insulating substrate larger in size than the silicon substrate, and the head portion on the silicon substrate is connected to the preamplifier circuit of the integrated circuit portion. and covered with a second insulating substrate, and fixing a flexible lead wire to a portion of the first insulating substrate where the silicon substrate is not present;
By adopting a structure in which the output side electrode part on the silicon substrate and the flexible lead wire are connected with a wire, noise induction can be reduced, the S/N ratio can be improved, and miniaturization is possible. High-density packaging of multiple channels can be achieved. Additionally, flexible lead wires can be connected reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造を説明する一部拡大平面図、
第2図〜第4図は本発明の一実施例を説明するも
ので、第2図は薄膜磁気ヘツドの側面図、第3図
は集積ヘツド部の一部拡大平面図、第4図は集積
回路のプリアンプ部分の等価回路図である。 2……MR素子、3……導電部、5……集積ヘ
ツド部、7……フレキシブルリード線、9,10
……電極。
Figure 1 is a partially enlarged plan view illustrating the conventional structure;
2 to 4 illustrate one embodiment of the present invention, in which FIG. 2 is a side view of a thin film magnetic head, FIG. 3 is a partially enlarged plan view of an integrated head section, and FIG. 4 is an integrated FIG. 3 is an equivalent circuit diagram of a preamplifier portion of the circuit. 2...MR element, 3...Conductive part, 5...Integration head part, 7...Flexible lead wire, 9, 10
……electrode.

Claims (1)

【特許請求の範囲】 1 同一のシリコン基板上に、磁気抵抗効果素子
で形成した複数のヘツド部と、プリアンプ回路を
含む集積回路部と、複数の出力側電極部とをそれ
ぞれ配置した薄膜集積ヘツドにおいて、 前記シリコン基板よりも大きな寸法の第1の絶
縁性基板上に該シリコン基板を固定し、 該シリコン基板上のヘツド部は前記集積回路部
のプリアンプ回路に接続され、かつ第2の絶縁性
基板で覆われると共に、 前記第1の絶縁性基板上のシリコン基板が存在
しない部分にフレキシブルリード線を固定し、 該シリコン基板上の出力側電極部と該フレキシ
ブルリード線とをワイヤで接続したことを特徴と
する薄膜集積ヘツド。
[Scope of Claims] 1. A thin film integrated head in which a plurality of head sections formed of magnetoresistive elements, an integrated circuit section including a preamplifier circuit, and a plurality of output side electrode sections are arranged on the same silicon substrate. In this step, the silicon substrate is fixed on a first insulating substrate having a larger size than the silicon substrate, a head portion on the silicon substrate is connected to a preamplifier circuit of the integrated circuit portion, and a second insulating substrate is connected to the preamplifier circuit of the integrated circuit portion. a flexible lead wire is fixed to a portion of the first insulating substrate that is covered with a substrate and where no silicon substrate is present, and the output side electrode portion on the silicon substrate and the flexible lead wire are connected with a wire; A thin film integrated head featuring:
JP10683082A 1982-06-23 1982-06-23 Thin film integrated head Granted JPS58224429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10683082A JPS58224429A (en) 1982-06-23 1982-06-23 Thin film integrated head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10683082A JPS58224429A (en) 1982-06-23 1982-06-23 Thin film integrated head

Publications (2)

Publication Number Publication Date
JPS58224429A JPS58224429A (en) 1983-12-26
JPH0474766B2 true JPH0474766B2 (en) 1992-11-27

Family

ID=14443663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10683082A Granted JPS58224429A (en) 1982-06-23 1982-06-23 Thin film integrated head

Country Status (1)

Country Link
JP (1) JPS58224429A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587857A (en) * 1994-10-18 1996-12-24 International Business Machines Corporation Silicon chip with an integrated magnetoresistive head mounted on a slider

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138711U (en) * 1976-04-16 1977-10-21
JPS5552620U (en) * 1978-10-02 1980-04-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966119A (en) * 1972-09-05 1974-06-26
JPS4968716A (en) * 1972-10-31 1974-07-03
JPS49112610A (en) * 1973-02-26 1974-10-26
JPS5150498U (en) * 1974-10-16 1976-04-16
JPS51134615A (en) * 1975-05-16 1976-11-22 Seiko Epson Corp Integrated magnetic head

Also Published As

Publication number Publication date
JPS58224429A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US5027245A (en) Magnetic head for multi-track recording having read and write transducers formed by thin-film technology
EP0064786A2 (en) Magnetic sensor and magnetically permeable component for a magnetic sensor
US4499515A (en) Integrated magnetostrictive-piezoresistive magnetic recording playback head
JPH10143820A (en) Inductive/mr composite type thin film magnetic head
US4150408A (en) Thin-film magnetic head for reading and writing information
JPS61120318A (en) Unified thin film magnetic head
JPS58118017A (en) Magnetic head
JP2806378B2 (en) Magnetic head slider
JPH0474766B2 (en)
JPH0474767B2 (en)
US20030142445A1 (en) Method and apparatus for an active read/write head
US6700751B2 (en) Multi-channel magnetoresistive head device
KR100379045B1 (en) Magnetic head provided with write elements and read elements
US6134078A (en) High sensitivity, low distortion yoke-type magnetoresistive head
JP2507710B2 (en) Yoke type thin film magnetic head
JP3521553B2 (en) Thin film magnetic head
JP2602203B2 (en) Magnetoresistive magnetic head
JP2761680B2 (en) Multi-track thin film magnetic head
JPH05159248A (en) Multitrack magnetoresistance effect type magnetic head
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JPH01243214A (en) Multi-channel thin film magnetic head and its manufacture
JPS60150222A (en) Thin film magnetic head
JPS5916123A (en) Thin film magnetic head
JPH06124420A (en) Magnetoresistance effect type head and signal reproducing apparatus for magnetoresistance effect type head
JPS6363117A (en) Thin film magnetic head