JPH0473908A - Manufacture of r-fe-b-based anisotropic compression molding bonded magnet - Google Patents

Manufacture of r-fe-b-based anisotropic compression molding bonded magnet

Info

Publication number
JPH0473908A
JPH0473908A JP2185275A JP18527590A JPH0473908A JP H0473908 A JPH0473908 A JP H0473908A JP 2185275 A JP2185275 A JP 2185275A JP 18527590 A JP18527590 A JP 18527590A JP H0473908 A JPH0473908 A JP H0473908A
Authority
JP
Japan
Prior art keywords
compression molding
compression
magnetic field
pressure
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2185275A
Other languages
Japanese (ja)
Inventor
Morikazu Yamada
盛一 山田
Ryoji Muramatsu
村松 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2185275A priority Critical patent/JPH0473908A/en
Publication of JPH0473908A publication Critical patent/JPH0473908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To enhance the filling rate and the magnetic orientation degree of magnetic powder and to obtain a magnet having superior magnetic characteristics by a method wherein anisotropically magnetic powder is subjected to first compression molding at a low pressure in the direction perpendicular to a magnetic field applying direction to form as a first compres sion molded material, then, the first molded material is subjected to second compression molding at a pressure higher than the pressure at the time of the first compression molding in the direction parallel to the above magnetic field applying direction to form as a second compression molded material and thereafter, a resin is impregnated in the second molded material. CONSTITUTION:An R-Fe-B liquid quenched thin piece is subjected to hot upsetting working and thereafter, R-Fe-B anisotropically magnetic powder obtained by powdering the thin piece is subjected to first compression molding at a low pressure in the direction perpendicular to a magnetic field applying direction to form as a first compression molded material. Then, the first molded material is subjected to second compression molding at a pressure higher than the pressure at the time of the above first compression molding in the direction parallel to the above magnetic field applying direction to form as a second compression molded material and thereafter, a resin is impregnated in the second compression molded material. For example, the above compression molding is performed while a magnetic field is applied to the direction identical with the magnetic field applying direction at the time of the first compression molding. Moreover, the low pressure at the time of the above first compression molding is set at 0 (not including) to 3ton/cm2 and the molding pressure at the time of the second compression molding is set at 3ton/cm2 or higher.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、R*Fe*B系(但し、RはYを含む希土類
元素)異方性圧縮成形ボンド磁石の製造方法に関し、特
に高磁気特性を得るための圧縮成形方法に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing an R*Fe*B-based (where R is a rare earth element containing Y) anisotropic compression-molded bonded magnet, in particular a highly magnetic The present invention relates to a compression molding method for obtaining properties.

[従来の技術] 近年、希土類元素(特にNd)、Fe、Bを主成分とす
る母合金を急速凝固して得られる薄帯に熱間据込み加工
処理を施して得られた成形体を粉砕した粉末が強い磁気
的異方性を示し、高いエネルギー積を有することが見い
出された。この強い磁気異方性粉末を圧縮成形し、樹脂
含浸して得られるR−Fe−B系(但し、RはYを含む
希土類元素)異方性圧縮成形ボンド磁石は、従来の急冷
薄帯を粉砕した粉末を原料とする等方性圧縮成形ボンド
磁石の磁気特性を上まわる磁石として期待が寄せられて
いる。
[Prior art] In recent years, a thin ribbon obtained by rapidly solidifying a master alloy containing rare earth elements (particularly Nd), Fe, and B as its main components is subjected to hot upsetting processing, and a compact is then pulverized. It was found that the obtained powder exhibits strong magnetic anisotropy and has a high energy product. The R-Fe-B system (where R is a rare earth element containing Y) anisotropic compression-molded bonded magnet obtained by compression-molding this strong magnetic anisotropic powder and impregnating it with resin can be made from conventional quenched ribbon. There are high expectations that this magnet will have magnetic properties that exceed those of isotropic compression-molded bonded magnets made from pulverized powder.

ところで、このような異方性磁性粉末自体が高い磁気異
方性およびエネルギー積を有するR・Fe−B系異方性
磁性粉末は、実際には、急冷薄帯を圧密化後、熱間据込
み加工を施して異方性化するとともに積層体とし、該積
層体を粉末に解砕して得られている。
By the way, such anisotropic magnetic powder itself has high magnetic anisotropy and energy product, and in reality, the R-Fe-B-based anisotropic magnetic powder is produced by hot-settling after consolidating the quenched ribbon. It is made into a laminate by processing to make it anisotropic, and the laminate is crushed into powder.

こうして得た異方性磁性粉末の特性を最大限に生かした
ボンド磁石を得るためには、同粉末を磁場中で圧縮成形
する条件が重要となる。
In order to obtain a bonded magnet that takes full advantage of the characteristics of the anisotropic magnetic powder thus obtained, the conditions under which the powder is compression-molded in a magnetic field are important.

特に、異方性磁性粉末の充填率及び配向性を考慮した成
形条件の確立が必要となる。
In particular, it is necessary to establish molding conditions that take into account the filling rate and orientation of the anisotropic magnetic powder.

磁場中成形法としては、印加磁場方向と同一に加圧して
圧縮成形を行う方法(以下、平行磁場中圧縮成形法と呼
ぶ)と、印加磁場方向と垂直方向に印加して圧縮成形を
行う方法(以下、垂直磁場中圧縮成形法と呼ぶ)とがあ
る。
The magnetic field molding method includes compression molding by applying pressure in the same direction as the applied magnetic field direction (hereinafter referred to as parallel magnetic field compression molding method), and compression molding by applying pressure in the direction perpendicular to the applied magnetic field direction. (hereinafter referred to as vertical magnetic field compression molding method).

ところで、前記積層体を解砕するとき、据込み方向に垂
直方向の積層界面で割れやすく、できた粉末は偏平状で
あり、その厚さ方向に磁化容易方向であるC軸を持って
いる場合が多い。このため磁場中圧縮成形法としては、
平行磁場中圧縮成形法を用いる方が、R−Fe−B系異
方性磁性粉末が配向しやすいと予想される。
By the way, when the laminate is crushed, it is easy to break at the laminate interface in the direction perpendicular to the upsetting direction, and the resulting powder is flat and has the C axis, which is the direction of easy magnetization, in the thickness direction. There are many. Therefore, as a compression molding method in a magnetic field,
It is expected that the R-Fe-B anisotropic magnetic powder will be more easily oriented when compression molding in a parallel magnetic field is used.

[発明が解決しようとする課題] しかしながら、平行磁場中圧縮成形法では、装置上、十
分な印加磁場を発生することが困難である。このため、
粉末の配向が十分に行われず、高い磁気特性のボンド磁
石が得られない欠点がある。
[Problems to be Solved by the Invention] However, in the compression molding method in a parallel magnetic field, it is difficult to generate a sufficient applied magnetic field due to the equipment. For this reason,
There is a drawback that the powder is not oriented sufficiently and a bonded magnet with high magnetic properties cannot be obtained.

しかしながら、配向は、圧縮成形圧力に殆ど依存せず、
はぼ一定となる。
However, the orientation is almost independent of the compression molding pressure;
becomes more or less constant.

一方、垂直磁場中圧縮成形法では、装置によって、十分
な配向磁場が得られるため、成形圧力が低い時は、粉末
の高い配向度が実現されるが、充填率が低くなり、した
がって、高磁気特性の圧縮成形ボンド磁石は得られない
欠点がある。
On the other hand, in the compression molding method in a vertical magnetic field, a sufficient orienting magnetic field is obtained depending on the equipment, so when the compacting pressure is low, a high degree of powder orientation is achieved, but the filling rate is low, and therefore the magnetic field is high. There is a drawback that compression molded bonded magnets with special characteristics cannot be obtained.

また、この垂直磁場中圧縮成形法において、成形圧力を
高くすることができるが、配向度が低くなり、十分な磁
気特性が得られない欠点がある。
In addition, in this vertical magnetic field compression molding method, the molding pressure can be increased, but there is a drawback that the degree of orientation is low and sufficient magnetic properties cannot be obtained.

これは、前述のように異方性粉末が偏平状であり、その
厚さ方向に磁化容易方向を持つために。
This is because, as mentioned above, the anisotropic powder is flat and has an easy magnetization direction in the thickness direction.

磁場配向した粉末の長さ方向に圧力が高いために異方性
磁性粉末の配向が乱れ、配向度が低下することによる。
This is because the orientation of the anisotropic magnetic powder is disturbed due to the high pressure in the longitudinal direction of the magnetically oriented powder, resulting in a decrease in the degree of orientation.

そこで1本発明の技術的課題はR−Fe−B系異方性圧
縮成形ボンド磁石の製造方法において。
Therefore, one technical problem of the present invention is a method for manufacturing an R-Fe-B anisotropic compression molded bonded magnet.

磁性粉末の充填率および磁気的な配向度を高めることに
より、優れた磁気特性を有するR*Fe・B系異方性圧
縮成形ボンド磁石を提供することにある。
The object of the present invention is to provide an anisotropic compression-molded bonded R*Fe-B magnet having excellent magnetic properties by increasing the filling rate and magnetic orientation of magnetic powder.

[課題を解決するための手段] 本発明では、垂直磁場中圧縮成形法と平行磁場中圧縮成
形法とのそれぞれの利点を共に利用すべく、垂直磁場中
圧縮成形と平行磁場中圧縮成形との複合化について鋭意
検討した結果、初めに垂直磁場中圧縮成形により、低成
形圧力で第1の圧縮成形を行うことにより、R−Fe・
B系異方性粉末の磁気的配向度が高く、充填率が低い第
1の圧縮成形体を得2次にこの第1の圧縮成形体を前記
垂直磁場中圧縮成形における磁場印加方向に平行方向に
前記垂直磁場中圧縮成形の圧力以上で第1の圧縮成形を
行うことにより、異方性磁性粉末の高い配向度を保持し
て、かつ充填率が高いすなわち優れた磁気特性を有する
R−Fe−B系異方性圧縮成形ボンド磁石を作製できる
ことを見い出し本発明をなすに至ったものである。
[Means for Solving the Problems] In the present invention, in order to utilize the respective advantages of compression molding in a vertical magnetic field and compression molding in a parallel magnetic field, compression molding in a vertical magnetic field and compression molding in a parallel magnetic field are combined. As a result of intensive study on compounding, R-Fe.
A first compression molded body having a high degree of magnetic orientation and a low filling rate of B-based anisotropic powder is obtained.Secondly, this first compression molded body is compressed in a direction parallel to the magnetic field application direction in the compression molding in the vertical magnetic field. By performing the first compression molding at a pressure equal to or higher than that of the compression molding in the vertical magnetic field, R-Fe is produced which maintains a high degree of orientation of the anisotropic magnetic powder and has a high filling rate, that is, excellent magnetic properties. It was discovered that -B type anisotropic compression molded bonded magnets can be produced, and the present invention was completed.

本発明によれば、R*Fe−B系液体急冷薄片を熱間据
込み加工後粉砕して得られるR−Fe・B系異方性磁性
粉末を磁場印加方向に垂直方向に低圧力で第1の圧縮成
形を行って第1の圧縮成形体とした後、該第1の圧縮成
形体を前記磁場印加方向に平行方向に前記第1の圧縮成
形圧力以上で第2の圧縮成形を行って第2の圧縮成形体
とした後、該第2の圧縮成形体に樹脂含浸することを特
徴とするR−Fe−B系異方性圧縮形成ボンド磁石の製
造方法が得られる。
According to the present invention, R-Fe-B-based anisotropic magnetic powder obtained by pulverizing R*Fe-B-based liquid quenched flakes after hot upsetting is pulverized at low pressure in a direction perpendicular to the direction of magnetic field application. 1 compression molding to obtain a first compression molded body, and then performing a second compression molding on the first compression molded body in a direction parallel to the magnetic field application direction at a pressure equal to or higher than the first compression molding pressure. A method for producing an R-Fe-B anisotropic compression-formed bonded magnet is obtained, which comprises forming a second compression-molded body and then impregnating the second compression-molded body with a resin.

本発明によれば2前記R−Fe−B系異方性圧縮形成ボ
ンド磁石の製造方法において、前記第2の圧縮成形は、
前記第1の圧縮成形の磁場印加方向と同じ方向に磁場を
印加しながら行われることを特徴とするR−Fe−B系
異方性圧縮成形ボンド磁石の製造方法が得られる。
According to the present invention, in the method for manufacturing an R-Fe-B anisotropic compression molded bonded magnet, the second compression molding comprises:
There is obtained a method for manufacturing an R-Fe-B anisotropic compression-molded bonded magnet, characterized in that the method is carried out while applying a magnetic field in the same direction as the magnetic field application direction of the first compression molding.

本発明によれば、前記したいずれかのR−Fe・B系異
方性圧縮成形ボンド磁石の製造方法において、前記低圧
力が0〜3ton /ci (0は含まず)であること
を特徴とするR−Fe−B系異方性圧縮成形ボンド磁石
の製造方法が得られる。
According to the present invention, in any of the above-described methods for manufacturing an anisotropic compression molded bonded R-Fe/B magnet, the low pressure is 0 to 3 ton/ci (excluding 0). A method for manufacturing an R-Fe-B anisotropic compression molded bonded magnet is obtained.

ここで2本発明における垂直磁場中成形の成形圧力は0
〜3 ton /cd (Oton /cJは除く)で
あることが好ましく、さらに最も好ましくは0〜1to
n /cJ (Oton /c−は除く)である・本発
明において、垂直磁場中圧縮成形の成形圧力が3 to
n / cd以上の場合は、成形体の異方性磁性粉末の
配向が低下し該成形体を平行磁場中圧縮成形しても異方
性磁性粉末の配向は低く、十分な磁気特性が得られない
2 Here, the molding pressure of molding in the vertical magnetic field in the present invention is 0
-3 ton/cd (excluding Oton/cJ), and most preferably 0-1 ton
n/cJ (excluding Oton/c-) - In the present invention, the molding pressure of compression molding in a vertical magnetic field is 3 to
If n/cd or more, the orientation of the anisotropic magnetic powder in the compact decreases, and even if the compact is compression molded in a parallel magnetic field, the orientation of the anisotropic magnetic powder is low and sufficient magnetic properties cannot be obtained. do not have.

また1本発明における垂直磁場中圧縮成形の後工程であ
る前記垂直磁場中圧縮成形時の磁場印加方向に平行方向
に圧縮成形を行う際の成形圧力は基本的には垂直磁場中
圧縮成形の成形圧力より大きければ効果があり、望まし
くは3ton/cd以上である。なお、垂直磁場中圧縮
成形の後工程である第2の圧縮成形において、前工程で
ある垂直磁場中圧縮成形時の磁場印加方向と同じ方向に
磁場を印加して圧縮成形することは磁気特性の向上に有
効な方法である。
In addition, the molding pressure when performing compression molding in a direction parallel to the direction of magnetic field application during compression molding in a vertical magnetic field, which is a post-process of compression molding in a vertical magnetic field in the present invention, is basically the same as that in the compression molding in a vertical magnetic field. It is effective if the pressure is higher than the pressure, and preferably 3 ton/cd or more. In addition, in the second compression molding, which is the post-process of compression molding in a vertical magnetic field, applying a magnetic field in the same direction as the magnetic field application direction during compression molding in a vertical magnetic field, which is the previous process, may affect the magnetic properties. This is an effective method for improvement.

尚、以下に述べる本発明の実施例においては。Incidentally, in the embodiments of the present invention described below.

R,Fe、B系異方性粉末として、Nd、Fe。Nd, Fe as R, Fe, B-based anisotropic powder.

B系異方性粉末の効果を示したが、RとしてたとえばN
dを用い、このNdの一部又は全部をDy。
The effect of B-based anisotropic powder was shown, but as R, for example, N
d, and convert some or all of this Nd into Dy.

Pr等の希土類に置換する場合、Feの一部をCOに置
換する場合、その他各種添加物を加えた合金系において
も本発明を実施する上で何ら問題とならないことは述べ
るまでもない。
Needless to say, there is no problem in carrying out the present invention even in the case of substituting a rare earth element such as Pr, in the case of substituting a part of Fe with CO, or in an alloy system in which various other additives are added.

[実施例] 次に、実施例により本発明をさらに詳細に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

(実施例−1) 高周波誘導溶解法により1組成(wt%)がFe:85
.8.   Nd  :29.8.   Co  二 
2.85.   Pr   :0.8  、   B 
  :0.95に調整した母合金をAr雰囲気中で単ロ
ール装置を用いて液体急冷薄帯を作製後、該薄帯の積層
体を熱間据込み加工によって据え込み成形体を形成する
とともに異方性処理を施し、引き続きこの据え込み成形
体を500μ厘以下の粒度まで解砕し異方性磁性粉末を
得1本発明を実施するための出発原料とした。
(Example-1) One composition (wt%) was Fe: 85 by high frequency induction melting method.
.. 8. Nd: 29.8. Co two
2.85. Pr: 0.8, B
After producing a liquid-quenched ribbon using a single roll device in an Ar atmosphere using a mother alloy adjusted to 0.95, the laminated body of the ribbon was hot-upset to form an upsetting compact, and a different After carrying out an isotropic treatment, this upsetting compact was subsequently crushed to a particle size of 500 μm or less to obtain anisotropic magnetic powder, which was used as a starting material for carrying out the present invention.

この磁性粉末を金型内に挿入し、1600に^/mの磁
場を印加し磁場印加方向に垂直方向に0.5ton/c
dの圧力で圧縮成形を行い、第1の圧縮成形体とした。
This magnetic powder was inserted into a mold, a magnetic field of 1600^/m was applied, and a magnetic field of 0.5 ton/c was applied in the direction perpendicular to the direction of magnetic field application.
Compression molding was performed at a pressure of d to obtain a first compression molded product.

次に、この第1の圧縮成形体を前記磁場印加方向に平行
方向に6ton/cjの圧力で第2の圧縮成形を行い、
直径10目、高さ10龍の円柱状の第2の圧縮成形体を
作製し、アクリル樹脂を含浸し固化してボンド磁石とし
た。このボンド磁石の特性(充填率、配向度、最大エネ
ルギー積)の測定結果を第1表に示す。
Next, this first compression molded body is subjected to a second compression molding in a direction parallel to the magnetic field application direction at a pressure of 6 ton/cj,
A second cylindrical compression-molded body with a diameter of 10 squares and a height of 10 squares was produced, and impregnated with acrylic resin and solidified to obtain a bonded magnet. Table 1 shows the measurement results of the characteristics (filling rate, degree of orientation, maximum energy product) of this bonded magnet.

(実施例−2) 実施例−1と同様に異方性磁性粉末を1600に^/m
の磁場を印加し磁場印加方向に垂直方向に0.5ton
/cdの圧力で第1の圧縮成形を行った後。
(Example-2) Similar to Example-1, the anisotropic magnetic powder was adjusted to 1600^/m.
Apply a magnetic field of 0.5 ton in the direction perpendicular to the direction of magnetic field application.
After the first compression molding at a pressure of /cd.

この第1の圧縮成形体を前記磁場印加方向に同じ方向に
800kA/mの磁場を印加し、印加方向と同方向に6
ton/c−の圧力で第2の圧縮成形を行い、実施例−
1と同様に樹脂含浸を行って、実施例1と同形状のボン
ド磁石を作製した。特性(充填率、配向度、最大エネル
ギー積)の測定結果を第1表に示す。
A magnetic field of 800 kA/m was applied to this first compression molded body in the same direction as the magnetic field application direction, and 6
A second compression molding was performed at a pressure of ton/c-, and Example-
Resin impregnation was performed in the same manner as in Example 1 to produce a bonded magnet having the same shape as in Example 1. Table 1 shows the measurement results of the properties (filling rate, degree of orientation, maximum energy product).

(比較例−1) 実施例−1の異方性磁性粉末を1600 kA/mの磁
場を印加し、磁場印加方向に垂直方向に6ton/cd
の圧力で圧縮成形し、実施例−1と同形状のボンド磁石
を作製した。このボンド磁石の特性(充填率、配向度、
最大エネルギー積)の測定結果を第1表に示す。
(Comparative Example-1) A magnetic field of 1600 kA/m was applied to the anisotropic magnetic powder of Example-1, and a magnetic field of 6 ton/cd was applied in a direction perpendicular to the direction of magnetic field application.
A bonded magnet having the same shape as Example 1 was produced by compression molding at a pressure of . Characteristics of this bonded magnet (filling rate, degree of orientation,
Table 1 shows the measurement results of the maximum energy product.

(比較例−2) 実施例−1の異方性磁性粉末を800に^/mの磁場を
印加し、磁場印加方向に平行方向に6 ton/C−の
圧力で圧縮成形し、実施例−1と同形状のボンド磁石を
作製した。このボンド磁石の特性(充填率、配向度、最
大エネルギー積)の測定結果を第1表に示す。
(Comparative Example-2) The anisotropic magnetic powder of Example-1 was subjected to compression molding by applying a magnetic field of 800 m/m and compression molding at a pressure of 6 ton/C- in a direction parallel to the direction of application of the magnetic field. A bonded magnet having the same shape as No. 1 was manufactured. Table 1 shows the measurement results of the characteristics (filling rate, degree of orientation, maximum energy product) of this bonded magnet.

第  1  表 [発明の効果コ 以上の説明から明らかなように1本発明によれば、磁性
粉末の配向度が高く、優れた磁気特性を有するR−Fe
−B系異方性圧縮成形ボンド磁石の作製が可能となり、
工業上きわめて有益である1J1表から1本発明の実施
例1および2に係るボンド磁石は、比較例1および2と
ほぼ等しい充填率を有し、比較例1および2よりも配向
度、最大エネルギー積が大きいことが判明した。
Table 1 [Effects of the Invention] As is clear from the above description, according to the present invention, the magnetic powder has a high degree of orientation and has excellent magnetic properties.
- It is now possible to produce B-based anisotropic compression molded bonded magnets,
The bonded magnets according to Examples 1 and 2 of the present invention have substantially the same filling rate as Comparative Examples 1 and 2, and have a higher degree of orientation and maximum energy than Comparative Examples 1 and 2. It turned out that the product was large.

−3′。-3'.

Claims (3)

【特許請求の範囲】[Claims] 1.R・Fe・B系液体急冷薄片を熱間据込み加工後粉
砕して得られるR・Fe・B系異方性磁性粉末を磁場印
加方向に垂直方向に低圧力で第1の圧縮成形を行って第
1の圧縮成形体とした後、該第1の成形体を前記磁場印
加方向に平行方向に前記第1の圧縮成形圧力以上で第2
の圧縮成形を行って第2の圧縮成形体とした後、該第2
の圧縮成形体に樹脂含浸することを特徴とするR・Fe
・B系異方性圧縮形成ボンド磁石の製造方法。
1. The R/Fe/B based anisotropic magnetic powder obtained by pulverizing the R/Fe/B based liquid quenched flake after hot upsetting is subjected to first compression molding at low pressure in a direction perpendicular to the direction of magnetic field application. to form a first compression molded body, and then the first molded body is compressed into a second compression molded body in a direction parallel to the magnetic field application direction at a pressure equal to or higher than the first compression molding pressure.
After performing compression molding to obtain a second compression molded body, the second compression molded body is
R.Fe characterized by impregnating a compression molded body with resin.
・Production method of B-based anisotropic compression-formed bonded magnet.
2.第1の請求項記載のR・Fe・B系異方性圧縮形成
ボンド磁石の製造方法において、前記第2の圧縮成形は
、前記第1の圧縮成形の磁場印加方向と同じ方向に磁場
を印加しながら行われることを特徴とするR・Fe・B
系異方性圧縮成形ボンド磁石の製造方法。
2. In the method for manufacturing an R.Fe.B-based anisotropic compression-formed bonded magnet according to claim 1, the second compression molding is performed by applying a magnetic field in the same direction as the magnetic field application direction in the first compression molding. R・Fe・B is characterized by being performed while
A method for producing a system anisotropic compression molded bonded magnet.
3.第1又は第2の請求項記載のR・Fe・B系異方性
圧縮成形ボンド磁石の製造方法において、前記低圧力が
0〜3ton/cm^2(0は含まず)であることを特
徴とするR・Fe・B系異方性圧縮成形ボンド磁石の製
造方法。
3. The method for manufacturing an R-Fe-B-based anisotropic compression-molded bonded magnet according to the first or second claim, characterized in that the low pressure is 0 to 3 ton/cm^2 (excluding 0). A method for manufacturing an R/Fe/B based anisotropic compression molded bonded magnet.
JP2185275A 1990-07-16 1990-07-16 Manufacture of r-fe-b-based anisotropic compression molding bonded magnet Pending JPH0473908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185275A JPH0473908A (en) 1990-07-16 1990-07-16 Manufacture of r-fe-b-based anisotropic compression molding bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185275A JPH0473908A (en) 1990-07-16 1990-07-16 Manufacture of r-fe-b-based anisotropic compression molding bonded magnet

Publications (1)

Publication Number Publication Date
JPH0473908A true JPH0473908A (en) 1992-03-09

Family

ID=16167981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185275A Pending JPH0473908A (en) 1990-07-16 1990-07-16 Manufacture of r-fe-b-based anisotropic compression molding bonded magnet

Country Status (1)

Country Link
JP (1) JPH0473908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099996A (en) * 2006-10-20 2008-05-01 Kao Corp Absorbent article
JP2008104602A (en) * 2006-10-25 2008-05-08 Kao Corp Absorbent article
US8939913B2 (en) 2009-02-27 2015-01-27 Thermimage, Inc. Monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099996A (en) * 2006-10-20 2008-05-01 Kao Corp Absorbent article
JP2008104602A (en) * 2006-10-25 2008-05-08 Kao Corp Absorbent article
US8939913B2 (en) 2009-02-27 2015-01-27 Thermimage, Inc. Monitoring system
US8939912B2 (en) 2009-02-27 2015-01-27 Thermimage, Inc. Tissue heating and monitoring system with seat

Similar Documents

Publication Publication Date Title
CN1061162C (en) Hot-pressed magnets formed from anisotropic powders
JPH0473908A (en) Manufacture of r-fe-b-based anisotropic compression molding bonded magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH0438805A (en) Manufacture of r-fe-b anisotropic compression-molded bonded magnet
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JPH0559572B2 (en)
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH04280606A (en) Bonded magnet and manufacture thereof
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0450725B2 (en)
JPH0483308A (en) Manufacture of r-fe-b anisotropic bond magnet
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH10193189A (en) Magnetic powder molding machine, and molding method using it
JPH02162704A (en) Manufacture of permanent magnet
JPH01245503A (en) Manufacture of rare-earth magnet
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JPH09306767A (en) Manufacturing anisotropic permanent magnet
JPH0444403B2 (en)