JPH0472592B2 - - Google Patents

Info

Publication number
JPH0472592B2
JPH0472592B2 JP26528185A JP26528185A JPH0472592B2 JP H0472592 B2 JPH0472592 B2 JP H0472592B2 JP 26528185 A JP26528185 A JP 26528185A JP 26528185 A JP26528185 A JP 26528185A JP H0472592 B2 JPH0472592 B2 JP H0472592B2
Authority
JP
Japan
Prior art keywords
radiation
paint
weight
undercoat
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26528185A
Other languages
Japanese (ja)
Other versions
JPS62125879A (en
Inventor
Kenichi Masuhara
Hidetoshi Yamabe
Koji Mori
Takao Tomomi
Akihiko Maekita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26528185A priority Critical patent/JPS62125879A/en
Publication of JPS62125879A publication Critical patent/JPS62125879A/en
Publication of JPH0472592B2 publication Critical patent/JPH0472592B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 下塗りおよび上塗りにそれぞれ熱硬化型塗料お
よび放射線硬化型塗料を塗装する塗装金属板の製
造方法において、下塗り塗料中に放射線硬化型モ
ノマーあるいはオリゴマーを配合して、下塗り塗
膜と上塗り塗膜とを層間密着性を向上させる方法
に関する。 (従来技術) 従来塗装金属板は熱硬化型塗料を使用して製造
するのが一般的であつたが、近年品質の向上、無
公害、省資源、省エネルギーなどの観点から電子
線硬化型塗料を使用して製造する方法が実用化さ
れている。例えば電子線硬化型塗料を電子線によ
り高度に架橋反応させると、塗膜は非常に緻密に
なるため、塗膜硬度、耐汚染剤、耐溶剤性などが
著しく向上し、熱硬化型塗料の塗装では得られな
い品質の塗装金属板を製造することができる。 しかしながら電子線硬化型塗料は硬化の際硬化
反応が常温で急速に進行するため、塗膜の著しい
収縮を伴い、塗膜中に大きな残留応力が生じる。
このため電子線硬化塗料を直接金属板に塗装した
塗装金属板は塗膜密着性や加工性などが熱硬化型
塗料を塗装したものより劣るものであつた。 電子線硬化型塗料使用によるこの塗装金属板の
塗膜密着性や加工性の低下を改善する方法として
は、金属板に電子線硬化丙塗料塗装前に金属板と
の密着性の優れた熱硬化型のエポキシ系塗料を塗
装して、電子線硬化型塗料の硬化時の塗膜収縮を
吸収する方法が知られている。しかしこの方法の
場合、エポキシ型塗料は塗膜硬度が高いため、加
工時にクラツクが発生し、またエポキシ系塗膜は
電子線硬化型塗料の塗膜との層間密着性が充分と
はいえないものであつた。 (発明が解決しようとする問題点) 本発明はこのようにエポキシ系塗料の下塗り塗
装を施せば、金属板に直接塗装した場合より塗膜
密着性は向上するものの、まだ下塗りの塗膜の加
工によるクラツク発生や層間密着性の問題があつ
た点に鑑み、そのような問題のない塗装金属板の
製造方法を提供するものである。 (問題点を解決するための手段) 本発明の方法は従来のごとく放射線硬化型塗料
塗装前に熱硬化型下塗り塗料を塗装するのである
が、下塗り塗料としては加工性に優れたポリエス
テル系樹脂のものを用いて、加工してもクラツク
が発生しないようにし、しかもその中に前記ポリ
エステル系樹脂と反応する官能基を有する放射線
硬化型モノマーあるいはオリゴマーを配合して、
放射線硬化型塗料の上塗り塗料塗膜を放射線で硬
化させる際、上塗り塗料塗膜を反応させ、下塗り
塗膜と上塗り塗膜との層間密着性が向上するよう
にしたのである。 すなわち本発明は(A)分子中に活性水素を有する
ポリエステル系樹脂、(B)この(A)の活性水素と反応
する硬化剤および(C)前記(A)の活性水素と反応する
官能基とエチレン系不飽和二重結合と併せ持つ放
射線硬化型モノマーあるいはオリゴマーの3成分
を主成分とし、(A)、(B)、(C)の配合が(A)=100重量
部、(B)=10〜50重量部、(C)=5〜50重量部である
熱硬化型下塗り塗料を金属板に塗装して熱硬化さ
せた後、放射線硬化型上塗り塗料を塗装して放射
線により硬化させ、塗装金属板を製造するもので
ある。 以下本発明を詳細に説明する。 まず下塗り塗料は分子中に活性水素を有するポ
リエステル型樹脂にその活性水素と反応する硬化
剤を配合して、熱延硬化の際ポリエステル分子を
硬化剤により架橋し、塗膜に硬度を付与する。こ
れば従来のポリエステル系樹脂塗料で一般に行な
われている配合方法で、従来ポリエステル系樹脂
としては、水酸基、メルカプト基、アミノ基、カ
ルボキシル基などのごとく水素を遊離しやすい官
能基を有するものが、また硬化剤としては、メラ
ミン樹脂、グアナミン樹脂、尿素樹脂などのよう
にアミノ基を有する樹脂、またはイソシアネート
基やエポキシ基などの官能基を有する樹脂が使用
されている。本発明の場合も樹脂および硬化剤と
して特別のものを必要としないので、従来のもの
で充分である。なおこのポリエステル系樹脂は主
鎖がポリエチレンテレフタレート系であるものが
加工性に優れているので好ましい。 しかし本発明ではこのポリエステル系樹脂塗料
にポリエステル系樹脂の活性水素と反応する官能
基とエチレン系不飽和二重結合とを併せ持つ放射
線硬化型モノマーあるいはオリゴマーを配合し
て、これらを介して下塗り塗膜と上塗り塗膜とを
化学的に結合させるのである。すなわちこのよう
な熱硬化性と放射線硬化性を備えたモノマーまた
はオリゴマーを配合すると、官能基が下塗り塗料
を熱硬化させる際にポリエステル系樹脂と反応
し、エチレン系不飽和二重結合が上塗り塗料を放
射線硬化させる際に上塗り塗料の放射線硬化型塗
料と反応するので、下塗り塗膜と上塗り塗膜とは
化学的に結合し、一体になり、両塗膜の層間密着
性は強固なものになる。 このモノマーまたはオリゴマーのポリエステル
の活性水素と反応するもう一方の官能基としては
前記硬化剤と同様アミノ基、イソシアネート基、
エポキシ基、水酸基などである。 本発明では以上のような3成分を下塗り塗料の
主成分にするのであるが、その配合はポリエステ
ル系樹脂100重量部に対して硬化剤10〜50重量部、
モノマーまたはオリゴマー5〜50重量部となるよ
うにする。ここで硬化剤の配合量を10〜50重量部
にしたのは、10重量部未満であると塗膜硬度が不
足し、50重量部を越えると塗膜硬度が大きくなり
すぎ、上塗り塗膜である放射線硬化型塗料塗膜の
硬化する際生じる残留応力を緩和する能力が減少
し、充分な塗膜密着性が得られないからである。
またモノマーまたはオリゴマーの配合量を5〜50
重量部にしたのは、50重量部を越えると、これら
のモノマーやオリゴマーは塗膜硬度を増大させる
ため、塗膜硬度が大きくなりすぎ、前述の硬化剤
の場合と同様になつてしまうからであり、また5
重量部未満であると塗膜表面のエチレン系二重結
合が減少し、上塗り塗膜を硬化させる際放射線を
照射しても、上塗り塗膜とのラジカル反応が起こ
りにくくなり、充分な層間密着性が得られないか
らである。 なお下塗り塗料には耐食性を付与するために防
錆顔料(クロム酸亜鉛、クロム酸ストロンチウ
ム、クロム酸カルシウム、亜鉛化鉛、塩基性硫酸
鉛、鉛酸カルシウム、シアナミド鉛、リン酸亜
鉛、亜鉛末など)を添加してもよい。 この下塗り塗料の塗装塗膜は従来の塗装金属板
製造の場合と同じ(例えば乾燥塗膜厚で4〜8μ
m)でよい。 次に上塗り塗料であるが、この上塗り塗料は従
来の放射線硬化型塗料、すなわち放射線によりラ
ジカル重合可能なエチレン系不飽和二重結合を有
するオリゴマーを主体とし、適宜モノマーやその
他の添加剤を配合した塗料でよい。例えばオリゴ
マーとしては不飽和ポリエステル樹脂、ポリエス
テル(メタ)アクリレート、エポキシ(メタ)ア
クリレート、ポリウレタン(メタ)アクリレー
ト、ポリアミド(メタ)アクリレートおよびポリ
オール(メタ)アクリレートなどのオリゴマー、
あるいはモノマーとしてはエチレングリコール
(メタ)アクリレート、トリエチレングリコール
ジ(メタ)アクリレート、テトラエチレングリコ
ールジ(メタ)アクリレート、トリメチロールプ
ロパントリ(メタ)アクリレート、他の(メタ)
アクリル酸エステル類、ジアリルフタレート、メ
チレンビスアクリルアミド、トリアクリルイソシ
アネート、スチレン、(メタ)アクリロニトリル、
酢酸ビニルなどのモノマーである。これらに粘度
調整の目的で通常の放射線で反応しない溶剤を適
宜加え、放射線で硬化させる前に蒸発させてもよ
い。 上塗り塗料の塗装塗膜厚は特に限定はなく、用
途に合わせて決定すればよい。硬化させる際の放
射線照射量は例えば下塗り塗料に配合する放射線
硬化系モノマーまたはオリゴマーと上塗り塗料と
をともに電子線硬化型のものにして、乾燥塗膜厚
で15〜25μm塗装した場合、電子線を5〜
15Mrad照射すれば硬化する。 なお上塗り塗料を紫外線により硬化させる場合
には塗料としてクリヤーまたは着色クリヤーにし
て、光重合開始剤を添加する。光重合開始剤とし
ては、ベンゾインメチルエーテル、ベンゾインエ
チルエーテル、ベンゾインイソプロピルエーテ
ル、ベンゾインブチルエーテル、ベンゾフエノ
ン/第3級アミン、ベンジルメチルケタール、
2,2−ジエトキシアセトフエノン、α−ヒドロ
キシイソブチロフエノン、1,1−ジクロロアセ
トフエノン、2−クロロチオキサントンなどがあ
るが、これらを0.1〜5重量%添加すれば、200n
m〜350nmの紫外線で硬化させることができる。
なお、着色クリヤー塗料を塗装する場合は塗膜を
薄くする。 本発明により塗装金属板を製造する場合、下塗
り塗装前に前処理を施す。この前処理は従来一般
に行われている機械的研摩、リン酸塩処理、クロ
メート処理、酸洗などを金属板の種類や表面状態
に応じて施せばよい。 また金属板は冷延鋼板、各種めつき鋼板、ステ
ンレス鋼板などの鋼板、アルミニウムに代表され
る非鉄金属板いずれでもよい。 次に実施例により本発明を説明する。 (実施例) 亜鉛付着量60g/m2の溶融亜鉛めつき鋼板にリ
ン酸亜鉛処理を施した後、表1に示すような配合
の下塗り塗料を乾燥塗膜厚で5μmになるように
バーコーターで塗装し、その後210±10℃(最高
到達板温)で焼付け乾燥して硬化させた。 次に多官能ポリエステルアクリレート60重量部
(東亜合成化学工業製)、単官能オリゴエステルア
クリレート20重量部(同)、トリメチロールプロ
パンアクリレート10重量部、キシレン10重量部か
らなる上塗り塗料を乾燥塗膜厚で20μmになるよ
うに塗装して、希釈剤のキシレンを蒸発させた
後、加速電圧160KeV、電子流15mAの条件で
10Mrad電子線を照射して硬化させた。 次にここで得られた塗装鋼板にゴバン目を入れ
て、その部分を8mmエリクセン試験機で押し出
し、セロテープを貼り付けて剥離した。表1にこ
の結果を下塗り塗料の組成とともに示す。
(Industrial Application Field) In a method for manufacturing coated metal plates in which a thermosetting paint and a radiation-curing paint are applied as the undercoat and topcoat, respectively, radiation-curable monomers or oligomers are blended into the undercoat to form the undercoat film. The present invention relates to a method for improving interlayer adhesion between a topcoat film and a topcoat film. (Prior art) Painted metal plates have traditionally been manufactured using thermosetting paints, but in recent years electron beam curing paints have been used from the viewpoint of improving quality, being pollution-free, saving resources, and saving energy. A manufacturing method using this method has been put into practical use. For example, when an electron beam-curable paint is subjected to a high degree of cross-linking reaction using an electron beam, the paint film becomes extremely dense, resulting in significant improvements in film hardness, stain resistance, solvent resistance, etc. We can produce painted metal sheets of a quality that cannot be obtained elsewhere. However, during curing of electron beam curable paints, the curing reaction proceeds rapidly at room temperature, resulting in significant shrinkage of the paint film, resulting in large residual stress in the paint film.
For this reason, coated metal plates obtained by applying electron beam curing paints directly to metal plates are inferior to those coated with thermosetting paints in terms of film adhesion and workability. A method to improve the deterioration in film adhesion and workability of painted metal plates caused by the use of electron beam curing paints is to apply heat curing, which has excellent adhesion to the metal plate, before applying electron beam curing C paint to the metal plate. A known method is to coat the mold with an epoxy paint to absorb the shrinkage of the paint film during curing of the electron beam curable paint. However, in the case of this method, cracks occur during processing due to the high film hardness of the epoxy paint, and the interlayer adhesion of the epoxy paint to the electron beam curing paint film is not sufficient. It was hot. (Problems to be Solved by the Invention) The present invention proposes that if an epoxy paint is applied as an undercoat as described above, the adhesion of the paint film will be improved compared to when it is applied directly to the metal plate, but the undercoat still remains unprocessed. In view of the problems caused by the occurrence of cracks and interlayer adhesion, the object of the present invention is to provide a method for producing a coated metal plate that is free from such problems. (Means for Solving the Problems) The method of the present invention involves applying a thermosetting undercoat before applying the radiation-curable paint, as in the conventional method, but the undercoat is made of polyester resin, which has excellent workability. A radiation-curable monomer or oligomer having a functional group that reacts with the polyester resin is added thereto to prevent cracks from occurring even when processed.
When the top coat film of the radiation-curable paint is cured with radiation, the top coat film is reacted to improve interlayer adhesion between the undercoat film and the top coat film. That is, the present invention comprises (A) a polyester resin having active hydrogen in its molecule, (B) a curing agent that reacts with the active hydrogen of (A), and (C) a functional group that reacts with the active hydrogen of (A). The main components are radiation-curable monomers or oligomers that have ethylenically unsaturated double bonds, and the mixture of (A), (B), and (C) is (A) = 100 parts by weight, (B) = 10 ~50 parts by weight, (C) = 5 to 50 parts by weight of a thermosetting undercoat is applied to a metal plate and cured by heat, and then a radiation-curable topcoat is applied and cured by radiation to form a coated metal. It manufactures boards. The present invention will be explained in detail below. First, the undercoat paint is made by blending a curing agent that reacts with the active hydrogen into a polyester-type resin that has active hydrogen in its molecules, and during hot rolling hardening, the polyester molecules are crosslinked by the curing agent to impart hardness to the coating film. This is a compounding method that is generally used for conventional polyester resin paints. Conventional polyester resins have functional groups that easily release hydrogen, such as hydroxyl groups, mercapto groups, amino groups, and carboxyl groups. Further, as the curing agent, a resin having an amino group such as a melamine resin, a guanamine resin, or a urea resin, or a resin having a functional group such as an isocyanate group or an epoxy group is used. In the case of the present invention, special resins and curing agents are not required, so conventional resins and curing agents are sufficient. It is preferable that this polyester resin has a main chain of polyethylene terephthalate because it has excellent processability. However, in the present invention, a radiation-curable monomer or oligomer having both a functional group that reacts with the active hydrogen of the polyester resin and an ethylenically unsaturated double bond is blended into the polyester resin paint, and the undercoat is coated via these. and the top coat are chemically bonded to each other. In other words, when such thermosetting and radiation-curing monomers or oligomers are blended, the functional groups react with the polyester resin when the undercoat is thermally cured, and the ethylenically unsaturated double bonds cause the topcoat to harden. During radiation curing, it reacts with the radiation-curable paint of the top coat, so the undercoat and top coat are chemically bonded and become one body, resulting in strong interlayer adhesion between the two coats. The other functional group that reacts with the active hydrogen of the monomer or oligomer polyester is an amino group, an isocyanate group,
These include epoxy groups and hydroxyl groups. In the present invention, the above-mentioned three components are used as the main components of the undercoat paint, and the composition is 10 to 50 parts by weight of the curing agent, based on 100 parts by weight of the polyester resin.
The amount of monomer or oligomer should be 5 to 50 parts by weight. The reason for setting the amount of curing agent to be 10 to 50 parts by weight is that if it is less than 10 parts by weight, the coating film hardness will be insufficient, and if it exceeds 50 parts by weight, the coating film hardness will become too large. This is because the ability to relax the residual stress that occurs when a certain radiation-curable paint film is cured is reduced, and sufficient paint film adhesion cannot be obtained.
In addition, the amount of monomer or oligomer added is 5 to 50.
The reason for using parts by weight is that if the amount exceeds 50 parts by weight, these monomers and oligomers will increase the hardness of the coating film, resulting in an excessively high coating hardness, similar to the case with the curing agent described above. Yes, 5 again
When the amount is less than 1 part by weight, the number of ethylene double bonds on the surface of the coating film decreases, and even if radiation is irradiated to cure the topcoat film, radical reactions with the topcoat film will be less likely to occur, resulting in sufficient interlayer adhesion. This is because it cannot be obtained. In order to impart corrosion resistance to the undercoat paint, anti-rust pigments (zinc chromate, strontium chromate, calcium chromate, lead zincide, basic lead sulfate, calcium leadate, lead cyanamide, zinc phosphate, zinc powder, etc.) are used. ) may be added. The paint film of this undercoat is the same as in the conventional production of coated metal sheets (for example, the dry film thickness is 4 to 8 μm).
m) is fine. Next is the top coat.This top coat is a conventional radiation-curable paint, which is mainly composed of oligomers with ethylenically unsaturated double bonds that can be radically polymerized by radiation, and is blended with monomers and other additives as appropriate. Paint is fine. For example, oligomers include unsaturated polyester resins, polyester (meth)acrylates, epoxy (meth)acrylates, polyurethane (meth)acrylates, polyamide (meth)acrylates, and polyol (meth)acrylates;
Alternatively, as a monomer, ethylene glycol (meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, other (meth)
Acrylic esters, diallyl phthalate, methylene bisacrylamide, triacrylisocyanate, styrene, (meth)acrylonitrile,
Monomers such as vinyl acetate. For the purpose of adjusting the viscosity, a solvent that does not react with ordinary radiation may be appropriately added to these and evaporated before curing with radiation. The coating film thickness of the top coat is not particularly limited and may be determined depending on the application. The amount of radiation irradiation during curing is, for example, when the radiation-curing monomer or oligomer blended in the undercoat and the topcoat are both electron beam curable, and the dry film thickness is 15 to 25 μm. 5~
It will harden if irradiated with 15 Mrad. When the top coating is cured by ultraviolet rays, a clear or colored clear coating is used and a photopolymerization initiator is added. As a photopolymerization initiator, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzophenone/tertiary amine, benzyl methyl ketal,
There are 2,2-diethoxyacetophenone, α-hydroxyisobutylophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, etc., but if you add 0.1 to 5% by weight of these, 200n
It can be cured with ultraviolet light of m to 350 nm.
In addition, when painting with colored clear paint, the paint film should be thin. When producing a coated metal plate according to the present invention, a pretreatment is performed before applying the undercoat. This pretreatment may be carried out by conventional mechanical polishing, phosphate treatment, chromate treatment, pickling, etc. depending on the type and surface condition of the metal plate. Further, the metal plate may be a cold-rolled steel plate, various galvanized steel plates, a steel plate such as a stainless steel plate, or a non-ferrous metal plate typified by aluminum. Next, the present invention will be explained with reference to examples. (Example) After applying zinc phosphate treatment to a hot-dip galvanized steel sheet with a zinc coating amount of 60 g/m 2 , a bar coater was used to apply an undercoat of the composition shown in Table 1 to a dry film thickness of 5 μm. After that, it was baked and cured at 210±10℃ (maximum board temperature). Next, a top coat consisting of 60 parts by weight of polyfunctional polyester acrylate (manufactured by Toagosei Kagaku Kogyo), 20 parts by weight of monofunctional oligoester acrylate (same), 10 parts by weight of trimethylolpropane acrylate, and 10 parts by weight of xylene was applied to a dry film thickness. After coating to a thickness of 20μm and evaporating the diluent xylene, it was applied under the conditions of an acceleration voltage of 160KeV and an electron current of 15mA.
It was cured by irradiation with a 10 Mrad electron beam. Next, a goblin was made in the painted steel plate obtained here, the part was extruded using an 8 mm Erichsen tester, and Sellotape was applied and peeled off. Table 1 shows the results along with the composition of the undercoat.

【表】 表1に示すように、本発明により製造した塗装
鋼板は下塗り塗装にエポキシ系樹脂塗料を塗装し
たものより層間密着性に優れている。 (効果) 以上のごとく、本発明は下塗り塗料としてポリ
エステル系樹脂塗料を使用するので、加工しても
下塗り塗膜にクラツクが発生することがなく、ま
た下塗り塗料には放射線硬化成分が配合されてい
るので、下塗り塗膜と上塗り塗膜とは放射線によ
り上塗り塗料を硬化させる際化学結合し、層間密
着性は向上する。
[Table] As shown in Table 1, the coated steel sheets manufactured according to the present invention have superior interlayer adhesion than those coated with an epoxy resin paint as an undercoat. (Effects) As described above, since the present invention uses a polyester resin paint as the undercoat, cracks do not occur in the undercoat film even during processing, and the undercoat contains a radiation curing component. Therefore, the undercoat film and topcoat film are chemically bonded when the topcoat paint is cured by radiation, and interlayer adhesion is improved.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)分子中に活性水素を有するポリエステル系
樹脂、(B)この(A)の活性水素と反応する硬化剤およ
び(C)前記(A)の活性水素と反応する官能基とエチレ
ン系不飽和二重結合とを併せ持つ放射線硬化型モ
ノマーあるいはオリゴマーの3成分を主成分と
し、(A)、(B)、(C)の配合が(A)=100重量部、(B)=10
〜50重量部、(C)=5〜50重量部である熱硬化型下
塗り塗料を金属板に塗装して熱硬化させた後、放
射線硬化型上塗り塗料を塗装して放射線により硬
化させることを特徴とする放射線硬化塗料による
塗装金属板の製造方法。
1 (A) a polyester resin having active hydrogen in its molecule, (B) a curing agent that reacts with the active hydrogen of (A), and (C) a functional group that reacts with the active hydrogen of (A) and an ethylenic inorganic resin. The three main components are radiation-curable monomers or oligomers that also have saturated double bonds, and the mixture of (A), (B), and (C) is (A) = 100 parts by weight, (B) = 10 parts by weight.
~50 parts by weight, (C) = 5 to 50 parts by weight of a thermosetting undercoat is applied to a metal plate and cured by heat, and then a radiation-curable topcoat is applied and cured by radiation. A method for producing a coated metal plate using a radiation-cured paint.
JP26528185A 1985-11-26 1985-11-26 Production of painted metallic sheet by paint curable by radiation Granted JPS62125879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26528185A JPS62125879A (en) 1985-11-26 1985-11-26 Production of painted metallic sheet by paint curable by radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26528185A JPS62125879A (en) 1985-11-26 1985-11-26 Production of painted metallic sheet by paint curable by radiation

Publications (2)

Publication Number Publication Date
JPS62125879A JPS62125879A (en) 1987-06-08
JPH0472592B2 true JPH0472592B2 (en) 1992-11-18

Family

ID=17415041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26528185A Granted JPS62125879A (en) 1985-11-26 1985-11-26 Production of painted metallic sheet by paint curable by radiation

Country Status (1)

Country Link
JP (1) JPS62125879A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485753A (en) * 1987-09-28 1989-03-30 Sumitomo Metal Ind Coated steel plate suitable to adhesive-processing
JP4334656B2 (en) * 1999-03-15 2009-09-30 大日本印刷株式会社 Color-changing vapor deposition medium and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62125879A (en) 1987-06-08

Similar Documents

Publication Publication Date Title
JPS6183247A (en) Polyvinylidene fluoride paint
US20080305274A1 (en) Process for coating metal sheets
JPS5921909B2 (en) Radiation curable coating composition
JPH0472592B2 (en)
JPH0235777B2 (en)
JP2898698B2 (en) Manufacturing method of coated metal plate with radiation-curable paint
JP2813429B2 (en) Manufacturing method of electron beam curing type pre-coated steel sheet
JPH0510989B2 (en)
JPS5929108B2 (en) Manufacturing method of metal plated body
KR100396075B1 (en) UV-curable resin composition for iron coating and UV-curable coated steel sheet using same
JPS62110782A (en) Production of coated metallic sheet having high brilliancy
JPS5929109B2 (en) Manufacturing method of metal plated body
JPS6238277A (en) Preparation of radiation cured precoated metal plate
JPS62152841A (en) Laminated coating
JPS6211907B2 (en)
JPH0149185B2 (en)
JPH0422474A (en) Formation of coating film
JPH09143399A (en) Heat-and actinic-radiation curable high-solid coating composition and method for forming coating film therefrom
JPS60112865A (en) Coating material composition for precoating and precoated steel plate
JPS6220910B2 (en)
JPH04326966A (en) Finishing method for coating
JPH0379344A (en) Polyester coated metal plate
JPS6349618B2 (en)
JPS6220909B2 (en)
JPH069675B2 (en) Radiation-curable resin coating method