JPH0474534A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH0474534A
JPH0474534A JP2187929A JP18792990A JPH0474534A JP H0474534 A JPH0474534 A JP H0474534A JP 2187929 A JP2187929 A JP 2187929A JP 18792990 A JP18792990 A JP 18792990A JP H0474534 A JPH0474534 A JP H0474534A
Authority
JP
Japan
Prior art keywords
layer
alumina
palladium
catalyst
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2187929A
Other languages
Japanese (ja)
Inventor
Goji Masuda
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2187929A priority Critical patent/JPH0474534A/en
Publication of JPH0474534A publication Critical patent/JPH0474534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having good purifying efficiency even in an oxidative atmosphere by providing alumina containing platinum and/or palladium, alumina containing rhodium supported on zirconium oxide and iridium- containing alumina on a single base material. CONSTITUTION:The first layer of alumina containing platinum and palladium, the second layer of alumina containing rhodium mainly supported on zirconium oxide and the third layer of a alumina containing iridium in its surface layer are provided on a single base material composed of cordierite or the like. The exhaust gas purifying catalyst thus obtained generates no sudden lowering of NOx purifying efficiency not only in a reductive atmosphere but also in an oxidative atmosphere while keeps heat resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は自動車等の内燃機関から排出される排気ガス
中の有害成分である炭化水素(IIc)、−酸化炭素(
Co)、窒素酸化物(NOX)を効率よく浄化する排気
ガス浄化用触媒に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the treatment of hydrocarbons (IIc), -carbon oxides (IIc), which are harmful components in exhaust gas emitted from internal combustion engines such as automobiles.
Co), relates to an exhaust gas purification catalyst that efficiently purifies nitrogen oxides (NOX).

(従来の技術) 従来の排気ガス浄化用触媒としては、単体基材上に、白
金(Pt)、パラジウム(Pd)、ロジウム(Rh)を
含むアルミナからなる層を有するもの、あるいは単体基
材上に白金およびパラジウムの一方または双方を含むア
ルミナからなる第1層と、ロジウムを含むアルミナから
なる第2層を備えたもの等の多数の触媒が提案されてい
る。
(Prior art) Conventional exhaust gas purification catalysts include those having a layer of alumina containing platinum (Pt), palladium (Pd), and rhodium (Rh) on a single base material, or those having a layer of alumina containing platinum (Pt), palladium (Pd), and rhodium (Rh) on a single base material; A number of catalysts have been proposed, including those with a first layer of alumina containing one or both of platinum and palladium, and a second layer of alumina containing rhodium.

(発明が解決しようとする課題) しかしながら、上記のような従来の排気ガス浄化用触媒
にあっては、HC,Co、■2などの還元剤を完全に酸
化するのに必要な理論酸素量よりも酸素が少ない雰囲気
、すなわち還元性雰囲気で使用した場合は良好なNOX
の浄化作用を示すが、酸素量の多い酸化性雰囲気におい
ては急激にNOXの浄化率が低下するという問題点があ
った。
(Problem to be Solved by the Invention) However, in the conventional exhaust gas purification catalyst as described above, the amount of oxygen exceeds the theoretical amount required to completely oxidize reducing agents such as HC, Co, and ■2. However, when used in an atmosphere with little oxygen, that is, a reducing atmosphere, it produces good NOx
However, in an oxidizing atmosphere with a large amount of oxygen, the NOx purification rate suddenly decreases.

(課題を解決するための手段) かかる現況下で発明者は上記問題点を解決すべ(鋭意研
究の結果、イリジウム(Ir)がNOXの浄化作用を有
することに着目し、Irを触媒のコート層に用いる場合
同一量のIrをコート層に担持させるのであれば、単層
の場合はコート層の厚さが約100μmであり、この1
00μmにIrが分散担持される。しかし、コート層が
3層で約100μmの場合は、1層当り約33μmとな
り、最外層の33μmにIrが担持され、Irの濃度と
しては単層の場合に比べて濃くなる。そのために金属濃
度が濃い方が反応に寄与しやすくなる。これに基づき排
気ガスにさらされる層(以下表層又は第3層と呼ぶ)に
Irを含むアルミナからなる層を設け、さらには表層の
下の第2層に主に酸化ジルコニウム上に担持されたロジ
ウムを含むアルミナの層を設けることにより、酸化性雰
囲気におけるNOX浄化率の急激な低下を防止すること
ができることを確かめ、この発明を達成するに至った。
(Means for Solving the Problems) Under the current circumstances, the inventors have attempted to solve the above problems (as a result of intensive research, they have focused on the fact that iridium (Ir) has a NOx purifying effect, and have incorporated Ir into the coating layer of the catalyst. If the same amount of Ir is supported on the coating layer, the thickness of the coating layer is about 100 μm in the case of a single layer.
Ir is dispersed and supported at 00 μm. However, when there are three coat layers and a thickness of about 100 μm, each layer has a thickness of about 33 μm, and Ir is supported on the outermost layer of 33 μm, so that the Ir concentration is higher than that in a single layer. Therefore, the higher the metal concentration, the more likely it is to contribute to the reaction. Based on this, a layer made of alumina containing Ir is provided in the layer exposed to exhaust gas (hereinafter referred to as the surface layer or third layer), and a second layer below the surface layer is made of rhodium mainly supported on zirconium oxide. It has been confirmed that by providing an alumina layer containing alumina, it is possible to prevent a rapid decrease in the NOx purification rate in an oxidizing atmosphere, and the present invention has been achieved.

即ちこの発明の排気ガス浄化用触媒は単体基材上に白金
およびパラジウムの一方または双方を含むアルミナから
なる第1層と、主に酸化ジルコニウム上に担持されたロ
ジウムを含むアルミナからなる第2層と、イリジウムを
含むアルミナからなる第3層を備えたことを特徴とする
That is, the exhaust gas purifying catalyst of the present invention has a first layer made of alumina containing one or both of platinum and palladium on a single base material, and a second layer made of alumina containing rhodium supported mainly on zirconium oxide. and a third layer made of alumina containing iridium.

(作 用) 本発明においては、表層にIrを含むアルミナ層を設け
、さらには表層の下の第2層に主に酸化ジルコニウム上
に担持されたロジウムを含むアルミナ層を設けているの
で、耐熱性を維持しながら、還元性雰囲気は勿論のこと
、酸化雰囲気においてもNOXの浄化率が象、激に低下
することはない。
(Function) In the present invention, an alumina layer containing Ir is provided on the surface layer, and an alumina layer containing rhodium supported mainly on zirconium oxide is provided on the second layer below the surface layer, so that it is heat resistant. While maintaining its properties, the NOx purification rate does not drop significantly even in an oxidizing atmosphere as well as a reducing atmosphere.

Irの添加量は、単体1個当り0.23〜4.59gの
範囲とするのが好ましい。
The amount of Ir added is preferably in the range of 0.23 to 4.59 g per single element.

(実施例) 以下本発明を実施例、比較例および試験例により説明す
る。
(Examples) The present invention will be explained below with reference to Examples, Comparative Examples, and Test Examples.

尖施桝上 コーディエライト製一体型担持上にアルミナをコーティ
ングして担体となし、その構成を第1層としてパラジウ
ムを含むアルミナの層、第2層として主に酸化ジルコニ
ウム上に担持されたロジウムを含むアルミナの層、第3
層としてイリジウムを含むアルミナの層とし、触媒を調
製した。
The support is made by coating alumina on an integrated support made of cordierite on a sharp edge, and its composition is a layer of alumina containing palladium as the first layer, and a layer of rhodium supported mainly on zirconium oxide as the second layer. a third layer of alumina containing
A catalyst was prepared using an alumina layer containing iridium as a layer.

γ−アルミナを主たる成分とする活性アルミナ粉末を、
パラジウム金属換算で25 g / fのジニトロジア
ミノパラジウム水溶液に浸漬し、乾燥した後、焼成し、
粉末を得た。この粉末を水及び酢酸と共にボールミル粉
砕することによりウォッシュコートスラリーを生成した
。そして断面積1 in2当り400の流路を含む容積
1.31のコーディエライト一体型担体を、上記ウォッ
シュコートスラリー中に浸漬した。続いて、圧縮空気に
より過剰液を拭き取り、この一体化物を乾燥して遊離の
水を除去した後、400°Cで1時間焼成し、160g
/32担体になるようにアルミナをコーティングし、第
1層とした。
Activated alumina powder whose main component is γ-alumina,
It is immersed in a dinitrodiaminopalladium aqueous solution of 25 g/f in terms of palladium metal, dried, and then fired.
A powder was obtained. A washcoat slurry was produced by ball milling this powder with water and acetic acid. A cordierite monolithic support having a volume of 1.31 and containing 400 channels per square inch of cross-sectional area was then immersed in the washcoat slurry. Subsequently, the excess liquid was wiped off with compressed air, and the integrated product was dried to remove free water, and then baked at 400°C for 1 hour to obtain 160g
/32 carrier was coated with alumina to form the first layer.

次いで上記と同様の活性アルミナ粉末に硝酸ジルコニア
を用いてジルコニウムが3重量%となるように含浸焼成
してジルコニウム担持アルミナ粉末を得た。このジルコ
ニウム担持アルミナ粉末を硝酸ロジウム水溶液に浸漬し
、乾燥した後、焼成し、粉末を得た。この粉末を水及び
酢酸と共にボールミル粉砕することにより、ウォッシュ
コートスラリーを生成した。そして前述した第1層パラ
ジウム−アルミナ担体を上記ウォッシュコート中に浸漬
した。続いて圧縮空気により過剰液を拭き取り、この一
体化物を乾燥して、焼成し40g/12担体になるよう
にコーティングし、第2層とした。
Next, the same activated alumina powder as above was impregnated with zirconia nitrate so that the amount of zirconium was 3% by weight and fired to obtain a zirconium-supported alumina powder. This zirconium-supported alumina powder was immersed in an aqueous rhodium nitrate solution, dried, and then fired to obtain a powder. A washcoat slurry was produced by ball milling this powder with water and acetic acid. The first layer palladium-alumina carrier described above was then immersed in the wash coat. Subsequently, the excess liquid was wiped off with compressed air, and the integrated product was dried, fired, and coated to give 40 g/12 carrier as a second layer.

次いで上記と同様の活性アルミナ粉末を6塩化イリジウ
ム酸水溶液に浸漬し、乾燥した後、焼成し、粉末を得た
。この粉末を水及び酢酸と共にボールミル粉砕すること
によりウォッシュコートスラリーを生成した。そして前
述の第1層のパラジウム含有アルミナ層、第2層のロジ
ウム−酸化ジルコニウム含有アルミナ層を有する担体を
、上記ウォッシュコートスラリー中に浸漬した。続いて
圧縮空気により過剰液を拭き取り、この一体化物を乾燥
して焼成し、40g、#!−担体になるコーティングし
、第3層とした。
Next, the same activated alumina powder as above was immersed in an aqueous solution of hexachloroiridic acid, dried, and then fired to obtain a powder. A washcoat slurry was produced by ball milling this powder with water and acetic acid. Then, the carrier having the first layer of palladium-containing alumina layer and the second layer of rhodium-zirconium oxide-containing alumina layer was immersed in the washcoat slurry. Subsequently, the excess liquid was wiped off with compressed air, and this integrated product was dried and fired, weighing 40 g, #! - A coating that becomes a carrier and serves as a third layer.

以上よりコート層240 g / ff1−担体の触媒
1を得た。なお、パラジウム量1.53g/個、ロジウ
ム量0.31 g /個、イリジウム量1.56g/個
になるように担持した。
From the above, Catalyst 1 with a coating layer of 240 g/ff1-carrier was obtained. The amount of palladium supported was 1.53 g/piece, the amount of rhodium was 0.31 g/piece, and the amount of iridium was 1.56 g/piece.

災施■又 実施例1において第1層にジニトロジアミノ白金を用い
てパラジウムのかわりに白金を担持した以外は同様にし
て触媒2を得た。
Example 2 Catalyst 2 was also obtained in the same manner as in Example 1 except that dinitrodiaminoplatinum was used in the first layer and platinum was supported instead of palladium.

実劣I」1 実施例1において第1層にパラジウム、白金をそれぞれ
の出発塩を用いて担持した以外は同様にして触媒3を得
た。なお、パラジウム0.77 g /個、白金0.7
7 g /個になるように担持した。
Actual Deterioration I''1 Catalyst 3 was obtained in the same manner as in Example 1 except that palladium and platinum were supported on the first layer using their respective starting salts. In addition, palladium 0.77 g/piece, platinum 0.7
It was supported at a weight of 7 g/piece.

比較炎上 コーディエライト製一体型担体にアルミナをコーティン
グして担体となし、その構成を、単一層とし、パラジウ
ム、ロジウムを含むアルミナの層とし、触媒を調製した
Comparison A catalyst was prepared by coating an integral support made of flaming cordierite with alumina to form a support, and making the structure a single layer with an alumina layer containing palladium and rhodium.

実施例1で用いたのと同様のアルミナ粉末をジニトロジ
アミノパラジウム水溶液に浸漬し、乾燥した後、焼成し
、粉末を得た。また、同時に同様のアルミナ粉末を硝酸
ロジウム水溶液に浸漬し、乾燥した後、焼成し、粉末を
得た。これら2つの粉末を水及び酢酸と共にボールミル
粉砕することにより、ウォッシュコートスラリーを生成
した。
Alumina powder similar to that used in Example 1 was immersed in an aqueous dinitrodiaminopalladium solution, dried, and then fired to obtain a powder. At the same time, a similar alumina powder was immersed in an aqueous rhodium nitrate solution, dried, and then fired to obtain a powder. A washcoat slurry was produced by ball milling these two powders with water and acetic acid.

そして実施例1で用いたのと同様の1.3rコーディエ
ライト一体型担体を、上記ウォッシュコートスラリー中
に浸漬した。続いて、圧縮空気により過剰液を拭き取り
、この一体化物を乾燥して遊離の水を除去した後、40
0°Cで1時間焼成し、240g/ff−担体になるよ
うにアルミナをコーティングし、触媒Aを得た。なお、
パラジウム量は1.53g/個、ロジウム量0.31 
g /個になるように担持した。
Then, a 1.3r cordierite monolithic carrier similar to that used in Example 1 was immersed in the washcoat slurry. Subsequently, the excess liquid was wiped off with compressed air, and the integrated product was dried to remove free water, and then heated for 40 minutes.
It was calcined at 0°C for 1 hour and coated with alumina to give 240g/ff-carrier, thereby obtaining catalyst A. In addition,
The amount of palladium is 1.53g/piece, the amount of rhodium is 0.31
g/piece.

北較囲I 比較例1においてパラジウムを白金にかえた以外は同様
にして触媒Bを得た。
Catalyst B was obtained in the same manner as in Comparative Example 1 except that palladium was replaced with platinum.

ル較桝よ 比較例1において貴金属を白金、パラジウム、ロジウム
の3成分にしたこと以外は同様にて触媒Cを得た。なお
、白金は0.77g/個、パラジウム0.77 g /
個、ロジウム0.31 g /個になるように担持した
A catalyst C was obtained in the same manner as in Comparative Example 1 except that the noble metals were changed to platinum, palladium, and rhodium. In addition, platinum is 0.77 g/piece, palladium 0.77 g/piece
rhodium was supported at a concentration of 0.31 g/piece.

比較桝土 コーディエライト製一体型担体上にアルミナをコーティ
ングして担体となし、その構成を第1層としてパラジウ
ムを含むアルミナの層、第2層としてロジウムを含むア
ルミナの層とし、触媒を調製した。
Comparison Alumina was coated on an integrated support made of Masudo cordierite to form a support, and the first layer was an alumina layer containing palladium, and the second layer was an alumina layer containing rhodium, and a catalyst was prepared. did.

実施例1で用いたのと同様のアルミナ粉末を、ジニトロ
ジアミノパラジウム水溶液に浸漬し、乾燥した後、焼成
し、粉末を得た。この粉末を水及び酢酸と共にボールミ
ル粉砕することにより、ウォッシュコートスラリーを生
成した。そして実施例1で用いたのと同様の1.31コ
ーディエライト一体型担体を、上記ウォッシュコートス
ラリー中に浸漬した。続いて、圧縮空気により過剰液を
拭き取り、この一体化物を乾燥して遊離の水を除去した
後、400°Cで1時間焼成し、200 g /ρ−担
体になるようにアルミナをコーティングし、第1層とし
た。
Alumina powder similar to that used in Example 1 was immersed in a dinitrodiaminopalladium aqueous solution, dried, and then fired to obtain a powder. A washcoat slurry was produced by ball milling this powder with water and acetic acid. A 1.31 cordierite monolithic carrier similar to that used in Example 1 was then immersed in the washcoat slurry. Subsequently, the excess liquid was wiped off with compressed air, the integrated product was dried to remove free water, and then calcined at 400 °C for 1 hour and coated with alumina to give 200 g/ρ-support. This was the first layer.

次いで上記と同様の活性アルミナ粉末を硝酸ロジウム水
溶液に浸漬し、乾燥した後、焼成し、粉末を得た。
Next, the same activated alumina powder as above was immersed in an aqueous rhodium nitrate solution, dried, and then fired to obtain a powder.

この粉末を水及び酢酸と共にボールミル粉砕することに
より、ウォッシュコートスラリーを生成した。そして前
述した第1層のパラジウム含有アルミナ層を備えた担体
を、上記ウォッシュコートスラリー中に浸漬した。続い
て圧縮空気により過剰液を拭き取り、この一体化物を乾
燥して、焼成し、40g/θ−担体になるようにコーテ
ィングし、第2層とした。
A washcoat slurry was produced by ball milling this powder with water and acetic acid. Then, the carrier provided with the first palladium-containing alumina layer described above was immersed in the wash coat slurry. Subsequently, the excess liquid was wiped off with compressed air, and this integrated product was dried, fired, and coated to a weight of 40 g/θ-carrier to form a second layer.

以上より、コート層240g/Q−担体の触媒りを得た
。なお、パラジウム量1.53g/個、ロジウム量0.
31 g /個になるように担持した。
From the above, a catalyst layer of 240 g of coat layer/Q-carrier was obtained. In addition, the amount of palladium is 1.53 g/piece, and the amount of rhodium is 0.
The weight was 31 g/piece.

几較拠l 比較例4においてパラジウムを白金に、かえた以外は同
様にして触媒Eを得た。
Comparison Basis 1 Catalyst E was obtained in the same manner as in Comparative Example 4 except that palladium was replaced with platinum.

北較開■ 比較例4において第1層にパラジウムおよび白金それぞ
れの出発塩を用いて担持した以外は同様にして触媒Fを
得た。なお、パラジウム0.77g/個、白金0.77
 g /個になるように担持した。
Catalyst F was obtained in the same manner as in Comparative Example 4 except that the starting salts of palladium and platinum were supported in the first layer. In addition, palladium 0.77g/piece, platinum 0.77g/piece
g/piece.

几較舅1 実施例1において、第3層を取り除いた以外、同様にし
て触媒Gを得た。
Comparison 1 Catalyst G was obtained in the same manner as in Example 1, except that the third layer was removed.

北較炎■ 比較例1において、さらにイリジウムもアルミすに含ま
せ、パラジウム、ロジウムおよびイリジウムの3成分に
し、触媒Hを得た。なお、パラジウム量は1.53 g
 /個、ロジウム量0.31 g’/個、イリジウム量
1.56 g /個になるように担持した。
Northern Flame ■ In Comparative Example 1, iridium was further impregnated into the aluminum to form the three components of palladium, rhodium, and iridium to obtain catalyst H. In addition, the amount of palladium is 1.53 g
The amount of rhodium was 0.31 g'/piece, and the amount of iridium was 1.56 g'/piece.

拭験拠 実施例1〜3で得られた触媒1〜3、比較例1〜8で得
られた触媒A−Hについて、下記条件でエンジン耐久を
おこない、各成分の転化率をA/F13.4〜16.0
の範囲で台上エンジン評価にて測定した。
Test Basis Catalysts 1 to 3 obtained in Examples 1 to 3 and catalysts A to 3 obtained in Comparative Examples 1 to 8 were subjected to engine durability under the following conditions, and the conversion rate of each component was determined to be A/F13. 4-16.0
Measured by bench engine evaluation in the range of .

舌ツ〉しj旧刈E作 触媒入口温度   650°C 耐久時間     25時間 耐久モード    10モード エンジン     排気量2200cc相当空間速度 
    約7万H 耐久中入ロガス雰囲気 Co  0.4〜0.6% 0□ 0.5±0.1% No  1001000 pp  2500ppm CO□ 14.9±0.1% 評−JLJr−作 評価触媒入口条件 400″C 周波数1.0ΔA/F十0.1 エンジン     排気量2000cc相当A/F測定
範囲  14.0〜15.7試験結果を表1に示す。
Catalyst inlet temperature 650°C Endurance time 25 hours Endurance mode 10 modes Engine Space velocity equivalent to 2200cc displacement
Approximately 70,000H Durable log gas atmosphere Co 0.4-0.6% 0□ 0.5±0.1% No 1001000 pp 2500ppm CO□ 14.9±0.1% Evaluation-JLJr-Production evaluation catalyst inlet Conditions 400″C Frequency 1.0ΔA/F 10.1 Engine Displacement equivalent to 2000cc A/F measurement range 14.0 to 15.7 The test results are shown in Table 1.

(発明の効果) 以上説明してきたように、この発明によれば、その構成
を従来の排気ガス浄化用触媒において表層にイリジウム
を含むアルミナからなる層を備え、さらには表層の下の
層に主に酸化ジルコニウム上に担持されたロジウムを含
むアルミナの層を備えるため耐熱性を維持しながら、還
元性雰囲気は勿論のこと、酸化性雰囲気においてもNO
Xの浄化率が急激に低下しないという効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the structure of the conventional exhaust gas purifying catalyst is changed to include a layer made of alumina containing iridium on the surface layer, and furthermore, the layer below the surface layer is mainly made of alumina. Since it is equipped with a layer of alumina containing rhodium supported on zirconium oxide, it maintains heat resistance while also reducing NO in an oxidizing atmosphere as well as a reducing atmosphere.
This provides the effect that the purification rate of X does not drop sharply.

Claims (1)

【特許請求の範囲】[Claims] 1.単体基材上に白金およびパラジウムの一方または双
方を含むアルミナからなる第1層と、主に酸化ジルコニ
ウム上に担持されたロジウムを含むアルミナからなる第
2層と、イリジウムを含むアルミナからなる第3層を備
えたことを特徴とする排気ガス浄化用触媒。
1. A first layer consisting of alumina containing one or both of platinum and palladium on a single base material, a second layer consisting of alumina containing rhodium supported mainly on zirconium oxide, and a third layer consisting of alumina containing iridium. An exhaust gas purifying catalyst characterized by having layers.
JP2187929A 1990-07-18 1990-07-18 Exhaust gas purifying catalyst Pending JPH0474534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187929A JPH0474534A (en) 1990-07-18 1990-07-18 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187929A JPH0474534A (en) 1990-07-18 1990-07-18 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPH0474534A true JPH0474534A (en) 1992-03-09

Family

ID=16214666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187929A Pending JPH0474534A (en) 1990-07-18 1990-07-18 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPH0474534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) * 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) * 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases

Similar Documents

Publication Publication Date Title
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3272019B2 (en) Exhaust gas purification catalyst
JPH0547263B2 (en)
JP2006205002A (en) Catalyst for cleaning exhaust gas
JP3072520B2 (en) Exhaust gas purification catalyst
JPS6019036A (en) Catalyst for purifying exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JP5212961B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH0474534A (en) Exhaust gas purifying catalyst
JPS6339633A (en) Catalyst for cleaning exhaust gas
JPH10216514A (en) Catalyst for exhaust gas purification
JPS61209045A (en) Catalyst for purifying exhaust gas
JPS6054730A (en) Catalyst for purifying exhaust gas
JPH04334548A (en) Exhaust gas purifying catalyst
JPH05237384A (en) Catalyst for purifying exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH0578379B2 (en)
JPH0622674B2 (en) Engine exhaust gas purification catalyst
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JPH02218439A (en) Manufacture of gaseous emission cleanup catalyst
JPH05285391A (en) Catalyst for purification of exhaust gas
JP2831113B2 (en) Metal catalyst and its production method
JP2672996B2 (en) Method for producing platinum-palladium-rhodium catalyst for exhaust gas purification
JPH05285388A (en) Catalyst for purification of exhaust gas
JPH0487639A (en) Catalyst for cleaning exhaust gas