JPH04280606A - Bonded magnet and manufacture thereof - Google Patents

Bonded magnet and manufacture thereof

Info

Publication number
JPH04280606A
JPH04280606A JP3103282A JP10328291A JPH04280606A JP H04280606 A JPH04280606 A JP H04280606A JP 3103282 A JP3103282 A JP 3103282A JP 10328291 A JP10328291 A JP 10328291A JP H04280606 A JPH04280606 A JP H04280606A
Authority
JP
Japan
Prior art keywords
bonded magnet
powder
silicone resin
mixture
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3103282A
Other languages
Japanese (ja)
Inventor
Ryoji Muramatsu
村松 良二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3103282A priority Critical patent/JPH04280606A/en
Publication of JPH04280606A publication Critical patent/JPH04280606A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an R-T-B anisotropic compression molded bonded magnet, having excellent magnetic characteristics, and its method of manufacture. CONSTITUTION:The title bonded magnet is formed by adhering the mixture of silicone resin powder of 10wt.% or less and an R-T-B (where, R is a rare- earth element containing Y and T is a transition metal) anisotropic magnetic powder. This R-T-B anisotropic magnetic powder has the average grain diameter of 10mum or smaller. The bonded magnet is manufactured by mixing thermosetting resin into the mixture of R-T-B (where, R is a rare-earth element containing Y, and T is a transition metal) anisotropic magnetic powder and silicone resin powder, and then it is molded in magnetic field and heat-cured. The above- mentioned silicone resin powder of 10wt.% or less is added to the mixture, and its average grain diameter is 10mum or smaller. Also, the anisotropic magnetic powder is formed by laminating an R-T-B liquid-quenched then piece, and by pulverizing it after a hot swaging process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はボンド磁石に関し,特に
高磁気特性を有するR・T・B系(但し,RはYを含む
希土類元素,Tは遷移金属)異方性ボンド磁石及びその
製造方法に関するものである。
[Industrial Application Field] The present invention relates to bonded magnets, and in particular to R/T/B system (where R is a rare earth element containing Y and T is a transition metal) anisotropic bonded magnets having high magnetic properties and their production. It is about the method.

【0002】0002

【従来の技術】近年,R,T,B(但し,RはYを含む
希土類元素,Tは遷移金属),取り分けNd,Fe,B
を主成分とする母合金を急冷粉砕して得られる薄帯に熱
間据込み加工処理して得られた成形体を粉砕した粉末が
強い磁気的異方性を示し,高いエネルギー積を有するこ
とが見いだされて以来,その応用製品として,これら粉
末と熱硬化性樹脂との混合物を磁場圧縮成形して得られ
る異方性ボンド磁石が注目されており,先に開発された
急冷薄帯を粉砕して得られる粉末を原料とする等方性ボ
ンド磁石の磁気特性を上まわる磁石として期待が集めら
れている。
[Prior art] In recent years, R, T, B (where R is a rare earth element including Y, and T is a transition metal), especially Nd, Fe, and B.
The powder obtained by pulverizing a compact obtained by hot upsetting into a ribbon obtained by rapidly cooling and pulverizing a master alloy whose main component is , exhibits strong magnetic anisotropy and has a high energy product. Since its discovery, anisotropic bonded magnets obtained by magnetic field compression molding of a mixture of these powders and thermosetting resin have attracted attention as applied products. There are high expectations that the magnet will have magnetic properties that exceed those of isotropic bonded magnets made from the powder obtained by this process.

【0003】0003

【発明が解決しようとする課題】ところで,高磁気特性
を有する異方性圧縮成形ボンド磁石を作製するためには
異方性磁性粉末自体が高い磁気異方性及び大きいエネル
ギー積を有することが必要であることは言うまでもなく
,さらにこの磁性粉末の特性を最大限に発揮するための
圧縮成形も重要となり,特に異方性磁性粉末の充填率及
び配向性を考慮した成形条件の確立が重要となっている
[Problem to be solved by the invention] By the way, in order to produce an anisotropic compression-molded bonded magnet with high magnetic properties, it is necessary that the anisotropic magnetic powder itself has high magnetic anisotropy and a large energy product. Needless to say, compression molding is also important in order to maximize the characteristics of this magnetic powder, and it is especially important to establish molding conditions that take into account the filling rate and orientation of the anisotropic magnetic powder. ing.

【0004】ここでR・T・B系とりわけNd−Fe−
B系異方性磁性粉末は急冷薄帯を圧密化後,熱間据込み
加工を施して磁気的異方化しており,粉末に粉砕される
時,据込み方向に垂直方向の積層界面で割れ易く,出来
た粉末は偏平状である。また,圧密化,据込み加工時に
加熱されるため結晶が成長して大きくなっており,得ら
れた粉末の表面は凹凸となっている。
[0004] Here, R・T・B system, especially Nd-Fe-
B-based anisotropic magnetic powder is made from a quenched ribbon that is consolidated and then subjected to hot upsetting to make it magnetically anisotropic. When it is crushed into powder, it cracks at the lamination interface perpendicular to the upsetting direction. The resulting powder is flat. In addition, the crystals grow and become larger due to the heating during compaction and upsetting, and the surface of the resulting powder becomes uneven.

【0005】ところで,Nd−Fe−B系異方性磁性粉
末は,磁場圧縮成形する際,磁場印加することにより,
Nd−Fe−B系異方性粉末は配向するが,圧縮成形時
に空隙を満たすために該磁性粉末が移動する時,これら
磁性粉末が偏平状であり,またその表面が凹凸であるた
め,磁性粉末のすべり性が悪いため,空隙を満たすため
に移動するとき配向を保ったまま移動できず,配向が乱
れ,圧縮成形体において,この磁性粉末の配向が不十分
となり,また移動が困難であるため,充填率が高くする
ことができず,十分な磁気特性が得られていない。
By the way, when Nd-Fe-B based anisotropic magnetic powder is compressed in a magnetic field, by applying a magnetic field,
Nd-Fe-B anisotropic powders are oriented, but when the magnetic powders move to fill the voids during compression molding, the magnetic powders are flat and their surfaces are uneven, so the magnetic Due to the poor slipperiness of the powder, when it moves to fill the void, it cannot move while maintaining its orientation, and the orientation is disordered, resulting in insufficient orientation of the magnetic powder in the compression molded product, and movement is difficult. Therefore, the filling rate cannot be increased, and sufficient magnetic properties cannot be obtained.

【0006】そこで,本発明の技術的課題は,R・T・
B系異方性圧縮成形ボンド磁石の作製において,磁性粉
末の磁気的な配向度,及び充填率を高めることにより,
優れた磁気特性を有するR・T・B系異方性圧縮成形ボ
ンド磁石及びその製造方法を提供することにある。
[0006] Therefore, the technical problem of the present invention is to
In the production of B-based anisotropic compression molded bonded magnets, by increasing the magnetic orientation degree and filling rate of the magnetic powder,
An object of the present invention is to provide an anisotropic compression-molded bonded R.T.B magnet having excellent magnetic properties and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は,R・T・B
系異方性磁性粉末のすべり性を良くすることにより,成
形体における該磁性粉末の配向度,充填率を高くできる
と考え,磁性粉末のすべり性を改善する方法について種
々検討した結果,磁性粉末にシリコーン樹脂粉末を添加
することにより,圧縮成形体における該磁性粉末の配向
度,充填率が高くなり,優れた磁気特性を有するNd−
Fe−B系異方性圧縮成形ボンド磁石を作製できること
を見いだし,本発明をなすに至ったのである。
[Means for Solving the Problems] The present inventor has discovered that R.T.B.
We believe that by improving the slipperiness of anisotropic magnetic powder, we can increase the degree of orientation and filling rate of the magnetic powder in the compact, and as a result of various studies on ways to improve the slipperiness of magnetic powder, we found that By adding silicone resin powder to the compression molded body, the degree of orientation and filling rate of the magnetic powder in the compression molded body are increased, and Nd-
It was discovered that an Fe-B based anisotropic compression molded bonded magnet could be produced, and the present invention was completed.

【0008】本発明によれば,10重量%以下のシリコ
ーン樹脂粉末とR・T・B系(但し,RはYを含む希土
類元素,Tは遷移金属)異方性磁性粉末との混合物を熱
硬化性樹脂で固着してなることを特徴とするホンド磁石
が得られる。
According to the present invention, a mixture of silicone resin powder of 10% by weight or less and anisotropic magnetic powder of R・T・B system (where R is a rare earth element including Y, and T is a transition metal) is heated. A Hondo magnet is obtained, which is characterized by being fixed with a curable resin.

【0009】本発明によれば,前記R・T・B系異方性
磁性粉末はR・T・B系液体急冷薄片積層体の粉砕粉末
からなることを特徴とするボンド磁石が得られる。
According to the present invention, there is obtained a bonded magnet characterized in that the R.T.B system anisotropic magnetic powder is a pulverized powder of an R.T.B system liquid quenched flake laminate.

【0010】本発明によれば,前記シリコーン樹脂粉末
は,10μm以下の平均粒径を有することを特徴とする
ボンド磁石が得られる。
According to the present invention, a bonded magnet is obtained in which the silicone resin powder has an average particle size of 10 μm or less.

【0011】本発明によれば,R・T・B系(但し,R
はYを含む希土類元素,Tは遷移金属)異方性磁性粉末
とシリコーン樹脂粉末との混合物に,熱硬化性樹脂を混
合して磁場中成形し,加熱硬化することを特徴とするボ
ンド磁石の製造方法が得られる。
According to the present invention, R・T・B system (However, R
is a rare earth element containing Y, and T is a transition metal) A bonded magnet characterized in that a thermosetting resin is mixed with a mixture of anisotropic magnetic powder and silicone resin powder, molded in a magnetic field, and heated and hardened. A manufacturing method is obtained.

【0012】本発明によれば,前記シリコーン樹脂粉末
は,前記混合物中に10重量%以下で含有されているこ
とを特徴とするボンド磁石の製造方法が得られる。
According to the present invention, there is obtained a method for producing a bonded magnet, characterized in that the silicone resin powder is contained in the mixture in an amount of 10% by weight or less.

【0013】本発明によれば,前記シリコーン樹脂粉末
は,平均粒径が10μm以下であることを特徴とするボ
ンド磁石の製造方法が得られる。
According to the present invention, there is obtained a method for manufacturing a bonded magnet, characterized in that the silicone resin powder has an average particle size of 10 μm or less.

【0014】本発明によれば,前記異方性磁性粉末は,
R・T・B系液体急冷薄片を積層し,熱間据込み加工後
,粉砕することによって形成されていることを特徴とす
るボンド磁石の製造方法が得られる。
According to the present invention, the anisotropic magnetic powder comprises:
A method for manufacturing a bonded magnet is obtained, which is characterized in that the bonded magnet is formed by laminating R, T, and B liquid quenched flakes, hot upsetting, and then pulverizing them.

【0015】ここで,本発明におけるシリコーン樹脂粉
末の添加量は0〜10重量%(0は含まず)であり,更
に望ましくは1〜4重量%である。というのは,シリコ
ーン樹脂粉末の添加量が10重量%以上になると,シリ
コーン樹脂粉末の相対的な存在量が多くなり,該磁性粉
末が密に充填されなくなり,充填率が低下し,十分な磁
気特性が得られないためである。また,本発明における
シリコーン樹脂粉末の平均粒径は10μm以下であり,
更に望ましくは5μm以下である。その限定理由は,シ
リコーン樹脂粉末の平均粒径が10μm以上になると該
磁性粉末が密に充填されなくなり,充填率が低下し,十
分な磁気特性が得られないからである。
[0015] Here, the amount of silicone resin powder added in the present invention is 0 to 10% by weight (excluding 0), more preferably 1 to 4% by weight. This is because when the amount of silicone resin powder added exceeds 10% by weight, the relative amount of silicone resin powder increases, the magnetic powder is no longer densely packed, the filling rate decreases, and sufficient magnetic This is because the characteristics cannot be obtained. Further, the average particle size of the silicone resin powder in the present invention is 10 μm or less,
More preferably, the thickness is 5 μm or less. The reason for this limitation is that if the average particle size of the silicone resin powder is 10 μm or more, the magnetic powder will not be packed densely, the packing rate will decrease, and sufficient magnetic properties will not be obtained.

【0016】尚,次に述べる本発明の実施例においては
,R・T・B系磁性粉末としてNd−Fe−B系異方性
磁性粉末を用いたボンド磁石を示したが,たとえばRと
してNdをDy,Pr等の希土類元素を用いる場合,T
としてのFeをCoと置換する場合,その他各種添加物
を加えた合金系においても本発明を実施する上で何ら問
題とならないことは言うまでもない。
In the following embodiments of the present invention, a bonded magnet using Nd-Fe-B anisotropic magnetic powder as the R.T.B magnetic powder is shown, but for example, as R, Nd When using rare earth elements such as Dy and Pr, T
It goes without saying that when Co is substituted for Fe, there is no problem in carrying out the present invention even in alloy systems in which various other additives are added.

【0017】[0017]

【実施例】次に実施例により本発明を更に詳細に説明す
る。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples.

【0018】(実施例1)高周波誘導溶解法により,組
成(重量%)がFe:65.8,  Nd:29.8,
  Co:2.65,  Pr:0.8,  B:0.
95に調整した母合金をAr雰囲気に置換可能な単ロー
ル装置を用いて液体急冷薄帯を作製後,これら薄帯の積
層体に熱間据込み加工により磁気的異方性処理を施し,
引き続き500μm以下の粒径まで粉砕し,異方性磁性
粉末を得,本発明を実施するための出発原料とした。こ
の磁性粉末原料と平均粒径1μmのシリコーン樹脂粉末
とを重量比で,100:0,  99.5:0.5, 
 99.0:1.0,  98.0:2.0,96.0
:4.0,  93.0:7.0,  90.0:10
.0,  87.0:13.0の8種の割合で混合し,
次にこれらの各混合物とエポキシ樹脂とを重量比で97
:3の割合でそれぞれ混合し,これらの各混合物を金型
内に挿填し,1600kA/mの磁場を印加し,4t/
cm2 の圧力で圧縮成形し,直径10mm,高さ10
mmの円柱状の成形体を作製し,加熱硬化してボンド磁
石とした。得られたボンド磁石の磁気特性の結果を図1
に示す。図1から明らかなようにシリコーン樹脂粉末添
加量0〜10重量%(0を含まず)で磁気特性が向上す
る。
(Example 1) The composition (weight %) of Fe: 65.8, Nd: 29.8,
Co:2.65, Pr:0.8, B:0.
After producing liquid-quenched ribbons using a single-roll device that can replace the master alloy adjusted to a temperature of
Subsequently, the powder was crushed to a particle size of 500 μm or less to obtain anisotropic magnetic powder, which was used as a starting material for carrying out the present invention. The weight ratio of this magnetic powder raw material and silicone resin powder with an average particle size of 1 μm was 100:0, 99.5:0.5,
99.0:1.0, 98.0:2.0, 96.0
:4.0, 93.0:7.0, 90.0:10
.. 0, 87.0:13.0 ratios were mixed,
Next, each of these mixtures and the epoxy resin were mixed in a weight ratio of 97.
: 3, each mixture was inserted into a mold, a magnetic field of 1600 kA/m was applied, and the mixture was mixed at a ratio of 4 t/3.
Compression molded at a pressure of cm2, diameter 10mm, height 10mm
A cylindrical molded body with a diameter of 1 mm was produced and cured by heating to obtain a bonded magnet. Figure 1 shows the results of the magnetic properties of the obtained bonded magnet.
Shown below. As is clear from FIG. 1, the magnetic properties are improved when the amount of silicone resin powder added is 0 to 10% by weight (excluding 0).

【0019】(実施例2)実施例1と同様にして得たN
d−Fe−B系異方性磁性粉末と平均粒径がそれぞれ0
.2μm,  0.5μm,  1μm,  3μm,
5μm,  7μm,10μm,  13μmの8種の
シリコーン樹脂とを重量比で98:2の割合でそれぞれ
混合し,次にこれらの各混合物とエポキシ樹脂を重量比
で97:3の割合でそれぞれ混合し,実施例1と同様に
して成形してボンド磁石を得た。これらのボンド磁石の
磁気特性の結果を図2に示す。図2から明らかなように
,シリコーン樹脂粉末の平均粒径が10μm以下の時に
磁気特性が向上する。
(Example 2) N obtained in the same manner as in Example 1
d-Fe-B anisotropic magnetic powder and average particle size of 0
.. 2μm, 0.5μm, 1μm, 3μm,
Eight types of silicone resins of 5 μm, 7 μm, 10 μm, and 13 μm were mixed at a weight ratio of 98:2, and then each of these mixtures and an epoxy resin were mixed at a weight ratio of 97:3. A bonded magnet was obtained by molding in the same manner as in Example 1. The results of the magnetic properties of these bonded magnets are shown in FIG. As is clear from FIG. 2, the magnetic properties are improved when the average particle size of the silicone resin powder is 10 μm or less.

【0020】[0020]

【発明の効果】以上の説明から明らかなように,本発明
によれば,磁性粉末の配向度が高く,かつ充填率が高い
ので,優れた磁気特性を有するボンド磁石の製造が可能
となり,工業上きわめて有益である。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, since the degree of orientation of the magnetic powder is high and the filling rate is high, it is possible to manufacture bonded magnets with excellent magnetic properties, and it is possible to manufacture bonded magnets with excellent magnetic properties. It is extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1に係るボンド磁石のシリコー
ン樹脂粉末の添加量と磁気特性との関係を示す図である
FIG. 1 is a diagram showing the relationship between the amount of silicone resin powder added and magnetic properties of a bonded magnet according to Example 1 of the present invention.

【図2】本発明の実施例2に係るホンド磁石のシリコー
ン樹脂粉末の添加量と磁気特性との関係を示す図である
FIG. 2 is a diagram showing the relationship between the amount of silicone resin powder added and magnetic properties of the Hondo magnet according to Example 2 of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  10重量%以下のシリコーン樹脂粉末
とR・T・B系(但し,RはYを含む希土類元素,Tは
遷移金属)異方性磁性粉末との混合物を熱硬化性樹脂で
固着してなることを特徴とするホンド磁石。
[Claim 1] A mixture of 10% by weight or less of silicone resin powder and anisotropic magnetic powder of R・T・B system (where R is a rare earth element including Y, and T is a transition metal) is made into a thermosetting resin. Hondo magnets are characterized by their ability to stick together.
【請求項2】  請求項1のボンド磁石において,前記
R・T・B系異方性磁性粉末はR・T・B系液体急冷薄
片の粉砕粉末からなることを特徴とするボンド磁石。
2. The bonded magnet according to claim 1, wherein the R.T.B system anisotropic magnetic powder is composed of a pulverized powder of R.T.B system liquid quenched flakes.
【請求項3】  請求項1のボンド磁石において,前記
シリコーン樹脂粉末は,10μm以下の平均粒径を有す
ることを特徴とするボンド磁石。
3. The bonded magnet according to claim 1, wherein the silicone resin powder has an average particle size of 10 μm or less.
【請求項4】  R・T・B系(但し,RはYを含む希
土類元素,Tは遷移金属)異方性磁性粉末とシリコーン
樹脂との混合物に,熱硬化性樹脂を混合して磁場中成形
し,加熱硬化することを特徴とするボンド磁石の製造方
法。
[Claim 4] Thermosetting resin is mixed into a mixture of R・T・B system (where R is a rare earth element including Y, and T is a transition metal) anisotropic magnetic powder and silicone resin, and the mixture is placed in a magnetic field. A method for manufacturing a bonded magnet, which is characterized by molding and heat curing.
【請求項5】  請求項4のボンド磁石の製造方法にお
いて,前記シリコーン樹脂粉末は,前記混合物中に10
重量%以下で含有されていることを特徴とするボンド磁
石の製造方法。
5. The method for manufacturing a bonded magnet according to claim 4, wherein the silicone resin powder is contained in the mixture in an amount of 10%.
A method for manufacturing a bonded magnet, characterized in that the content is less than % by weight.
【請求項6】  請求項4のボンド磁石の製造方法にお
いて,前記シリコーン樹脂粉末は,平均粒径が10μm
以下であることを特徴とするボンド磁石の製造方法。
6. In the method for manufacturing a bonded magnet according to claim 4, the silicone resin powder has an average particle size of 10 μm.
A method for manufacturing a bonded magnet, characterized by the following.
【請求項7】  請求項4のボンド磁石の製造方法にお
いて,前記異方性磁性粉末は,R・T・B系液体急冷薄
片を積層し,熱間据込み加工後,粉砕して形成されてい
ることを特徴とするボンド磁石の製造方法。
7. In the method for manufacturing a bonded magnet according to claim 4, the anisotropic magnetic powder is formed by laminating R, T, and B liquid quenched flakes, hot upsetting, and then pulverizing them. A method for manufacturing a bonded magnet, characterized in that:
JP3103282A 1991-03-08 1991-03-08 Bonded magnet and manufacture thereof Withdrawn JPH04280606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103282A JPH04280606A (en) 1991-03-08 1991-03-08 Bonded magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103282A JPH04280606A (en) 1991-03-08 1991-03-08 Bonded magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04280606A true JPH04280606A (en) 1992-10-06

Family

ID=14349978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103282A Withdrawn JPH04280606A (en) 1991-03-08 1991-03-08 Bonded magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04280606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019419A (en) * 2005-07-11 2007-01-25 Neomax Co Ltd Method for manufacturing rare earth bond magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019419A (en) * 2005-07-11 2007-01-25 Neomax Co Ltd Method for manufacturing rare earth bond magnet

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH04280606A (en) Bonded magnet and manufacture thereof
JP2002015906A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JPH0440842B2 (en)
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JPH0473908A (en) Manufacture of r-fe-b-based anisotropic compression molding bonded magnet
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH0450725B2 (en)
JPH1167568A (en) Manufacture of bonded magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
KR20240038557A (en) High-compactness bonded rare earth permanent magnet and preparation method thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH0438805A (en) Manufacture of r-fe-b anisotropic compression-molded bonded magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH04176102A (en) Bonded magnet and manufacture thereof
CN115621030A (en) Method for synchronously preparing high-performance samarium-iron-nitrogen bonded magnet through magnetic field orientation and hot-press curing molding
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0444403B2 (en)
JP2001068313A (en) Anisotropic magnet power compound, its manufacturing method and manufacturing method of anisotropic bond magnet using the same
JP2004006881A (en) Manufacture of magnetically anisotropic resin coupled magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514