JPH069675B2 - Radiation-curable resin coating method - Google Patents

Radiation-curable resin coating method

Info

Publication number
JPH069675B2
JPH069675B2 JP27623685A JP27623685A JPH069675B2 JP H069675 B2 JPH069675 B2 JP H069675B2 JP 27623685 A JP27623685 A JP 27623685A JP 27623685 A JP27623685 A JP 27623685A JP H069675 B2 JPH069675 B2 JP H069675B2
Authority
JP
Japan
Prior art keywords
radiation
coating
curable resin
polyacrylic acid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27623685A
Other languages
Japanese (ja)
Other versions
JPS62136274A (en
Inventor
憲一 増原
多賀夫 友末
秀敏 山辺
浩治 森
杲彦 前北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27623685A priority Critical patent/JPH069675B2/en
Publication of JPS62136274A publication Critical patent/JPS62136274A/en
Publication of JPH069675B2 publication Critical patent/JPH069675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属板に放射線硬化型樹脂を塗装する際金属板
を予めポリアクリル酸水溶液で前処理して、金属板と放
射線硬化型樹脂塗膜との塗膜密着性を大幅に向上させる
放射線硬化型樹脂の塗装方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to coating a metal plate with a radiation-curable resin by pre-treating the metal plate with a polyacrylic acid aqueous solution when the metal plate is coated with the radiation-curable resin. The present invention relates to a method for coating a radiation-curable resin that significantly improves coating film adhesion to a film.

(従来技術) 従来塗装鋼板やラミネート鋼板などの製造は熱硬化型樹
脂の塗料や接着剤を使用して行うのが一般的であった
が、近年品質の向上、省資源、省エネルギー、高生産性
などの観点から電子線硬化型樹脂のものが使用されるよ
うになってきている。例えば電子線硬化型樹脂の塗料を
電子線により高度に架橋反応させると、塗膜は非常に緻
密になるため、塗膜硬度、耐汚染性、耐溶剤性などが著
しく向上し、熱硬化型塗料の塗装では得られない品質の
塗装製品を製造することができる。
(Prior art) Conventionally, it was common to manufacture coated steel sheets and laminated steel sheets using thermosetting resin paints and adhesives, but in recent years, quality improvement, resource saving, energy saving, high productivity From the viewpoint of the above, electron beam curable resins have been used. For example, when electron beam curable resin coating material is highly cross-linked by electron beam, the coating film becomes very dense, and therefore the coating film hardness, stain resistance, solvent resistance, etc. are significantly improved. It is possible to manufacture coated products of a quality that cannot be obtained by the above coating.

しかしながら電子線硬化型樹脂の塗料は硬化の際硬化反
応が常温で急速に進行するため、塗膜の著しい収縮を伴
い、塗膜中に大きな残留応力が生じる。このため電子線
硬化型樹脂の塗料を金属板に直接塗装する場合、熱硬化
型樹脂の塗料に対しては塗膜密着性を向上させる機械的
研摩、リン酸塩処理、クロメート処理、酸洗などの塗装
前処理を施しても、塗膜密着性は熱硬化型樹脂の塗料を
塗装した場合より劣るものであった。
However, since the curing reaction of the electron beam curable resin coating rapidly proceeds at room temperature during curing, the coating film remarkably shrinks, and a large residual stress is generated in the coating film. For this reason, when the electron beam curable resin coating is directly applied to the metal plate, mechanical abrasion, phosphate treatment, chromate treatment, pickling, etc. that improve the coating adhesion to the thermosetting resin coating are performed. Even when the pretreatment for coating was applied, the adhesion of the coating film was inferior to that when the coating material of thermosetting resin was applied.

塗料や接着剤などにおける電子線硬化型樹脂の塗膜密着
性低下を改善する方法としては、金属板に電子線硬化型
樹脂を塗布する前に金属板との密着性の優れた熱硬化型
のエポキシ系樹脂塗料を下塗り塗装して、電子線硬化型
樹脂の硬化時の塗膜収縮を吸収する方法が知られてい
る。しかしこの方法はエポキシ系樹脂塗料の硬化にオー
ブンのような設備を必要とするため、省資源、省エネル
ギーなどの点でまだ問題があった。
As a method of improving the decrease in coating film adhesion of the electron beam curable resin in paints and adhesives, a thermosetting type resin that has excellent adhesion to the metal plate before applying the electron beam curable resin to the metal plate is used. A method is known in which an epoxy resin paint is undercoated to absorb the shrinkage of the coating film when the electron beam curable resin is cured. However, this method requires a facility such as an oven to cure the epoxy resin coating material, and thus there are still problems in terms of resource saving and energy saving.

(発明が解決しようとする問題点) 本発明はこのように従来の塗装方法ではまだ種々の問題
点があったので、簡単な前処理で十分なる塗膜密着性の
得られる放射線硬化型樹脂の塗装方法を提供するもので
ある。
(Problems to be Solved by the Invention) Since the present invention still has various problems in the conventional coating method as described above, a radiation-curable resin that can obtain sufficient coating adhesion by a simple pretreatment is used. A coating method is provided.

(問題点を解決するための手段) 本発明者らは放射線硬化型樹脂の塗膜密着性を向上させ
る塗装方法について種々検討した結果、前処理としてポ
リアクリル酸水溶液を使用し、かつ放射線硬化型樹脂を
硬化させる際、放射線硬化型樹脂の塗膜を貫通して前処
理のポリアクリル酸皮膜まで達する強度の放射線を照射
すればよいことを見出だした。本発明はかかる知見に基
づいてなされたもので、金属板分子量が3,000〜5
0,000のをポリアクリル酸水溶液で処理して、乾燥
皮膜量で10〜100mg/m2の皮膜を形成した後、放射
線硬化型樹脂液を塗布して、ポリアクリル酸皮膜まで達
する強度の放射線を照射して硬化させることを特徴とし
ている。
(Means for Solving the Problems) As a result of various studies on the coating method for improving the coating adhesion of the radiation-curable resin, the present inventors have used a polyacrylic acid aqueous solution as a pretreatment, and have used the radiation-curable resin. It has been found that, when the resin is cured, it is sufficient to irradiate with radiation having an intensity which penetrates the coating film of the radiation-curable resin and reaches the pretreated polyacrylic acid film. The present invention has been made based on such findings, and the metal plate has a molecular weight of 3,000 to 5
50,000 is treated with an aqueous solution of polyacrylic acid to form a dry coating amount of 10 to 100 mg / m 2 , and then a radiation-curable resin liquid is applied to the polyacrylic acid coating to obtain a radiation of a sufficient intensity. It is characterized by irradiating and curing.

本発明において、金属板をポリアクリル酸水溶液で処理
すると放射線硬化型樹脂の塗膜密着性が向上する機構に
ついては理論的に十分解明されていないが、これは次の
ように考えられる。すなわちポリアクリル酸は極性基
(−COOH)とエチレン性二重結合とを有するので、ポリ
アクリル酸皮膜は極性基が金属板の面に配向して、金属
板と強固に密着する。一方エチレン性二重結合は放射線
硬化型樹脂を硬化させる際ポリアクリル酸皮膜まで達す
る強度の放射線が照射されると、放射線によりラジカル
が発生するので、放射線硬化型樹脂とラジカル重合し、
化学的に結合する。このため放射線硬化型樹脂はポリア
クリル酸皮膜を介して金属板に密着するものと考えられ
る。
In the present invention, the mechanism by which the coating property of the radiation-curable resin is improved by treating the metal plate with the aqueous polyacrylic acid solution has not been theoretically sufficiently clarified, but it is considered as follows. That is, since polyacrylic acid has a polar group (—COOH) and an ethylenic double bond, the polar group of the polyacrylic acid film is oriented on the surface of the metal plate and firmly adheres to the metal plate. On the other hand, when the ethylenic double bond is irradiated with radiation having a strength reaching the polyacrylic acid film when curing the radiation-curable resin, radicals are generated by the radiation, so radical polymerization with the radiation-curable resin occurs.
Chemically bond. Therefore, it is considered that the radiation curable resin adheres to the metal plate via the polyacrylic acid film.

本発明で金属板の処理に使用するポリアクリル酸水溶液
としては、分子量が3,000〜50,000のポリア
クリル酸を溶解したものを使用するのが好ましい。これ
は分子量が3,000未満の低分子量のものであると分
子相互の凝集力が弱いため、皮膜強度が弱く、皮膜のと
ころから剥離してしまい、一方50,000を越える高
分子量のものになると溶解しにくくなって、常時安定し
た水溶液に保つのが困難になり、塗布作業が不安定にな
るとともに、均一な皮膜を形成することができなくなる
からである。
As the polyacrylic acid aqueous solution used for the treatment of the metal plate in the present invention, it is preferable to use a solution in which polyacrylic acid having a molecular weight of 3,000 to 50,000 is dissolved. This is because when the molecular weight is lower than 3,000, the cohesive force between the molecules is weak, so the film strength is weak and the film peels off from the film. On the other hand, the molecular weight exceeds 50,000. If so, it becomes difficult to dissolve, it becomes difficult to always maintain a stable aqueous solution, the coating operation becomes unstable, and it becomes impossible to form a uniform film.

金属板をポリアクリル酸水溶液で処理する方法としては
特に制限がなく、例えばスプレー法、浸漬ロール絞り
法、浸漬エアナイフ絞り法、ロールコート法、刷毛塗り
法、カーテンフローコート法など従来の公知方法で処理
すればよい。
There is no particular limitation on the method of treating the metal plate with the aqueous polyacrylic acid solution, and for example, a conventionally known method such as a spray method, an immersion roll drawing method, an immersion air knife drawing method, a roll coating method, a brush coating method, or a curtain flow coating method is used. Just process it.

しかし処理の際ポリアクリル酸皮膜が乾燥皮膜量で10
〜100mg/m2になるようにする必要がある。皮膜量が
10mg/m2未満であると皮膜表面のエチレン性二重結合
数が減少して、放射線硬化型樹脂を硬化させる際放射線
を皮膜に達するまで照射しても、ラジカル発生量が不足
するため、放射線硬化型樹脂塗膜とのラジカル重合が起
こりにくくなり、充分な層間密着性が得られず、逆に1
00mg/m2を越えるとラジカル発生量が著しく増加し
て、ポリアクリル酸同志の架橋反応が進行し、皮膜自体
が硬く、脆くなる結果、硬化に伴う内部応力に耐えられ
なくなり、放射線硬化型樹脂の塗膜密着性、特に加工時
の密着性がかえって低下してしまう。また塗布後の乾燥
は水分を蒸発させればよく、強制乾燥させる場合には板
温が40〜120℃になる程度に加熱すればよい。
However, when treated, the polyacrylic acid film was 10
It is necessary to set it to ˜100 mg / m 2 . If the coating amount is less than 10 mg / m 2 , the number of ethylenic double bonds on the coating surface will decrease, and the amount of radicals generated will be insufficient even when the radiation is irradiated until it reaches the coating when curing the radiation curable resin. Therefore, radical polymerization with the radiation-curable resin coating film is less likely to occur, and sufficient interlayer adhesion cannot be obtained.
When the amount exceeds 100 mg / m 2 , the radical generation amount increases remarkably, the crosslinking reaction of polyacrylic acid progresses, and the coating itself becomes hard and brittle. As a result, the internal stress due to curing cannot be withstood, and the radiation curable resin The coating film adhesion, especially the adhesion during processing, rather decreases. Further, the drying after application may be carried out by evaporating the water content, and in the case of forced drying, the plate temperature may be heated to 40 to 120 ° C.

本発明では以上のようにしてポリアクリル酸皮膜を形成
した後放射線硬化型樹脂液を塗布し、ポリアクリル酸皮
膜に達する強度の放射線を照射し、硬化させる。樹脂液
の樹脂としては放射線によりラジカル重合可能なエチレ
ン性不飽和二重結合を有するものであればよく、例えば
不飽和ポリエステル樹脂、ポリエステル(メタ)アクリ
レート、エポキシ(メタ)アクリレート、ポリウレタン
(メタ)アクリレート、ポリアミド(メタ)アクリレー
トおよびポリオール(メタ)アクリレートなどのオリゴ
マー、あるいはエチレングリコール(メタ)アクリレー
ト、トリエチレングリコール(メタ)アクリレート、テ
トラエチレングリコールジ(メタ)アクリレート、トリ
メチロールプロパントリ(メタ)アクリレート、他の
(メタ)アクリル酸エステル類、ジアリルフタレート、
メチレンビスアクリルアミド、トリアクリルイソシアネ
ート、スチレン、(メタ)アクリロニトリル、酢酸ビニ
ルなどのモノマーである。放射線硬化型樹脂液には同じ
反応機構の反応性希釈剤を配合してもよく、顔料や各種
添加剤を配合してもよい。
In the present invention, after the polyacrylic acid film is formed as described above, the radiation-curable resin liquid is applied, and the radiation of the intensity reaching the polyacrylic acid film is applied to cure. The resin of the resin liquid may be any resin having an ethylenically unsaturated double bond capable of radical polymerization by radiation, for example, unsaturated polyester resin, polyester (meth) acrylate, epoxy (meth) acrylate, polyurethane (meth) acrylate. Oligomers such as polyamide (meth) acrylate and polyol (meth) acrylate, or ethylene glycol (meth) acrylate, triethylene glycol (meth) acrylate, tetraethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, Other (meth) acrylic acid esters, diallyl phthalate,
Monomers such as methylene bis acrylamide, triacryl isocyanate, styrene, (meth) acrylonitrile and vinyl acetate. The radiation curable resin liquid may be mixed with a reactive diluent having the same reaction mechanism, or may be mixed with a pigment or various additives.

放射線硬化型樹脂の塗装塗膜厚は特に限定はなく、用途
に合わせて決定すればよい。硬化させる際の放射線照射
量は例えば放射線硬化型樹脂液の樹脂を電子線硬化型の
ものにして、乾燥塗膜厚で10〜50μm塗装した場
合、100KeV程度の加速電圧で5〜15Mradの線量の
電子線を照射すれば、硬化させることができるととも
に、ポリアクリル酸皮膜とラジカル重合させることがで
きる。
The coating film thickness of the radiation curable resin is not particularly limited and may be determined according to the application. The radiation dose for curing is, for example, when the resin of the radiation curable resin liquid is an electron beam curable type and is coated with a dry coating film thickness of 10 to 50 μm, an acceleration voltage of about 100 KeV and a dose of 5 to 15 Mrad. Irradiation with an electron beam allows curing and radical polymerization with the polyacrylic acid film.

なお樹脂を紫外線により硬化させる場合には樹脂液をク
リヤーまたは着色クリヤーにして、光重合開始剤を添加
する。光重合開始剤としては、ベンゾインメチルエーテ
ル、ベンゾインエチルエーテル、ベンゾインイソプロピ
ルエーテル、ベンゾインブチルエーテル、ベンゾフェノ
ン/第3級アミン、ベンジルメチルケタール、2,2−
ジエトキシアセトフェノン、α−ヒドロキシイソブチロ
フェノン、1,1−ジクロロアセトフェノン、2−クロ
ロチオキサントンなどがあるが、これらを0.1〜5重
量%添加すれば、200nm〜350nmの紫外線で硬化さ
せることができる。なお着色クリヤー樹脂液を塗布する
場合は塗膜を薄くする。
When the resin is cured by ultraviolet rays, the resin liquid is made clear or colored and a photopolymerization initiator is added. As the photopolymerization initiator, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzophenone / tertiary amine, benzyl methyl ketal, 2,2-
There are diethoxyacetophenone, α-hydroxyisobutyrophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, etc., but if these are added in an amount of 0.1 to 5% by weight, they can be cured by ultraviolet rays of 200 nm to 350 nm. . When the colored clear resin liquid is applied, the coating film should be thin.

本発明により放射線硬化型樹脂を塗装する場合、必要で
あればポリアクリル酸水溶液塗布前に従来一般に行われ
ている機械的研摩、リン酸塩処理、クロメート処理、酸
洗などの塗装前処理を施してもよい。
When the radiation-curable resin is coated according to the present invention, if necessary, pre-coating treatment such as mechanical polishing, phosphate treatment, chromate treatment, pickling, etc., which is generally performed before, is applied before polyacrylic acid aqueous solution coating. May be.

また金属板は冷延鋼板、各種めっき鋼板、ステンレス鋼
板などの鋼板、アルミニウムに代表される非鉄金属板い
ずれでもよい。
Further, the metal plate may be any of cold rolled steel plates, various plated steel plates, steel plates such as stainless steel plates, and non-ferrous metal plates represented by aluminum.

次に実施令により本発明を説明する。Next, the present invention will be described with reference to the implementation order.

(実施例) 亜鉛付着量60g/m2の溶融亜鉛めっき鋼板(板厚0.5m
m)を表1に示すような分子量のポリアクリル酸を溶解
した水溶液で処理した後、乾燥して乾燥皮膜量が5〜1
20mg/m2の皮膜を形成した。その後この皮膜の上に表
1に示すような種々の放射線硬化型樹脂の樹脂液を塗布
して、加速電圧160KeV、電子流15mAの条件で10M
rad電子線を照射して硬化させ、乾燥塗膜厚20μmの
樹脂塗膜を形成した。
(Example) Hot-dip galvanized steel sheet with a zinc adhesion amount of 60 g / m 2 (sheet thickness 0.5 m
m) is treated with an aqueous solution in which polyacrylic acid having a molecular weight as shown in Table 1 is dissolved, and then dried to obtain a dry film amount of 5 to 1
A 20 mg / m 2 film was formed. After that, resin solutions of various radiation-curable resins as shown in Table 1 are applied on this film, and 10M under the conditions of an acceleration voltage of 160 KeV and an electron flow of 15 mA.
The coating film was irradiated with a rad electron beam and cured to form a resin coating film having a dry coating film thickness of 20 μm.

次にここで得られた塗装鋼板に次のような塗膜密着性試
験を行った。
Next, the coated steel sheet obtained here was subjected to the following coating film adhesion test.

(1)ゴバン目試験 塗装鋼板の塗膜面にカッターナイフで1mm×1mmのゴバ
ン目を100個切り刻み、そのゴバン目部分にセロテー
プを貼り付けて剥離し、次の基準に従って評価した。
(1) Goggle test 100 pieces of 1 mm x 1 mm goggles were cut into pieces on the surface of the coated steel sheet with a cutter knife, and a cellophane tape was attached to the goggles to remove the pieces, and evaluation was performed according to the following criteria.

○ 塗膜剥離していないゴバン目数が80以上のもの △ 塗膜剥離していないゴバン目数が80未満50以上
のもの × 塗膜剥離していないゴバン目数が50未満のもの (2)ゴバン目エリクセン試験 塗装鋼板に前記ゴバン目試験と同要領でゴバン目を切り
刻んだ後、そのゴバン目部分をエリクセン試験機で6mm
押し出して、セロテープを貼り付けて剥離し、上記同基
準で評価した。
○ Those with 80 or more goggles without peeling off coating △ Those with less than 80 goggles without peeling coating with 50 or more × Those with less than 50 goggles without peeling coating (2) Gobin's eye Erichsen test After cutting the Gobang's eyes on the coated steel plate in the same manner as the Gobang's eye test, the Gobang's eyes are 6 mm with an Erichsen tester.
It was extruded, a cellophane tape was attached, and it was peeled off, and evaluated according to the same criteria as above.

表1にこの塗膜密着性試験結果をポリアクリル酸水溶液
および放射線硬化型樹脂の種類とともに示す。
Table 1 shows the results of this coating film adhesion test together with the types of polyacrylic acid aqueous solution and radiation curable resin.

表1に示すように、放射線硬化型樹脂液塗布前に分子量
3,000〜50,000のポリアクリル酸を溶解下水
溶液で処理して乾燥皮膜量が10〜100mg/m2の皮膜
を形成すれば、放射線硬化型樹脂の塗膜密着性は従来の
化成処理を施した場合より向上する。
As shown in Table 1, polyacrylic acid having a molecular weight of 3,000 to 50,000 may be treated with an aqueous solution while being dissolved to form a film having a dry film amount of 10 to 100 mg / m 2 before applying the radiation curable resin liquid. For example, the coating adhesion of the radiation-curable resin is improved as compared with the case where the conventional chemical conversion treatment is applied.

(効果) 以上のごとく、本発明の塗装方法は金属板をポリアクリ
ル酸水溶液で処理して、金属板と放射線硬化型樹脂の双
方に密着性の優れたポリアクリル酸皮膜を形成すること
により放射線硬化型樹脂の塗膜密着性を向上させるので
あるから、設備は簡単なものでよく、省資源、省エネル
ギーにすることができる。
(Effect) As described above, in the coating method of the present invention, a metal plate is treated with an aqueous solution of polyacrylic acid to form a polyacrylic acid film having excellent adhesion on both the metal plate and the radiation curable resin. Since it improves the coating film adhesion of the curable resin, the equipment can be simple and resource and energy can be saved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 浩治 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社市川研究所内 (72)発明者 前北 杲彦 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社市川研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Mori Inventor, Ichikawa Research Institute, Ichikawa Research Institute, Ichikawa City, Ichikawa City, Chiba Prefecture (72) Inventor, Masuhiko Maekita 7 Takamachi, Ichikawa City, Chiba Prefecture No. 1 Nisshin Steel Co., Ltd. Ichikawa Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属板を分子量が3,000〜50,00
0のポリアクリル酸水溶液で処理して、乾燥皮膜量で1
0〜100mg/m2の皮膜を形成した後、放射線硬化型樹
脂液を塗布して、ポリアクリル酸皮膜まで達する強度の
放射線を照射して硬化させることを特徴とする放射線硬
化型樹脂の塗装方法。
1. A metal plate having a molecular weight of 3,000 to 50,000.
Treated with an aqueous solution of polyacrylic acid of 0, and the dry film amount is 1
A method for coating a radiation-curable resin, which comprises coating a radiation-curable resin liquid after forming a coating film of 0 to 100 mg / m 2 and irradiating it with a radiation having a strength reaching a polyacrylic acid coating to cure the resin. .
JP27623685A 1985-12-09 1985-12-09 Radiation-curable resin coating method Expired - Lifetime JPH069675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27623685A JPH069675B2 (en) 1985-12-09 1985-12-09 Radiation-curable resin coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27623685A JPH069675B2 (en) 1985-12-09 1985-12-09 Radiation-curable resin coating method

Publications (2)

Publication Number Publication Date
JPS62136274A JPS62136274A (en) 1987-06-19
JPH069675B2 true JPH069675B2 (en) 1994-02-09

Family

ID=17566592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27623685A Expired - Lifetime JPH069675B2 (en) 1985-12-09 1985-12-09 Radiation-curable resin coating method

Country Status (1)

Country Link
JP (1) JPH069675B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551490B2 (en) * 1990-01-29 1996-11-06 日本電解 株式会社 UV-curable aqueous resin-coated copper foil, UV-curable aqueous resin-coated copper clad laminate, their manufacturing method and their cured coating removal method
JPH0539624U (en) * 1991-10-30 1993-05-28 大日本スクリーン製造株式会社 Particle remover

Also Published As

Publication number Publication date
JPS62136274A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
US4018939A (en) Method of rendering surfaces nonfogging
US6696106B1 (en) Primer for radiation curable coating compositions
EP0021369B1 (en) Process for producing a shaped resin article having a mat surface
JPH069675B2 (en) Radiation-curable resin coating method
JPH0235777B2 (en)
EP1470933A2 (en) Protective layer comprising lacquer
JP2898698B2 (en) Manufacturing method of coated metal plate with radiation-curable paint
DE2355657A1 (en) Stepwise irradiative curing of polymer layers - by first partly curing, then applying a protective coating, and finally completely curing
JPS62151476A (en) Tentative surface protection for metal plates
JPH07103245B2 (en) Method of manufacturing coated products
JPS6349618B2 (en)
JPS61194441A (en) Adhesive resin composition
KR950010586B1 (en) Primed polyalefin base material
JPH0562896B2 (en)
JP2898693B2 (en) Manufacturing method of pre-coated steel sheet
JPS6238277A (en) Preparation of radiation cured precoated metal plate
JP2684642B2 (en) Method for manufacturing vinyl chloride resin laminated steel sheet
JPS62125879A (en) Production of painted metallic sheet by paint curable by radiation
JPH01225674A (en) Surface modification of steel sheet coated with fluorocarbon resin
JPH057836A (en) Metal product provided with protective coating
US20030198765A1 (en) Process for making a metal-polymer composite having an irradiated and thermally adhered polymer coating
DE2159303A1 (en) Process for curing polymerizable films
JPH01249324A (en) Adhesion method between steel sheet and smc sheet
JP2003191695A (en) Manufacturing method for decorative molded article
JPH059318A (en) Coating agent and method for forming film using the same