JPH01127044A - Catalyst for clarifying exhaust gas - Google Patents

Catalyst for clarifying exhaust gas

Info

Publication number
JPH01127044A
JPH01127044A JP62284480A JP28448087A JPH01127044A JP H01127044 A JPH01127044 A JP H01127044A JP 62284480 A JP62284480 A JP 62284480A JP 28448087 A JP28448087 A JP 28448087A JP H01127044 A JPH01127044 A JP H01127044A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
zeolite
alumina
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284480A
Other languages
Japanese (ja)
Inventor
Hideaki Muraki
村木 秀昭
Shiro Kondo
近藤 四郎
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62284480A priority Critical patent/JPH01127044A/en
Publication of JPH01127044A publication Critical patent/JPH01127044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve clarification capacities for NOx, CO, etc., in an lean-burn atmosphere, by forming a catalyst, wherein a carrier is first coated with a catalyst layer composed of catalyst components for oxidation reaction and further coated with a catalyst layer composed of copper and zeolite. CONSTITUTION:A catalyst for clarifying hydrocarbons, carbon monoxide and nitrogen oxides in an exhaust gas out of an internal combustion engine is formed by arranging the first catalyst layer composed of catalyst components effective for oxidation reaction on a carrier made of a porous sintered body such as cordierite, alumina, silica-alumina, spodumene, etc., and further arranging the second catalyst layer composed of copper and zeolite upon the first catalyst layer. The first and second catalyst layers are preferably composed of a catalyst of noble metal supported on alumina and that of copper supported on zeolite by ion-exchange reaction, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、内燃機関の排気中の有害成分を除去するだめ
の排気浄化用三元触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-way catalyst for purifying exhaust gas for removing harmful components from the exhaust gas of an internal combustion engine.

〔従来技術〕[Prior art]

近年、内燃機関、特に自動車用内燃機関の排気浄化用触
媒は、耐久性、浄化性能等につき極めて高度な性能が要
求されている。この排気浄化用触媒としてはモノリス触
媒や粒状触媒等が用いられている。
In recent years, exhaust purifying catalysts for internal combustion engines, particularly automobile internal combustion engines, are required to have extremely high performance in terms of durability, purification performance, and the like. Monolithic catalysts, granular catalysts, and the like are used as this exhaust purification catalyst.

しかして、その触媒成分としては、白金(PL)、ロジ
ウム(Rh)、パラジウム(Pd)等の貴金属の一種又
は二種以上を用い、これを担体に担持したものが多用さ
れている。そして、これらの触媒を充填した触媒コンバ
ータに排気を送入することにより、排気中の有害物質で
ある炭化水素(HC)、−酸化線素(CO)および窒素
酸化物(NOx)を酸化または還元して浄化する。排気
中の有害物質として主なものは、上記HC,CO,NO
xの3成分であり、この3成分を一度に浄化処理できる
触媒を三元触媒と呼んでいる。
As the catalyst component, one or more noble metals such as platinum (PL), rhodium (Rh), and palladium (Pd) are used, and these are often supported on a carrier. By sending the exhaust gas to a catalytic converter filled with these catalysts, the harmful substances in the exhaust gas, such as hydrocarbons (HC), -oxidants (CO), and nitrogen oxides (NOx), are oxidized or reduced. and purify it. The main harmful substances in the exhaust are the above-mentioned HC, CO, and NO.
x, and a catalyst that can purify these three components at once is called a three-way catalyst.

従来、三元触媒として触媒特性の向上を狙った自動車用
触媒が提案されている0例えば、USP4.128,5
06号に記載の触媒は、ペレット形状をなし、担体上に
触媒成分を層状に分離担持したものである。そして触媒
成分としてPt(!:Rhとを用いたものである。
Conventionally, automotive catalysts aimed at improving catalytic properties as three-way catalysts have been proposed. For example, USP 4.128, 5
The catalyst described in No. 06 is in the form of pellets, and catalyst components are separated and supported in layers on a carrier. And Pt(!:Rh) is used as a catalyst component.

また、特公昭57−20013号に記載の触媒は、耐熱
性セラミックス担体上に触媒成分を含有させたアルミナ
又はジルコニアの焼結体層の2Nを設け、かつ上層には
Pt−Rhを、下層にはPd又はPd−PLを担持した
酸化触媒である。
In addition, the catalyst described in Japanese Patent Publication No. 57-20013 has a 2N layer of sintered alumina or zirconia containing catalyst components on a heat-resistant ceramic carrier, and Pt-Rh in the upper layer and Pt-Rh in the lower layer. is an oxidation catalyst supporting Pd or Pd-PL.

〔解決すべき問題点〕[Problems to be solved]

しかしながら、従来の三元触媒においては、排気中の酸
素濃度が理論値(排気中の未燃焼成分を完全に酸化する
のに必要な最少酸素濃度)より太き(なった場合(これ
を、リーン・バーンと称する)には、排気中のNOxを
還元除去することができない欠点がある。
However, with conventional three-way catalysts, when the oxygen concentration in the exhaust gas becomes higher than the theoretical value (the minimum oxygen concentration necessary to completely oxidize unburned components in the exhaust gas),・This method (referred to as "burn") has the disadvantage that it cannot reduce and remove NOx in the exhaust gas.

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、リーン・バーン雰囲気においても効率よ<
NOx、Co、HCを浄化することができる三元触媒を
提供しようとするものである。
The present invention has been made to solve the problems of the prior art described above, and is efficient even in a lean burn atmosphere.
The present invention aims to provide a three-way catalyst that can purify NOx, Co, and HC.

〔問題点の解決手段〕[Means for solving problems]

本発明は、内燃機関の排気中の炭化水素、一酸化炭素及
び窒素酸化物を浄化するための触媒であって、担体上に
酸化反応に有効な触媒成分からなる第1触媒層を設け、
更に該第1触媒層の上に銅とゼオライトとからなる第2
触媒層を設けてなることを特徴とする排気浄化用触媒に
ある。
The present invention provides a catalyst for purifying hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas of an internal combustion engine, which comprises providing a first catalyst layer made of a catalyst component effective for an oxidation reaction on a carrier,
Furthermore, a second catalyst layer made of copper and zeolite is formed on the first catalyst layer.
An exhaust purification catalyst characterized by being provided with a catalyst layer.

本発明にかかる触媒は、酸化反応に有効な触媒成分から
なる第1触媒層と、銅(Cu)とゼオライトからなる第
2触媒層を有する。そして1両触媒層は、担体上に第1
触媒層を、更にその上に第2触媒層を設けるものである
The catalyst according to the present invention has a first catalyst layer made of a catalyst component effective for oxidation reactions and a second catalyst layer made of copper (Cu) and zeolite. Then, one catalyst layer is placed on the carrier.
The catalyst layer is further provided with a second catalyst layer thereon.

しかして、上記第1触媒層に用いる触媒成分としては、
Pt、Pd、Rh等の貴金属、セリア(CeOz)、酸
化ランタン(LazO3)などの希土類酸化物、酸化ジ
ルコニウムなどがあり。
Therefore, the catalyst components used in the first catalyst layer are as follows:
Examples include noble metals such as Pt, Pd and Rh, rare earth oxides such as ceria (CeOz) and lanthanum oxide (LazO3), and zirconium oxide.

これらを1種又は2種以上用いる。One or more of these may be used.

また、上記第2触媒層に用いる触媒成分としてのCuは
、金属Cu又は酸化銅(CIJO)の状態いずれでも良
い。また、Cuと共に用いるゼオライトは、沸石とも呼
ばれ、化学組成は長石類または准長石頻に類似し、一般
式WmZn0zn−s H2O〔ここに、WはNa、C
a、に、Ba又はSL、ZはSi+AA (Si :A
e>1)、sは一定しない]で示される含水珪酸塩であ
る。しかして、該第2触媒層は、ゼオライトとCuとを
混合すること或いはゼオライトにCuをイオン交換担持
すること等により調製する。このイオン交換担持は、実
施例にも示すごとく、酢酸銅、硝酸銅等の銅水溶液中に
ゼオライト層を漬浸、乾燥することなどにより行う。こ
れにより、ゼオライト中のNa、或いはアルカリなどの
元素がCuとイオン交換する。また、このときのイオン
交換率は50ないし100%とすることが好ましい。5
0%未満では2本発明の効果が得られ難いからである。
Further, Cu as a catalyst component used in the second catalyst layer may be in the form of metal Cu or copper oxide (CIJO). Zeolite used with Cu is also called zeolite, has a chemical composition similar to feldspars or semi-feldspars, and has the general formula WmZn0zn-s H2O [where W is Na, C
a, Ba or SL, Z is Si+AA (Si:A
e>1), s is not constant]. The second catalyst layer is prepared by mixing zeolite and Cu, or by supporting Cu on zeolite by ion exchange. As shown in the Examples, this ion exchange support is carried out by immersing the zeolite layer in an aqueous copper solution such as copper acetate or copper nitrate and drying it. As a result, elements such as Na or alkali in the zeolite undergo ion exchange with Cu. Further, the ion exchange rate at this time is preferably 50 to 100%. 5
This is because if it is less than 0%, it is difficult to obtain the effects of the present invention.

ここに、Cuのイオン交換率とは、−価のCuがゼオラ
イト中のNa或いはアルカリ等の元素と交換した量をい
う。
Here, the ion exchange rate of Cu refers to the amount of -valent Cu exchanged with elements such as Na or alkali in the zeolite.

次に、第1触媒層を担持させる担体としては。Next, as a carrier for supporting the first catalyst layer.

コーディエライト、アルミナ、シリカ・アルミナ。Cordierite, alumina, silica/alumina.

スポジュメン等の多孔質焼結体等がある。また。Porous sintered bodies such as spodumene are available. Also.

担体の形状としては1粒状、ハニカム状体等任意である
が、排気との接触を向上させ、浄化率を向上させるため
には、ハニカム状体等の一体型担体とすることが好まし
い。また、該担体は例えば−体型担体であるコーディエ
ライト担体の表面に。
The shape of the carrier may be arbitrary, such as a single grain or a honeycomb shape, but an integral carrier such as a honeycomb shape is preferable in order to improve contact with exhaust gas and improve the purification rate. Further, the carrier is, for example, on the surface of a cordierite carrier which is a -type carrier.

更にアルミナ等の粉末を付着、焼成して、該アルミナ等
の多孔質体を形成することにより構成することもできる
Furthermore, a porous body of alumina or the like can be formed by depositing and firing a powder of alumina or the like.

また、担体上への第1触媒層の担持量は、担体11に対
して0.1〜Logとすることが好ましい、該担持量が
、0.1g未満では本発明の効果を得難<、10gを越
えても担持量に見合うだけの効果を得難い。
Further, it is preferable that the amount of the first catalyst layer supported on the carrier is 0.1 to Log with respect to the carrier 11. If the amount supported is less than 0.1 g, it is difficult to obtain the effects of the present invention. Even if it exceeds 10 g, it is difficult to obtain an effect commensurate with the amount supported.

次に、前記第1触媒層の上に第2触媒層を設ける方法と
しては1例えば先ず前記第1触媒層を形成した担体上に
ゼオライト耕゛末の多孔質体層をコーティングし、その
後、これらを酢酸銅等の銅水溶液中に漬浸しCuをイオ
ン交換担持することなどにより行う。しかして、 18
体に対する第2触媒層の担持量としては、担体12に対
して0. 1〜20gとすることが好ましい。0.1g
未満では。
Next, as a method for providing a second catalyst layer on the first catalyst layer, for example, firstly, a porous layer of zeolite powder is coated on the carrier on which the first catalyst layer is formed, and then a porous layer of zeolite powder is coated. This is carried out by immersing Cu in an aqueous copper solution such as copper acetate to support Cu by ion exchange. However, 18
The amount of the second catalyst layer supported on the carrier 12 is 0. It is preferable to set it as 1-20g. 0.1g
In less than.

本発明の効果を得難<、20gを越えてもそれに見合う
効果を得難い。
It is difficult to obtain the effects of the present invention, and even if it exceeds 20 g, it is difficult to obtain the effects commensurate with that.

なお9本発明にかかる排気浄化用触媒は200〜800
℃において用いることが好ましい。また。
Note that the exhaust purification catalyst according to the present invention has a molecular weight of 200 to 800.
Preferably, it is used at ℃. Also.

触媒層へ導入する排気の空間速度としては、GH3V1
万〜12万/時とすることが好ましい。
The space velocity of the exhaust gas introduced into the catalyst layer is GH3V1.
It is preferable to set it as 10,000-120,000/hour.

また、後述するごとく1本発明にかかる触媒を用いる場
合には、排気中のNOxは主としてHCと反応して浄化
される。このHCは、排気中に残留するものでよいが、
HCが上記反応を起なわせるのに必要な量よりも不足し
ている場合には、排気中に外部よりHCを添加するのが
良い、また。
Furthermore, as will be described later, when a catalyst according to the present invention is used, NOx in the exhaust gas is mainly purified by reacting with HC. This HC may be one that remains in the exhaust gas, but
If the amount of HC is insufficient to cause the above reaction, it is better to add HC from the outside into the exhaust gas.

上記反応に必要な量以上のHCが存在する方が。It is better to have more HC than is necessary for the above reaction.

上記反応がより促進する。The above reaction is further promoted.

〔作用及び効果〕[Action and effect]

本発明においては、担体上に第1触媒層を設け。 In the present invention, a first catalyst layer is provided on the carrier.

更にその上に第2触媒層を設けて触媒を構成しているの
で、従来困難と思われていたリーン・バーン雰囲気、つ
まり酸素過剰雰囲気下においても。
Furthermore, since a second catalyst layer is provided on top of the catalyst to form a catalyst, it can be used in a lean burn atmosphere, that is, an oxygen-excess atmosphere, which was previously thought to be difficult.

効率良<NOxを浄化することができると共にCO,H
Cも効率良(浄化することができる。したがって、−優
れた三元触媒を従供することができる。
Efficient < can purify NOx and also reduce CO, H
C can also be efficiently purified. Therefore, an excellent three-way catalyst can be used.

本発明の触媒がかかる優れた効果を発揮する理由は明ら
かではないが、大路次のようであると考えられる。
The reason why the catalyst of the present invention exhibits such excellent effects is not clear, but it is thought to be as follows.

即ち、排気が上記触媒と接触したとき、まずガス中のN
OxがCuとゼオライトからなる第2触媒層によって、
同じくガス中のHCと選択的に反応する。このときの反
応は1次式のようであると考えられる。
That is, when exhaust gas comes into contact with the catalyst, first the N in the gas is
Ox is caused by the second catalyst layer consisting of Cu and zeolite,
Similarly, it selectively reacts with HC in the gas. The reaction at this time is considered to be a linear equation.

aHc+bNOx−+cH2’O+dCOzしたがって
、これによりNOxは無害物質に浄化される。
aHc+bNOx-+cH2'O+dCOz Therefore, this purifies NOx into harmless substances.

また、上記NOxと反応しなかった残りのHC。Also, the remaining HC that did not react with the NOx.

及びCOは1本触媒の第1触媒層によって排気中の酸素
と反応して、H,O,Co□となり無害物質に浄化され
る。
and CO react with oxygen in the exhaust gas by the first catalyst layer of one catalyst to become H, O, and Co□ and are purified into harmless substances.

上記のごとく9本発明の触媒においては、主として、第
2触媒層によって選択的にNOxを、第1触媒層によっ
てHC,Coをそれぞれ浄化するので、酸素過剰雰囲気
においても効率良<NOxを、更にはHC,Coを浄化
することができる。
As described above, in the catalyst of the present invention, the second catalyst layer selectively purifies NOx, and the first catalyst layer purifies HC and Co, so it is highly efficient even in an oxygen-rich atmosphere. can purify HC and Co.

〔実施例] 第1実施例 コーディエライト製一体型担体上にアルミナをコーティ
ングして担体となし、これに第1触媒層としてのPdを
担持し、更にその上に第2触媒層としてのCu−ゼオラ
イトを担持して1本発明にかかる触媒を調製した。
[Example] First Example Alumina was coated on an integral support made of cordierite to form a support, Pd was supported as a first catalyst layer, and Cu was further applied thereon as a second catalyst layer. - A catalyst according to the present invention was prepared by supporting zeolite.

次いで、該触媒について、エンジン排気を用いた浄化活
性評価を行った。また、比較触媒についても同様の活性
評価を行った。
Next, the purification activity of the catalyst was evaluated using engine exhaust gas. Similar activity evaluations were also performed on comparative catalysts.

本発明触媒(Nα1.Nα2)の調製;アルミナ100
部と硝酸アルミニウム水溶液14部とを水及び硝酸と共
にボールミリングすることによりウォッシュコートスラ
リーを生成させた。
Preparation of the catalyst of the present invention (Nα1.Nα2); Alumina 100
A washcoat slurry was produced by ball milling 14 parts of aluminum nitrate and 14 parts of an aqueous aluminum nitrate solution with water and nitric acid.

そして、断面積1in”当り約400の流路を含む容積
1.3Lのコーディエライト製一体型担体を、上記ウォ
ッシュコートスラリー中に漬浸した。
A cordierite monolithic carrier having a volume of 1.3 L and containing approximately 400 channels per inch of cross-sectional area was then immersed in the washcoat slurry.

続いて、圧縮空気により過剰液を吹き去り、この一体化
物を乾燥して遊離の水を除去した後、700°Cで1時
間焼成し、一体性型担体上に厚み約25μmのアルミナ
をコーティングした。
Subsequently, the excess liquid was blown away with compressed air, the integrated product was dried to remove free water, and then calcined at 700°C for 1 hour to coat the integrated support with alumina with a thickness of about 25 μm. .

続いて、該担体を0.009mo l/Lの濃度のジニ
トロジアンミンパラジウムの硝酸酸性水溶液に漬浸し、
乾燥後、200°Cで1時間焼成して。
Subsequently, the carrier was immersed in a nitric acid aqueous solution of dinitrodiammine palladium at a concentration of 0.009 mol/L,
After drying, bake at 200°C for 1 hour.

担体上に担体ILに対し1.5g/Lのパラジウム(P
d)を担持した。
1.5 g/L of palladium (P
d) was supported.

次に、ゼオライト100部とシリカゾル80部とを水及
び硝酸と共にボールミリングすることによりウォッシュ
コートスラリーを生成させ、その中に上記Pd担持物を
漬浸し、上記アルミナの場合と同様にして厚み約25μ
mのゼオライトをコーティングした。
Next, 100 parts of zeolite and 80 parts of silica sol are ball-milled together with water and nitric acid to form a washcoat slurry, and the Pd-supported material is immersed in the slurry to a thickness of approximately 25 μm in the same manner as in the case of alumina.
Coated with m zeolite.

続いて、このものを0.02mol/Lの酢酸銅水溶液
に24時間漬浸し、Cuをイオン交換担持した。その際
のCuのイオン交換率は89%であった。また、Cuの
担持量は担体ILに対して20 g/Lであった。
Subsequently, this material was immersed in a 0.02 mol/L copper acetate aqueous solution for 24 hours to carry Cu by ion exchange. The ion exchange rate of Cu at that time was 89%. Further, the amount of Cu supported was 20 g/L relative to the carrier IL.

これにより、第1触媒層としてPdを、第2触媒層とし
てCu−ゼオライトを用い、Cuイ尤ノン交換率89%
前記本発明にかかる触媒層1を調製した。
As a result, by using Pd as the first catalyst layer and Cu-zeolite as the second catalyst layer, the Cu-I non-exchange rate was 89%.
The catalyst layer 1 according to the present invention was prepared.

また、上記酢酸銅水溶液の濃度を0.01m。Further, the concentration of the copper acetate aqueous solution was 0.01 m.

1/Lとした外は、上記と同条件により、Cuイオン交
換率が60%でその外は前記NG、1触媒と同様の1本
発明にかかる触媒Nα2を調製した。
Catalyst Nα2 according to the present invention was prepared under the same conditions as above except that the Cu ion exchange rate was 60% and was the same as the above-mentioned NG and 1 catalyst.

比較触媒(隘C1,隘C2,隘C3)の調製;上記Nα
1触媒におけるゼオライト及びCuの担持は行わず、他
は上記−1触媒と同様にして、触媒成分としてPdのみ
を担持した触媒を調製した。
Preparation of comparative catalysts (C1, C2, C3); the above Nα
A catalyst in which only Pd was supported as a catalyst component was prepared in the same manner as in Catalyst-1 except that zeolite and Cu were not supported in Catalyst 1.

即ち、この触媒は前記コーディエライト一体型担体の上
にアルミナをコーティングし、更にその上に上記と同様
に1.5g/LのPdを担持したものである。この触媒
をkclとする。
That is, this catalyst was obtained by coating alumina on the cordierite integrated carrier, and further supporting 1.5 g/L of Pd thereon in the same manner as above. This catalyst is designated as kcl.

次に、上記Nα工触媒の調製において、アルミナのコー
ティング及びPd担持の工程と、ゼオライト及びCuの
担持の工程を逆に行い、その他は同様の条件により、比
較触媒NaC2を調製した。該kc2触媒は1本発明に
かかる前記Nα1触媒とは逆に、前記コーディエライト
一体型担体の上にゼオライトとCuとからなる触媒層を
、更にその上にアルミナとPdとからなる触媒層を形成
したものである。
Next, a comparison catalyst NaC2 was prepared by performing the steps of coating alumina and supporting Pd, and supporting zeolite and Cu in the preparation of the Nα engineered catalyst described above, but under the same conditions except for the same steps. Contrary to the Nα1 catalyst according to the present invention, the kc2 catalyst has a catalyst layer made of zeolite and Cu on the cordierite integrated support, and a catalyst layer made of alumina and Pd on top of that. It was formed.

また、上記阻1触媒の場合と同様にして、まずコーディ
エライト製一体型担体の表面に厚み約50IImのアル
ミナをコーティングして担体を作製した。次いで、該担
体を、硝酸セリウム2.5mo1/Lの水溶液に漬浸し
、乾燥後600°Cで3時間、空気中で焼成し、該担体
上に酸化セリウム(Cent )0.3mo I/Lを
担持した。更に。
In addition, in the same manner as in the case of the above-described catalyst No. 1, a support was prepared by first coating the surface of a cordierite integral support with alumina having a thickness of about 50 II m. Next, the carrier was immersed in an aqueous solution of 2.5 mo1/L of cerium nitrate, dried and then calcined in air at 600°C for 3 hours, and 0.3 mo I/L of cerium oxide (Cent) was added onto the carrier. carried it. Furthermore.

このものを塩化ロジウム0.OQ 2mo l/Lの水
溶液に漬浸し、乾燥後、200°Cで1時間焼成し、該
担体上にロジウム(Rh)0.3g/Lを担持した。更
に、このものを0.005mol/Lの濃度のジニトロ
ジアンミン白金の硝酸酸性水溶液に浸漬し、乾燥後、2
00°Cで1時間焼成して上記担体上に1.5g/Lの
白金(pt)を担持した。これにより、コーディエライ
ト一体型担体とその表面に形成したアルミナとからなる
担体上に、触媒成分としてのPt  Pd  Cent
を度持した触媒N[lC3を調製した。
This material is rhodium chloride 0. The carrier was immersed in an aqueous solution with an OQ of 2 mol/L, dried, and then calcined at 200°C for 1 hour to support 0.3 g/L of rhodium (Rh) on the carrier. Furthermore, this material was immersed in an acidic nitric acid aqueous solution of dinitrodiammine platinum at a concentration of 0.005 mol/L, and after drying, 2
After baking at 00° C. for 1 hour, 1.5 g/L of platinum (pt) was supported on the above carrier. As a result, Pt Pd Cent
Catalyst N [lC3 was prepared.

浄化活性評価; 上記5種の触媒を、排気It、6Lエンジンの排気系に
装着して触媒活性を調べた。その隙、排気の触媒層入口
の温度を400°Cと500°Cの2通りに代えて各々
の浄化率を測定した。なお、エンジンの空燃比(A/F
)は酸素過剰下(即ち。
Evaluation of purification activity: The five types of catalysts described above were installed in the exhaust system of a 6L engine with exhaust It, and the catalytic activity was examined. During this time, the temperature of the exhaust gas at the inlet of the catalyst layer was changed to 400°C and 500°C, and the purification rate was measured for each. In addition, the engine air-fuel ratio (A/F
) under oxygen excess (i.e.

リーン・バーン)の18とした。また、排気の空間速度
GH3Vは約6万/時であった。その測定結果を第1表
に示す。
Lean Burn) was set at 18. Further, the space velocity GH3V of the exhaust gas was approximately 60,000/hour. The measurement results are shown in Table 1.

第1表から明らかなように2本発明にかかる排気浄化用
触媒は、酸素過剰下においても極めて高い浄化活性を示
すことが分かる。即ち1本発明の触媒N(kl、2は共
に、HC,Coに対しては95〜98%という高い浄化
率を、またNOxに対しては400°Cでは35〜45
%、500°Cでは62〜70%という浄化率を示して
いる。
As is clear from Table 1, the exhaust gas purification catalyst according to the present invention exhibits extremely high purification activity even in the presence of excess oxygen. Namely, 1. Both of the catalysts N (kl and 2) of the present invention have a high purification rate of 95 to 98% for HC and Co, and a high purification rate of 35 to 45% for NOx at 400°C.
%, and at 500°C, it shows a purification rate of 62-70%.

そして、特に注意すべきことは1本発明触媒は比較触媒
NllCl〜C3に比してNOxに関して極めて高い浄
化率を発揮していることである。
What should be noted in particular is that the catalyst of the present invention exhibits an extremely high purification rate for NOx compared to the comparative catalysts NllCl-C3.

上記のごとく1本発明の排気浄化用触媒は優れた三元触
媒であることが分かる。
As described above, it can be seen that the exhaust purification catalyst of the present invention is an excellent three-way catalyst.

第2実施例 第1触媒層としてPt  Rh  Centを、第2触
媒層としてCu−ゼオライトを担持し、他は前記阻1触
媒と同様の本発明にかかる触媒を調製し、浄化活性の評
価を行った。
Second Example A catalyst according to the present invention was prepared in the same manner as the catalyst 1 above, except that Pt Rh Cent was supported as the first catalyst layer and Cu-zeolite was supported as the second catalyst layer, and the purification activity was evaluated. Ta.

本発明触媒(阻3.隘4)の調製; 安定化アルミナ100部と硝酸アルミニウム水溶液14
部とを水及び硝酸と共にボールミリングすることにより
ウォッシュコートスラリーを生成させた。そして、その
中に断面積1in!当り約400の流路を含む容積35
ccのコーディエライトの一体型担体を浸漬した。次い
でNα1触媒と同様に、700″Cで1時間焼成し、該
一体型担体上に厚み約25μmのアルミナをコーティン
グした。
Preparation of the catalyst of the present invention (3.4): 100 parts of stabilized alumina and 14 parts of aluminum nitrate aqueous solution
A washcoat slurry was produced by ball milling the sample with water and nitric acid. And there is a cross-sectional area of 1 inch! Volume 35 containing approximately 400 channels per
A monolithic support of cc cordierite was soaked. Then, like the Nα1 catalyst, it was calcined at 700″C for 1 hour, and alumina with a thickness of about 25 μm was coated on the integrated carrier.

なお、上記安定化アルミナは次のようにして作製したも
のである。即ち1表面積が160rrr/gであるアル
ミナ粉末に硝酸ランタンの水溶液を。
Note that the above stabilized alumina was produced as follows. That is, an aqueous solution of lanthanum nitrate was added to alumina powder with a surface area of 160 rrr/g.

アルミナに対し1.3mo1%のランタン含有量となる
ような割合において、含浸させた。その後。
Impregnation was carried out at a ratio such that the lanthanum content was 1.3 mo1% with respect to alumina. after that.

このものを乾燥させ、水分を取り除いた後、600°C
0空気中、3時間にて焼成し、アルミナにランタンを含
有させた。更に、該アルミナを870°C9空気中、3
時間にて焼成し、安定化されたアルミナを調製した。該
安定化アルミナは、振動ミルにより平均粒径10μmの
粉末となし、上記コーティングに供した。
After drying this and removing moisture, the temperature is 600°C.
It was fired in 0 air for 3 hours to make the alumina contain lanthanum. Furthermore, the alumina was heated at 870°C9 in air for 3
Stabilized alumina was prepared by calcining for hours. The stabilized alumina was made into powder with an average particle size of 10 μm using a vibration mill, and was used for the coating described above.

しかして、上記安定化アルミナをコーティングした担体
を用い、その表面に上記比較触媒Nα3の場合と同様に
して、第1触媒層としてのPtl。
Using the stabilized alumina-coated carrier, Ptl was applied as the first catalyst layer on the surface of the carrier in the same manner as in the case of the comparative catalyst Nα3.

5g/L、Rh0.3g/L、Ce0.0.3mof/
Lを1旦持した。
5g/L, Rh0.3g/L, Ce0.0.3mof/
I held L once.

次いで、第1触媒層の上に前記阻1触媒と同様にしてゼ
オライトをコーティングした。続いて。
Next, zeolite was coated on the first catalyst layer in the same manner as the first catalyst. continue.

このものを0.02mol/Lの酢酸銅水溶液に24時
間浸漬し、この操作を2回繰り返すことにより、ゼオラ
イトに対してCuをイオン交換担持した。その際のCu
のイオン交換率は98%であった。また、Cuの担持量
は担体に対して25g/Lであった。
This material was immersed in a 0.02 mol/L copper acetate aqueous solution for 24 hours, and this operation was repeated twice to carry Cu on the zeolite through ion exchange. Cu at that time
The ion exchange rate was 98%. Further, the amount of Cu supported was 25 g/L with respect to the carrier.

これにより、第1触媒層としてPt−Rh−Ce0□を
、第2触媒層としてCu−ゼオライトを用い、イオン交
換率98%の前記本発明にかかる触媒Nα3を調製した
As a result, the catalyst Nα3 according to the present invention having an ion exchange rate of 98% was prepared using Pt-Rh-Ce0□ as the first catalyst layer and Cu-zeolite as the second catalyst layer.

また、酢酸銅水溶液の濃度をO,O1mol/Lとした
外は上記と同条件により、Cuイオン交換率が70%で
ある外は前記Nα3触媒と同様の。
Further, the same conditions as above were used except that the concentration of the aqueous copper acetate solution was O, O1 mol/L, and the same as the Nα3 catalyst was used except that the Cu ion exchange rate was 70%.

発明にかかる触媒Nα4を11製した。Eleven catalysts Nα4 according to the invention were manufactured.

比較触媒(NIIC4、N11C5)の調製;まず、触
媒成分としてCuとゼオライトのみを有する触媒No、
C4を調製した。該触媒No、C4は。
Preparation of comparative catalysts (NIIC4, N11C5): First, catalyst No. having only Cu and zeolite as catalyst components,
C4 was prepared. The catalyst No. C4 is.

前記本発°明にかかる触媒No、3を調製する際に、第
1触媒層を形成することなく、コーディエライト一体型
担体の表面にゼオライトをコーティングし。
When preparing Catalyst No. 3 according to the present invention, the surface of the cordierite integrated support was coated with zeolite without forming the first catalyst layer.

次いでCuを担持させたものである。その条件は前記N
α3触媒の場合と同様である。
Next, Cu was supported. The condition is the N
The same is true for the α3 catalyst.

次に、上記随3触媒の調製において、安定化アルミナの
コーティング及びPt  Rh’Ce0zの担持工程と
、ゼオライト及びCuの担持工程とを逆に行い、その他
は同様の条件により、比較触媒kC5を調製した。21
 k C5触媒は、上記本発明にがかるNαC3触媒と
は逆に、前記コーディエライト一体型担体の上にゼオラ
イトとCuとからなる触媒層を、更にその上に安定化ア
ルミナとPL−Rh−CeO,とからなる触媒層を形成
したものである。
Next, in the preparation of catalyst No. 3 above, the steps of coating stabilized alumina and supporting Pt Rh'Ce0z, and the steps of supporting zeolite and Cu were performed in reverse order, and a comparative catalyst kC5 was prepared under the same conditions as above. did. 21
Contrary to the NαC3 catalyst according to the present invention, the kC5 catalyst has a catalyst layer made of zeolite and Cu on the cordierite integrated support, and further has stabilized alumina and PL-Rh-CeO on the catalyst layer. , and a catalyst layer consisting of the following.

浄化活性評価; 上記触媒を実験用コンバータに充填し、これに排気モデ
ルガスを導入し、浄化活性を測定した。
Purification activity evaluation: The above catalyst was filled into an experimental converter, an exhaust model gas was introduced into it, and the purification activity was measured.

このモデルガスは0.3%C0,0,1%H2゜3.2
%02 1600 p pmca Hb  (THC(
全炭化水素)として:l 、  1200 p p m
NOx、10%Co、、10%HzO,残部N、からな
るものである。また、このガスは酸素過剰下の。
This model gas is 0.3%C0, 0,1%H2゜3.2
%02 1600p pmca Hb (THC(
Total hydrocarbons): l, 1200 ppm
It consists of NOx, 10% Co, 10% HzO, and the balance N. Moreover, this gas is under oxygen excess.

空燃比(A/F)1Bのエンジン排気に相当するもので
ある。
This corresponds to engine exhaust with an air-fuel ratio (A/F) of 1B.

しかして、上記ガスは400°Cに加熱して、前記コン
バータ内に送入した。触媒中の空間速度GH5vは10
万/時であった。その結果を第2表に示す。
The gas was then heated to 400°C and introduced into the converter. The space velocity GH5v in the catalyst is 10
It was 10,000/hour. The results are shown in Table 2.

第2表から明らかなように2本発明の触媒は、比較触媒
に比して、酸素過剰下においても優れた浄化活性を示し
ていることが分かる。
As is clear from Table 2, the catalyst of the present invention exhibits superior purification activity even in the presence of excess oxygen, compared to the comparative catalyst.

特に1本発明のドα3,4触媒は、NOxに対しても高
い浄化率を示している。これに比して、CUとゼオライ
トのみを触媒成分とするN11C4は。
In particular, the α3,4 catalyst of the present invention exhibits a high purification rate for NOx. In comparison, N11C4 has only CU and zeolite as catalyst components.

NOxに対しては若干高い浄化率を示すが、)IC。Although it shows a slightly higher purification rate for NOx, )IC.

COの浄化率が低い。また1本発明の第1触媒層と第2
触媒層とを逆転形成させたものに相当するN(LC5触
媒は、HC,Coに対しては高い浄化率を示すが、NO
xに対しては低い浄化率しか示さない。
CO purification rate is low. In addition, the first catalyst layer and the second catalyst layer of the present invention
The N (LC5 catalyst), which corresponds to a catalyst layer formed in reverse, shows a high purification rate for HC and Co, but it
It shows only a low purification rate for x.

上記のごとく1本発明の排気浄化用触媒は優れた三元触
媒であることが分かる。
As described above, it can be seen that the exhaust purification catalyst of the present invention is an excellent three-way catalyst.

Claims (8)

【特許請求の範囲】[Claims] (1)内燃機関の排気中の炭化水素、一酸化炭素及び窒
素酸化物を浄化するための触媒であって、担体上に酸化
反応に有効な触媒成分からなる第1触媒層を設け、更に
該第1触媒層の上に銅とゼオライトとからなる第2触媒
層を設けてなることを特徴とする排気浄化用触媒。
(1) A catalyst for purifying hydrocarbons, carbon monoxide, and nitrogen oxides in the exhaust gas of an internal combustion engine, in which a first catalyst layer made of a catalyst component effective for oxidation reaction is provided on a carrier, and A catalyst for exhaust purification, characterized in that a second catalyst layer made of copper and zeolite is provided on the first catalyst layer.
(2)第1触媒層は、アルミナに貴金属を担持した触媒
であることを特徴とする特許請求の範囲第1項に記載の
排気浄化用触媒。
(2) The exhaust purification catalyst according to claim 1, wherein the first catalyst layer is a catalyst in which noble metal is supported on alumina.
(3)第2触媒層は、ゼオライトに銅をイオン交換担持
した触媒であることを特徴とする特許請求の範囲第1項
に記載の排気浄化用触媒。
(3) The exhaust purification catalyst according to claim 1, wherein the second catalyst layer is a catalyst in which copper is ion-exchanged supported on zeolite.
(4)第1触媒層は、アルミナに希土類酸化物を担持し
た触媒であることを特徴とする特許請求の範囲第1項に
記載の排気浄化用触媒。
(4) The exhaust purification catalyst according to claim 1, wherein the first catalyst layer is a catalyst in which a rare earth oxide is supported on alumina.
(5)貴金属は、白金、パラジウム、ロジウムの1種又
は2種以上であることを特徴とする特許請求の範囲第2
項に記載の排気浄化用触媒。
(5) Claim 2, characterized in that the noble metal is one or more of platinum, palladium, and rhodium.
Exhaust purification catalyst described in section.
(6)希土類酸化物は、酸化ランタンまたは酸化セリウ
ムであることを特徴とする特許請求の範囲第4項に記載
の排気浄化用触媒。
(6) The exhaust purification catalyst according to claim 4, wherein the rare earth oxide is lanthanum oxide or cerium oxide.
(7)銅のイオン交換率は、50〜100%であること
を特徴とする特許請求の範囲第3項に記載の排気浄化用
触媒。
(7) The exhaust purification catalyst according to claim 3, wherein the ion exchange rate of copper is 50 to 100%.
(8)担体は、一体型担体であることを特徴とする特許
請求の範囲第1項に記載の排気浄化用触媒。
(8) The exhaust purification catalyst according to claim 1, wherein the carrier is an integral carrier.
JP62284480A 1987-11-11 1987-11-11 Catalyst for clarifying exhaust gas Pending JPH01127044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284480A JPH01127044A (en) 1987-11-11 1987-11-11 Catalyst for clarifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284480A JPH01127044A (en) 1987-11-11 1987-11-11 Catalyst for clarifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH01127044A true JPH01127044A (en) 1989-05-19

Family

ID=17679064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284480A Pending JPH01127044A (en) 1987-11-11 1987-11-11 Catalyst for clarifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH01127044A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164350A (en) * 1990-11-09 1992-11-17 Ngk Insulators, Ltd. Catalyst composition for purification of exhaust gas, catalyst for purification of exhaust gas, and process for producing said catalyst
EP0559021A2 (en) * 1992-03-04 1993-09-08 Degussa Aktiengesellschaft NOx-reduction in lean exhaust gas from automobile engines
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
US5681788A (en) * 1995-04-11 1997-10-28 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
WO1999042202A1 (en) * 1998-02-20 1999-08-26 Johnson Matthey Public Limited Company Exhaust gas catalyst for two-stroke engines
WO2006109849A1 (en) * 2005-04-11 2006-10-19 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide, catalyst structure, and method of catalytically reducing nitrogen oxide
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
WO2007137675A1 (en) * 2006-05-31 2007-12-06 Umicore Ag & Co. Kg Catalyst for reducing nitrogen-containing pollutants from the exhaust gases of diesel engines
JP2008279352A (en) * 2007-05-10 2008-11-20 Asahi Kasei Corp Catalyst for removing nitrogen oxide discharged from lean burn automobile
WO2009057650A1 (en) * 2007-10-29 2009-05-07 Ict Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
WO2012137937A1 (en) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR20190087626A (en) * 2016-12-05 2019-07-24 바스프 코포레이션 4-functional catalyst for the oxidation of NO, the oxidation of hydrocarbons, the oxidation of NH3 and the selective catalytic reduction of NOx

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164350A (en) * 1990-11-09 1992-11-17 Ngk Insulators, Ltd. Catalyst composition for purification of exhaust gas, catalyst for purification of exhaust gas, and process for producing said catalyst
EP0559021A2 (en) * 1992-03-04 1993-09-08 Degussa Aktiengesellschaft NOx-reduction in lean exhaust gas from automobile engines
AU651517B2 (en) * 1992-03-04 1994-07-21 Degussa A.G. Reduction in the quantity of NO in lean exhaust gas of motor vehicle engines
US5354720A (en) * 1992-03-04 1994-10-11 Degussa Aktiengesellschaft Reduction in the quantity of NOx in lean exhaust gas of motor vehicle engines
TR26500A (en) * 1992-03-04 1995-03-15 Degussa REDUCTION OF THE NOX AMOUNT OF MOTORIZED DESIGN ENGINES IN WEAK EXHAUST GAS.
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
US5681788A (en) * 1995-04-11 1997-10-28 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
WO1999042202A1 (en) * 1998-02-20 1999-08-26 Johnson Matthey Public Limited Company Exhaust gas catalyst for two-stroke engines
US6488904B1 (en) 1998-02-20 2002-12-03 Johnson Matthey Public Limited Company Method of controlling emissions in exhaust gases from a two-stroke gasoline engine
WO2006109849A1 (en) * 2005-04-11 2006-10-19 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide, catalyst structure, and method of catalytically reducing nitrogen oxide
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
WO2007137675A1 (en) * 2006-05-31 2007-12-06 Umicore Ag & Co. Kg Catalyst for reducing nitrogen-containing pollutants from the exhaust gases of diesel engines
JP2008279352A (en) * 2007-05-10 2008-11-20 Asahi Kasei Corp Catalyst for removing nitrogen oxide discharged from lean burn automobile
WO2009057650A1 (en) * 2007-10-29 2009-05-07 Ict Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
EP2213371A1 (en) * 2007-10-29 2010-08-04 ICT Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
US20100260652A1 (en) * 2007-10-29 2010-10-14 Ict Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
EP2213371A4 (en) * 2007-10-29 2011-08-24 Ict Co Ltd Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
US8318630B2 (en) 2007-10-29 2012-11-27 Ict Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the same
JP5652848B2 (en) * 2007-10-29 2015-01-14 ユミコア日本触媒株式会社 Nitrogen oxide removing catalyst and nitrogen oxide removing method using the same
WO2012137937A1 (en) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR20190087626A (en) * 2016-12-05 2019-07-24 바스프 코포레이션 4-functional catalyst for the oxidation of NO, the oxidation of hydrocarbons, the oxidation of NH3 and the selective catalytic reduction of NOx
JP2020513300A (en) * 2016-12-05 2020-05-14 ビーエーエスエフ コーポレーション Tetrafunctional catalysts for NO oxidation, hydrocarbon oxidation, NH3 oxidation and NOx selective catalytic reduction

Similar Documents

Publication Publication Date Title
EP2922631B2 (en) Catalysed soot filter for treating the exhaust gas of a compression ignition engine
JP3185448B2 (en) Exhaust gas purification catalyst
EP1048341B1 (en) Catalyst made from a mixture of particles of platinum on alumina and manganese-zirconium composite oxide
KR100879965B1 (en) Catalyst for purifying exhaust gas
JPH0910594A (en) Catalyst for purifying exhaust gas
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
EP3848564B1 (en) Catalyst
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH04193345A (en) Catalyst for purification of exhaust gas
JPH01139145A (en) Catalyst for controlling exhaust emission
JP4716087B2 (en) Exhaust gas purification catalyst
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH08150339A (en) Exhaust gas purification catalyst and its production
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JPH11226414A (en) Exhaust gas purification catalyst
JPH0523593A (en) Exhaust emission control system
JPH04334548A (en) Exhaust gas purifying catalyst
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH04197446A (en) Catalyst for exhaust purification
JP2848175B2 (en) Automotive exhaust purification system
JP2993297B2 (en) Exhaust gas purification catalyst