JPS6339633A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas

Info

Publication number
JPS6339633A
JPS6339633A JP61180137A JP18013786A JPS6339633A JP S6339633 A JPS6339633 A JP S6339633A JP 61180137 A JP61180137 A JP 61180137A JP 18013786 A JP18013786 A JP 18013786A JP S6339633 A JPS6339633 A JP S6339633A
Authority
JP
Japan
Prior art keywords
layer
alumina
catalyst
alumina layer
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61180137A
Other languages
Japanese (ja)
Inventor
Akihiko Saotome
五月女 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61180137A priority Critical patent/JPS6339633A/en
Publication of JPS6339633A publication Critical patent/JPS6339633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance durability and reduce the quantity of precious metals required, by making a catalyst in a multilayer structure on a compositional basis, forming an inner layer of the structure from a lanthanum-containing alumina layer, supporting Rh by the inner layer, forming an outer layer of the structure from a cerium-containing alumina layer, and supporting Pt (Pd) by the outer layer. CONSTITUTION:An alumina layer supporting previous metals is provided in a multilayer form, and the concentrations of the precious metals therein vary. An inner alumina layer 2 comprises La2O3 as a rare earth oxide, and contains a previous metal component consisting mainly of Rh. An outer aluminum layer 3 comprises CeO2 as a rare earth oxide, and contains a precious metal component consisting mainly of Pt or Pd. With this construction, thermal deterioration is prevented by the interactions of the previous metals and the rare earth oxides, and an oridizing reaction is performed mainly at a surface layer, whereby diffusion of O2 into the inner layer is suppressed, oxidation of Rh is prevented, and the activity of this catalyst can be maintained for a long time.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、排ガス温度による触媒の熱劣化を防止し、
さらに効率よく排ガス中の炭化水素(IIc)、一酸化
炭素(CO)、窒素酸化物(NOX )を浄化する排ガ
ス浄化用触媒に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention prevents thermal deterioration of a catalyst due to exhaust gas temperature,
Furthermore, the present invention relates to an exhaust gas purification catalyst that efficiently purifies hydrocarbons (IIc), carbon monoxide (CO), and nitrogen oxides (NOX) in exhaust gas.

(従来の技術) 従来、排ガス浄化用触媒としては、あらかじめセリウム
を含有させた活性アルミナ粉末をモノリス担体基材の表
面に付着させた後、白金(P t)、ロジウム(Rh)
、パラジウム(Pd)等を貴金属をそれぞれ単独あるい
は、組み合わせて担持した触媒(特開昭52−1167
79号、特開昭54−159391号公報)、被毒劣化
しやすい成分を内層とする触媒(特開昭59−1276
49号公報)、貴金属の担持されていない金属酸化物層
を間又は外部に設けることで貴金属の相互移動を防ぐ触
媒(特開昭57−105240号公報)、貴金属の濃度
を変えた触媒(特開昭60−31828号公報)等が提
供されている。
(Prior art) Conventionally, as a catalyst for exhaust gas purification, activated alumina powder containing cerium is attached to the surface of a monolithic carrier base material, and then platinum (Pt), rhodium (Rh)
Catalysts supporting noble metals such as palladium (Pd) individually or in combination (Japanese Patent Application Laid-Open No. 52-1167
No. 79, JP-A-54-159391), a catalyst with an inner layer containing components that are susceptible to poisoning and deterioration (JP-A-59-1276)
49 Publication), a catalyst that prevents the mutual movement of precious metals by providing a metal oxide layer between or outside of which no precious metal is supported (Japanese Unexamined Patent Publication No. 57-105240), a catalyst with a different concentration of precious metal (Japanese Unexamined Patent Publication No. 105240/1982), Publication No. 31828/1983), etc. are provided.

(発明が解決しようとする問題点) しかしながら、このような従来の排ガス浄化用触媒にあ
っては、HC,GO,NOXを同時に効率よく浄化する
三元触媒の貴金属種として不可欠であるロジウム(Rh
)の大部分が、高温な排ガスと直接接触する構造となっ
ていたため、高温な排ガスにより、Rhが熱劣化(酸化
、シンタリング)LRh本来の触媒活性を速く失い失活
するという問題点があった。
(Problems to be Solved by the Invention) However, in such conventional exhaust gas purification catalysts, rhodium (Rh
) had a structure in which they were in direct contact with high-temperature exhaust gas, which caused the problem of thermal deterioration (oxidation, sintering) of Rh, causing rapid loss of LRh's original catalytic activity and deactivation. Ta.

(問題点を解決するだめの手段) 発明者は、上記従来の問題点である三元触媒の貴金属種
として不可欠のロジウム(Rh)の早期失活を防止ずべ
く種々研究の結果、無機質担体基材の表面に設けるアル
ミナ層につき貴金属を担持する希土類酸化物(Lazy
、、、 Ce0z)を含むアルミナ層を組成的に多層構
造にし、Rhを内側の内層アルミナ層により多く、或い
はすべて担持させ、貴金属、希土類酸化物の相互作用よ
り熱劣化(酸化、シンタリング)を防止し、また構造的
に酸化反応を表層で主に行わせることにより酸素(0□
)の内層への拡散を少なくすることによりRhの酸化を
防止し、触媒の活性を長期間保持し得ることを知見しこ
の発明を達成するに至った。
(Means to Solve the Problem) The inventor has conducted various researches to prevent the early deactivation of rhodium (Rh), which is essential as a precious metal species in three-way catalysts, which is the problem with the conventional three-way catalyst. The alumina layer provided on the surface of the material contains rare earth oxides (Lazy
The alumina layer containing (Ce0z) is made into a multilayer composition composition, and Rh is carried in a large amount or all in the inner alumina layer to prevent thermal deterioration (oxidation, sintering) from the interaction of noble metals and rare earth oxides. By preventing the oxidation reaction from occurring mainly in the surface layer, oxygen (0□
The inventors have found that by reducing the diffusion of Rh into the inner layer, the oxidation of Rh can be prevented and the activity of the catalyst can be maintained for a long period of time, and this invention has been achieved.

即ちこの発明の排ガス浄化用触媒は、無機質担体基材の
表面に多層構造でアルミナ層を備え、これ等のアルミナ
層の内、内側のアルミナ層はランタンを含浸させた活性
アルミナとアルミゾルから構成され、主としてロジウム
を担持し、表面側のアルミナ層はセリウムを含浸させた
活性アルミナとアルミナゾルから構成され、主として白
金とパラジウムのうち少なくとも1種を担持したことを
特徴とする。
That is, the exhaust gas purifying catalyst of the present invention has an alumina layer in a multilayer structure on the surface of an inorganic carrier base material, and among these alumina layers, the inner alumina layer is composed of activated alumina impregnated with lanthanum and aluminum sol. The alumina layer on the surface side is composed of activated alumina impregnated with cerium and alumina sol, and mainly supports at least one of platinum and palladium.

この発明の排ガス浄化用触媒は、貴金属を担持するアル
ミナ層が多層化されており、かつ貴金属分布に濃度差が
あり、内側の内層アルミナ層には希土類酸化物としてL
a、O,が含まれ、貴金属種としては主にRhが含まれ
ている。また表面側の外層アルミナ層には希土類酸化物
としてCeO□が含まれ、貴金属種としては主にPt、
 Pdが含まれている。第1図はこの発明の触媒の構造
を示すため一例触媒の断面の一部分を拡大して示す図で
、1はモノリス担体基材、2はランタンを含むアルミナ
層で、主としてRhが担持されており、3はセリウムを
含むアルミナ層で、主としてptおよび/またはPdが
担持されている。
The exhaust gas purification catalyst of this invention has multiple alumina layers supporting precious metals, and there are differences in the concentration of precious metals, and the inner alumina layer contains L as a rare earth oxide.
a, O, and mainly Rh as the noble metal species. In addition, the outer alumina layer on the surface side contains CeO□ as a rare earth oxide, and the noble metal species are mainly Pt,
Contains Pd. FIG. 1 is an enlarged view of a part of the cross section of an example catalyst to show the structure of the catalyst of the present invention, in which 1 is a monolith carrier base material, 2 is an alumina layer containing lanthanum, and Rh is mainly supported. , 3 is an alumina layer containing cerium, and mainly supports pt and/or Pd.

次にこの発明の多層構造触媒の調製方法を説明する。触
媒の調製は種々の方法で行うことができるが、第1の望
ましい方法は、RhがLaに選択吸着しやすいことを知
見したことに基づく調製法である。すなわち、内層にラ
ンタンを含むアルミナ層を形成し、その後外層にセリア
を含むアルミナ層を形成し、多層構造のアルミナ層を持
つ担体を準備する。しかるのち、白金、パラジウムのう
ち少なくとも1種およびロジウムの混合溶液に1回浸漬
しただけで、内層にRhを多く担持させることを特徴と
する。
Next, a method for preparing the multilayer structure catalyst of the present invention will be explained. Although the catalyst can be prepared by various methods, the first preferred method is a preparation method based on the finding that Rh tends to be selectively adsorbed onto La. That is, an alumina layer containing lanthanum is formed as an inner layer, and then an alumina layer containing ceria is formed as an outer layer, thereby preparing a carrier having a multilayer structure of alumina layers. The inner layer is then immersed in a mixed solution of at least one of platinum, palladium, and rhodium once, thereby allowing the inner layer to support a large amount of Rh.

第2の望ましい方法は、まず内層にLaを含むアルミナ
層を形成し、塩化ロジウム溶液中に浸清し、内層のラン
タンを含むアルミナ層にRhを担持し第1Nを形成する
A second preferred method is to first form an alumina layer containing La as an inner layer, immerse it in a rhodium chloride solution, and support Rh on the inner alumina layer containing lanthanum to form the first N layer.

次に、Ceを含むアルミナ層を上記第1層上にコーティ
ングし外層を形成し、塩化白金酸、塩化パラジウムのう
ち少なくとも1種の溶液に浸漬し外層のセリウムを含む
、アルミナ層にPt、 Pdのうち少なくとも1種を担
持させることを特徴とする。
Next, an alumina layer containing Ce is coated on the first layer to form an outer layer, and is immersed in a solution of at least one of chloroplatinic acid and palladium chloride to coat the alumina layer containing cerium with Pt and Pd. It is characterized by supporting at least one of these.

(作用) アルミナ層にランタンとロジウムを共有させると、高温
な排ガス中においてペロブスカイト型複合酸化物LaR
h03が形成され、安定化され、Rhの酸化が防止され
、Rhの活性が維持される。また、触媒担体であるアル
ミナのα転位は貴金属シンタリングの一因となるが80
0℃以上でペロブスカイト型複合酸化物LaAj!03
または、La2O2・IIA j2 z03を形成しア
ルミナ層を安定化させアルミナのα転位を約1400℃
まで上昇させるため貴金属のシンタリングが防げる。
(Function) When lanthanum and rhodium are shared in the alumina layer, perovskite-type composite oxide LaR is formed in high-temperature exhaust gas.
h03 is formed and stabilized, preventing Rh oxidation and maintaining Rh activity. In addition, α-rearrangement of alumina, which is a catalyst support, causes noble metal sintering, but 80
Perovskite-type composite oxide LaAj! at 0°C or higher! 03
Alternatively, La2O2・IIA j2 z03 is formed to stabilize the alumina layer and the α dislocation of alumina is heated to about 1400℃.
This prevents sintering of precious metals.

以上のような作用をもつAl2O2・LazO+  ・
Rh層をさらに多層構造の内層に位置させることにより
、RhへのCO被毒等を防止し、合わせて三元触媒とし
て不可欠であるRhの耐久性を、さらに向上することが
できる。ちなみに、外層はA 、g zo:+  ・C
eOz・P t (Pd)が主成分であり、セリアの0
2ストレージ効果を最大に利用しPt(Pd)の酸化反
応を促進させるものである。この結果として三元触媒の
性能が向上する。
Al2O2, LazO+, which has the above-mentioned effects
By further locating the Rh layer in the inner layer of the multilayer structure, it is possible to prevent CO poisoning of Rh and further improve the durability of Rh, which is essential as a three-way catalyst. By the way, the outer layer is A, g zo: + ・C
eOz・P t (Pd) is the main component, and the 0 of ceria
This method utilizes the 2 storage effect to the maximum to promote the oxidation reaction of Pt (Pd). As a result, the performance of the three-way catalyst is improved.

(実施例) 以下、この発明を実施例、比較例および試験例で説明す
る。
(Examples) The present invention will be described below with reference to Examples, Comparative Examples, and Test Examples.

尖籐■土 ランタンを、金属換算で3重量%含む活性アルミナ11
67g、硝酸酸性アルミナゾル2478 g 、酸化ラ
ンタン355gを磁製ボールミルに投入し、毎分80回
転で8時間粉砕した後、得られたスラリーを0.9 β
のモノリス担体上にコーティングし、ランタンを含むア
ルミナ層(内層)を形成した。コート量は80g/Jで
あった。
Activated alumina 11 containing 3% by weight of earth lanthanum (metal equivalent)
67 g of nitric acid acidic alumina sol, 2478 g of lanthanum oxide, and 355 g of lanthanum oxide were placed in a porcelain ball mill and ground at 80 revolutions per minute for 8 hours, and the resulting slurry was 0.9 β
was coated on a monolithic support to form an alumina layer (inner layer) containing lanthanum. The coating amount was 80 g/J.

次に、セリアを金属換算で3重量%含む活性アルミナ1
043 g 、硝酸酸性アルミナゾル2264 g 、
酸化セリウム693gを磁製ボールミルに投入し、毎分
80回転で8時間粉砕した後、得られたスラリーを上記
アルミナN(内層)を形成した担体上にコーティングし
、セリアを含むアルミナ層(中層)を形成した。コート
量は85g/Mであった。
Next, activated alumina 1 containing 3% by weight of ceria in terms of metal
043 g, nitric acid acidic alumina sol 2264 g,
After putting 693 g of cerium oxide into a porcelain ball mill and pulverizing it at 80 revolutions per minute for 8 hours, the resulting slurry was coated on the carrier on which the alumina N (inner layer) was formed, and an alumina layer (middle layer) containing ceria was formed. was formed. The coating amount was 85 g/M.

さらに、セリアを金属換算で3重量%含む活性アルミナ
960g、硝酸酸性アルミナゾル2392 g 。
Furthermore, 960 g of activated alumina containing 3% by weight of ceria in terms of metal, and 2392 g of nitric acid acidic alumina sol.

酸化セリウム648gを磁製ボールミルに投入し、毎分
80回転で8時間粉砕した後、得られたスラリーを上記
アルミナ層(内層、中層)を形成した担体上にコーティ
ングしセリアを含むアルミナ層(外層)を形成した。コ
ートiは100g/Aであった。しかるのち、650℃
で2時間電気炉で焼成し、第1層にLaを、第2層、第
3層にCeを含む多層構造のアルミナ層を持つ担体を得
た。ついで、この担体を塩化白金酸と塩化ロジウムの混
合水溶液に浸漬し、白金、ロジウムの担持量が白金1.
01g/個、ロジウム0.10g/個となるようにした
後、燃焼ガス気流中600″Cで2時間焼成し、実施例
1の触媒Aを得た。この触媒Aは、希土類酸化物を含む
アルミナコート層225g/個であり、La、0319
.1g/個、Ce0z67.9 g /個を含んでいた
After putting 648 g of cerium oxide into a porcelain ball mill and grinding at 80 revolutions per minute for 8 hours, the resulting slurry was coated on the carrier on which the alumina layer (inner layer, middle layer) was formed. ) was formed. Coat i was 100 g/A. After that, 650℃
The resultant was fired in an electric furnace for 2 hours to obtain a support having a multilayered alumina layer including La in the first layer and Ce in the second and third layers. Next, this carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of supported platinum and rhodium was 1.5% of platinum.
01 g/piece and rhodium 0.10 g/piece, and then calcined in a combustion gas stream at 600''C for 2 hours to obtain catalyst A of Example 1. This catalyst A contains a rare earth oxide. Alumina coat layer 225g/piece, La, 0319
.. It contained 1 g/piece and 67.9 g/piece of Ce0z.

X線マイクロアナライザー(XMA)にて、線分析およ
び面分析した結果、Laを含むアルミナ層(内層)には
主にRhが、Ceを含むアルミナN(中、外層)には主
にptが、担持されていた。
As a result of line analysis and surface analysis using an X-ray microanalyzer (XMA), the alumina layer (inner layer) containing La mainly contains Rh, and the alumina N (middle and outer layer) containing Ce mainly contains pt. It was being carried.

大施斑主 実施例1と同様に0.91のモノリス担体上にランタン
を含むアルミナN(内層)を形成しく80g/β)、次
に650℃で1時間電気炉で焼成し冷却後塩化ロジウム
溶液に浸漬し、ロジウムの担持量が0.10g/個とな
るようにした後燃焼ガス気流中600℃で1時間焼成し
た。次に、実施例1の中層用のものと同様にセリアを含
むアルミナスラリーを調製し、このスラリーを上記のR
hを担持したランタンを含むアルミナ層の上に、コーテ
ィングし外層を形成した(160 g / it )。
As in Example 1, alumina N (inner layer) containing lanthanum was formed on a monolithic support of 0.91 g/β), then fired in an electric furnace at 650°C for 1 hour, and after cooling, rhodium chloride was added. After being immersed in a solution so that the amount of rhodium supported was 0.10 g/piece, it was fired at 600° C. for 1 hour in a combustion gas stream. Next, an alumina slurry containing ceria was prepared in the same manner as that for the middle layer in Example 1, and this slurry was mixed with the above R
An outer layer was formed by coating on top of the alumina layer containing lanthanum loaded with h (160 g/it).

650℃で、1時間電気炉で焼成し、冷却した後、塩化
白金酸溶液に浸漬し、白金の担持量が1.OL g /
個となるようにした後燃焼ガス気流中、600℃で1時
間焼成し、実施例2の触媒Bを得た。この触媒Bは、希
土類酸化物を含むアルミナコート層225g/個であり
、LazOs 19.1 g /個、Ce0z67.9
 g /個を含んでいた。
After firing in an electric furnace at 650°C for 1 hour and cooling, immersion in a chloroplatinic acid solution was performed until the amount of platinum supported was 1. OL g/
After this, the catalyst was fired at 600° C. for 1 hour in a combustion gas stream to obtain catalyst B of Example 2. This catalyst B has an alumina coat layer of 225 g/piece containing a rare earth oxide, LazOs 19.1 g/piece, and CeOz 67.9 g/piece.
g/piece.

工較炭上 実施例1の内層用ランタンを含むアルミナのスラリーと
、中層用セリアを含むスラリーを1=2の割合で混合し
、ランタンとセリアを含むスラリーを調製した。これを
0.91のモノリス担体上に3回コーティングし、65
0℃の電気炉で2時間焼成しランタン、セリアの濃度分
布が、均一なアルミナ層をもつ担体とした。ついでこの
担体を塩化白金酸と塩化ロジウムの混合水溶液に浸漬し
、白金、ロジウムの担持量が白金1.01 g /個、
ロジウム0.10 g /個となるようにした後、燃焼
ガス気流中600℃で2時間焼成し、比較例1の触媒C
を得た。この触媒Cは、希土類酸化物を含むアルミナコ
ート層225g/個であり、LazO+19.1 g 
/個、Ce0z67.9 g /個を含んでいた。
On engineered coal, the alumina slurry containing lanthanum for the inner layer of Example 1 and the slurry containing ceria for the middle layer were mixed at a ratio of 1=2 to prepare a slurry containing lanthanum and ceria. This was coated three times on a 0.91 monolithic support, and 65
It was fired in an electric furnace at 0° C. for 2 hours to obtain a carrier having an alumina layer with a uniform concentration distribution of lanthanum and ceria. Next, this carrier was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium supported was 1.01 g of platinum/piece.
After adjusting the rhodium content to 0.10 g/piece, it was calcined in a combustion gas stream at 600°C for 2 hours to obtain the catalyst C of Comparative Example 1.
I got it. This catalyst C has 225 g/piece of alumina coat layer containing rare earth oxide, and LazO+19.1 g
/piece, and 67.9 g/piece of Ce0z.

此笠斑1 セリウムを、金属換算で3重量%含む活性アルミナ10
15 g、硝酸酸性アルミナゾル2307 g、酸化セ
リウム678gを磁製ボールミルに投入し、毎分80回
転で、8時間粉砕した後、得られたスラリーを0.91
のモノリス担体上に3回コーティングし、セリアを含む
アルミナ層を形成した。しかるのち、650℃で2時間
電気炉で、焼成を行いセリアを含むアルミナ層を持つ担
体とした。ついで、この担体を塩化白金酸と塩化ロジウ
ムの混合溶液に浸漬し、白金、ロジウムの担持量が白金
1.01 g /個、ロジウム0.10g/個になるよ
うにした後、燃焼ガス気流中600°Cで2時間焼成し
、比較例2の触媒りを得た。この触媒りは、希土類酸化
物を含むアルミナコート層225g/個であり、C13
0287,Og /個を含んでいた。
Konokasama 1 Activated alumina containing 3% by weight of cerium in terms of metal 10
15 g of nitric acid acidic alumina sol, 2307 g of cerium oxide, and 678 g of cerium oxide were placed in a porcelain ball mill and milled at 80 revolutions per minute for 8 hours.
was coated three times on a monolithic support to form an alumina layer containing ceria. Thereafter, it was fired in an electric furnace at 650° C. for 2 hours to obtain a carrier having an alumina layer containing ceria. Next, this carrier was immersed in a mixed solution of chloroplatinic acid and rhodium chloride so that the amount of platinum and rhodium supported was 1.01 g/piece of platinum and 0.10 g/piece of rhodium, and then soaked in a combustion gas stream. The catalyst was calcined at 600°C for 2 hours to obtain a catalyst of Comparative Example 2. This catalyst has an alumina coating layer of 225 g/piece containing rare earth oxide, and has a C13
It contained 0287,0g/piece.

去籐炭主 実施例1と同様に0.91のモノリス担体上にランタン
を含むアルミナ層(内層)を形成した。コート量は80
g/lであった。次に650°Cで1時間電気炉で焼成
した。冷却後、塩化ロジウム溶液に浸漬し、ロジウムの
担持量が0.1g/個になるようにした後、燃焼ガス気
流中600℃で1時間焼成した。次に実施例1と同様に
中層、外層用のセリアを含むアルミナスラリーを調製し
、このスラリーを上記Rhを担持したランタンを含むア
ルミナ層(内層)の上にコーティングし、中層、外層を
形成した。コーtVは中層1.外層合わせて160g/
lであった。しかるのち650℃で1時間電気炉で焼成
した。冷却後、塩化白金酸と塩化パラジウムの混合溶液
に浸漬し、白金の担持量が0.50g/個、パラジウム
の担持量が0.50 g /個となるようにした後、燃
焼ガス気流中600°Cで1時間焼成し、実施例3の触
媒Eを得た。この触媒Eは希土類酸化物を含むアルミナ
コート層が225g/個であり、LazO:+ 19.
1 g /個、Ce0z67.9 g /個を含んでい
た。
An alumina layer (inner layer) containing lanthanum was formed on a 0.91 monolithic support in the same manner as in Example 1, in which the cast iron was removed. Coat amount is 80
g/l. Next, it was fired in an electric furnace at 650°C for 1 hour. After cooling, it was immersed in a rhodium chloride solution so that the amount of rhodium supported was 0.1 g/piece, and then fired at 600° C. for 1 hour in a combustion gas stream. Next, an alumina slurry containing ceria for the middle and outer layers was prepared in the same manner as in Example 1, and this slurry was coated on the alumina layer (inner layer) containing lanthanum carrying Rh to form the middle and outer layers. . Coat tV is middle layer 1. Total outer layer 160g/
It was l. Thereafter, it was fired in an electric furnace at 650°C for 1 hour. After cooling, it was immersed in a mixed solution of chloroplatinic acid and palladium chloride so that the amount of platinum supported was 0.50 g/piece and the amount of palladium supported was 0.50 g/piece, and then 600 g/piece was immersed in a mixed solution of chloroplatinic acid and palladium chloride. The catalyst was calcined at °C for 1 hour to obtain catalyst E of Example 3. This catalyst E has 225 g/piece of alumina coat layer containing a rare earth oxide, and LazO: + 19.
It contained 1 g/piece and 67.9 g/piece of Ce0z.

止笠玉ユ 比較例2と同様にセリアを含むアルミナ層を設けた担体
を用意した。この担体を塩化白金酸と塩化パラジウムと
塩化ロジウムの混合溶液に浸漬し、白金の担持量が0.
50g/個、パラジウムの担持量が0.50 g /個
、ロジウムの担持量が0.10 g /個となるように
した後、燃焼ガス気流中600″Cで1時間焼成し、比
較例3の触媒Fを得た。この触媒Fは希土類酸化物を含
むアルミナコート層225g/個であり、Ce0J7.
0 g /個を含んでいた。
A carrier provided with an alumina layer containing ceria was prepared in the same manner as Comparative Example 2. This carrier was immersed in a mixed solution of chloroplatinic acid, palladium chloride, and rhodium chloride, and the amount of platinum supported was 0.
After adjusting the amount of supported palladium to be 0.50 g/piece and the amount of supported rhodium to be 0.10 g/piece, they were fired at 600''C in a combustion gas stream for 1 hour, and Comparative Example 3 A catalyst F was obtained.This catalyst F had an alumina coat layer of 225 g/piece containing a rare earth oxide, and had a CeOJ7.
It contained 0 g/piece.

拭狂皿 実施例1.2および3で得た触媒A、  BおよびE1
比較例1,2および3で得た触媒C,DおよびFの各々
を下記条件でエンジン耐久を行い、10モードエミツシ
ヨンの浄化率を測定し、浄化率をb工; として第1表
に示す。
Catalysts A, B and E1 obtained in Wiping dish Examples 1.2 and 3
Each of the catalysts C, D and F obtained in Comparative Examples 1, 2 and 3 was subjected to engine durability under the following conditions, the purification rate of 10 mode emission was measured, and the purification rate is shown in Table 1 as show.

耐久試験条件 触媒      モノリス型貴金属触媒触媒出口温度 
 約750℃ 空間速度    約7万Hr−’ 耐久時間    100時間 エンジン    排気量 2200cc車両評価条件 日量自動車(株)製 1800cc 10モードベースエミツシヨン IC1,5〜1.8 g / km CO5,0〜6.0g/km NO0,9〜1.0 g/ka+ 第1表より明らかなように、実施例の触媒は、比較例に
比べ、より良い性能であることが判る。
Durability test conditions Catalyst Monolithic precious metal catalyst Catalyst outlet temperature
Approximately 750°C Space velocity Approximately 70,000 Hr-' Endurance time 100 hours Engine displacement 2200cc Vehicle evaluation conditions Nichijo Jidosha Co., Ltd. 1800cc 10 mode base emission IC 1.5 to 1.8 g/km CO5.0 to 6 .0 g/km NO0.9 to 1.0 g/ka+ As is clear from Table 1, it can be seen that the catalyst of the example has better performance than the comparative example.

(発明の効果) 以上説明してきたように、この発明によれば、触媒を組
成的に多層構造にて、その内層をランタンを含むアルミ
ナ層で形成し、貴金属種として主にRhを担持し、外層
は、セリウムを含むアルミナ層で形成し、貴金属種とし
て主にP t (Pd)を担持する構造としたため、得
られた触媒は、著しく浄化率が向上し、耐久性が改善で
き、低貴金属化できるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the catalyst has a multi-layered structure, the inner layer of which is formed of an alumina layer containing lanthanum, and Rh is mainly supported as a noble metal species, The outer layer is formed of an alumina layer containing cerium, and has a structure that supports mainly Pt (Pd) as a noble metal species, so the resulting catalyst has a significantly improved purification rate, improved durability, and a low precious metal content. This has the effect of being able to be converted into

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の触媒の構造を示すための一例触媒
の拡大部分断面図である。 1・・・モノリス担体基材 2・・・ランタンを含むアルミナ層で、主としてRhが
担  持されている。 3・・・セリウムを含むアルミナ層で、主としてPt(
Pd)  が担持されている。 第1図
FIG. 1 is an enlarged partial sectional view of an example catalyst for showing the structure of the catalyst of the present invention. 1... Monolith carrier base material 2... An alumina layer containing lanthanum, which mainly supports Rh. 3...Alumina layer containing cerium, mainly Pt (
Pd) is supported. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、無機質担体基材の表面に多層構造でアルミナ層を備
え、これ等のアルミナ層の内、内側のアルミナ層はラン
タンを含浸させた活性アルミナとアルミゾルから構成さ
れ、主としてロジウムを担持し、表面側のアルミナ層は
セリウムを含浸させた活性アルミナとアルミゾルから構
成され、主として白金とパラジウムのうち少なくとも1
種を担持したことを特徴とする排ガス中の炭化水素、一
酸化炭素および窒素酸化物を浄化する排ガス浄化用触媒
1. The surface of the inorganic carrier base material is equipped with an alumina layer with a multilayer structure. Among these alumina layers, the inner alumina layer is composed of activated alumina and aluminum sol impregnated with lanthanum, and mainly supports rhodium, and the surface The side alumina layer is composed of activated alumina impregnated with cerium and aluminum sol, and is mainly composed of at least one of platinum and palladium.
An exhaust gas purifying catalyst for purifying hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas, characterized by supporting a species.
JP61180137A 1986-08-01 1986-08-01 Catalyst for cleaning exhaust gas Pending JPS6339633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180137A JPS6339633A (en) 1986-08-01 1986-08-01 Catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180137A JPS6339633A (en) 1986-08-01 1986-08-01 Catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JPS6339633A true JPS6339633A (en) 1988-02-20

Family

ID=16078055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180137A Pending JPS6339633A (en) 1986-08-01 1986-08-01 Catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JPS6339633A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980333A (en) * 1986-06-27 1990-12-25 Mobil Oil Corporation Perovskite-related layered oxides containing interspathic polymeric oxide
JPH04265155A (en) * 1991-02-18 1992-09-21 Cataler Kogyo Kk Catalyst for purification of exhaust gas
US5628975A (en) * 1989-02-06 1997-05-13 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for purifying exhaust gas from a diesel engine
WO1998045026A1 (en) * 1997-04-07 1998-10-15 Engelhard Corporation Layered catalyst composite
WO2003011438A1 (en) * 2001-07-30 2003-02-13 Valtion Teknillinen Tutkimuskeskus Method for catalytic reduction of nitrogen oxides and catalyst for use therein
JP2010167381A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Exhaust gas cleaning catalyst
WO2010142635A3 (en) * 2009-06-08 2011-03-24 Süd-Chemie AG Method for producing a three-way catalyst comprising rhodium and platinum supported on separate oxide supports, said method having only one coating step and calcining step
WO2017203863A1 (en) * 2016-05-25 2017-11-30 エヌ・イーケムキャット株式会社 Gasoline engine exhaust gas purification three-way catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980333A (en) * 1986-06-27 1990-12-25 Mobil Oil Corporation Perovskite-related layered oxides containing interspathic polymeric oxide
US5628975A (en) * 1989-02-06 1997-05-13 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for purifying exhaust gas from a diesel engine
JPH04265155A (en) * 1991-02-18 1992-09-21 Cataler Kogyo Kk Catalyst for purification of exhaust gas
WO1998045026A1 (en) * 1997-04-07 1998-10-15 Engelhard Corporation Layered catalyst composite
WO2003011438A1 (en) * 2001-07-30 2003-02-13 Valtion Teknillinen Tutkimuskeskus Method for catalytic reduction of nitrogen oxides and catalyst for use therein
JP2010167381A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Exhaust gas cleaning catalyst
WO2010142635A3 (en) * 2009-06-08 2011-03-24 Süd-Chemie AG Method for producing a three-way catalyst comprising rhodium and platinum supported on separate oxide supports, said method having only one coating step and calcining step
CN102497926A (en) * 2009-06-08 2012-06-13 南方化学股份公司 Method for producing a three-way catalyst comprising rhodium and platinum supported on separate oxide supports, said method having only one coating step and calcining step
WO2017203863A1 (en) * 2016-05-25 2017-11-30 エヌ・イーケムキャット株式会社 Gasoline engine exhaust gas purification three-way catalyst
JPWO2017203863A1 (en) * 2016-05-25 2019-04-25 エヌ・イーケムキャット株式会社 Three-way catalyst for purification of gasoline engine exhaust gas
US10765998B2 (en) 2016-05-25 2020-09-08 N.E. Chemcat Corporation Three-way catalyst for purifying gasoline engine exhaust gas

Similar Documents

Publication Publication Date Title
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
CN104353457B (en) Exhaust gas purifying catalyst and method for manufacturing the same
EP3260189A1 (en) Exhaust gas purifying catalyst
JPH0338250A (en) Exhaust gas purification catalyst
EP3354336B1 (en) Catalytic exhaust gas purification apparatus
JPH10296085A (en) Exhaust gas-purifying catalyst
JP3988202B2 (en) Exhaust gas purification catalyst
MX2013003568A (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system.
JP4238056B2 (en) Layered catalyst for exhaust gas purification
JPH0547263B2 (en)
JPS6339633A (en) Catalyst for cleaning exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP2002045702A (en) Catalyst for purifying exhaust gas
JP2006205002A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3855255B2 (en) Exhaust gas purification catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP2003245553A (en) Catalyst powder and catalyst for cleaning exhaust gas
JP3872153B2 (en) Exhaust gas purification catalyst
EP0856350A1 (en) Catalyst for purifying exhaust gas and method of making the same
JPS63104651A (en) Catalyst for purifying exhaust gas
JP3882422B2 (en) Method for producing exhaust gas purification catalyst
JPS61274746A (en) Monolithic exhaust gas purifying catalyst