JPS6211907B2 - - Google Patents

Info

Publication number
JPS6211907B2
JPS6211907B2 JP12169580A JP12169580A JPS6211907B2 JP S6211907 B2 JPS6211907 B2 JP S6211907B2 JP 12169580 A JP12169580 A JP 12169580A JP 12169580 A JP12169580 A JP 12169580A JP S6211907 B2 JPS6211907 B2 JP S6211907B2
Authority
JP
Japan
Prior art keywords
coating
paint
film
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12169580A
Other languages
Japanese (ja)
Other versions
JPS5748367A (en
Inventor
Katsuo Miki
Masakatsu Kinoshita
Haruhisa Shigeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP12169580A priority Critical patent/JPS5748367A/en
Publication of JPS5748367A publication Critical patent/JPS5748367A/en
Publication of JPS6211907B2 publication Critical patent/JPS6211907B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタリツク被覆方法に係り、更に詳し
くは、耐チツピング性および耐食性にすぐれた塗
膜を与える低公害性メタリツク被覆方法に関す
る。 メタリツク被覆は自動車の車体などの塗装方法
として広く使用されており、被塗面にメタリツク
な美観を与えることは勿論のこと長期の耐久性、
特に耐チツピング性(石などの異物が塗膜に当つ
た場合にも塗膜が剥離しないこと)および更には
剥離面などから被塗面が腐食しないことが要求さ
れる。更に省資源及び低公害の塗装方法が望まれ
ている。かかる観点から自動車ボデイ用メタリツ
ク被覆方法として、アニオン電着塗料→溶剤型メ
タリツクベース→クリヤー粉体塗料の順に塗装す
る方法が提案されているが、この方法では十分な
耐チツピング性及び耐食性を有する塗膜が得られ
ない。このため、アニオン電着塗料の塗膜の上に
溶剤型の中塗塗料を塗装することが試みられてい
るが、耐チツピング性及び耐食性が十分改良され
ないばかりか、溶剤型の中塗塗料が一工程増える
ためにコストアツプになり、しかも省資源及び公
害防止の見地からも問題のある方法である。 本発明者等はかかる観点から前述の溶液型メタ
リツクベース及びクリヤー粉体塗料の塗装系にお
ける問題点であつた耐食性および耐チツピング性
を改良すべく鋭意研究を進めた結果、金属素材も
しくは化成処理を施した金属素材上にカチオン型
電着塗料を塗装焼付し、次いでエポキシ樹脂系又
はポリエステル樹脂系粉体塗料を塗装焼付した
後、更に溶液型メタリツクベース塗料を塗装し、
焼付けることなく、その上にクリヤー粉体塗料を
塗装し、焼付けることによつて耐チツピング性及
び耐食性にすぐれたメタリツク被覆が得られるこ
とを見出し、本発明をするに至つた。 以下、本発明の被覆方法について更に詳しく説
明する。 本発明方法の第1工程においては、被塗金属表
面を、例えば、必要に応じて脱錆又は脱脂処理を
施した後、又はリン酸亜鉛処理などの皮膜化成処
理などの表面処理を施したのち、カチオン型電着
塗料を塗装し、焼付ける。カチオン型電着塗料と
しては、従来公知の任意のカチオン型電着塗料を
使用することができ、例えば基本樹脂骨核をなす
樹脂としてエポキシ樹脂系カチオン型電着塗料を
好適に使用することができる。このエポキシ樹脂
系カチオン型電着塗料はエポキシ樹脂骨核中に多
数のアミノ基を有するポリアミン樹脂を有機及び
無機酸を中和剤として水溶化させたもので、例え
ばパワートツプU―30、U―60(日本ペイント(株)
製)などとして一般に市販されているものを使用
することができる。かかるカチオン型電着塗料は
電着塗装などの一般的な方法で被塗面に塗装する
ことができ、常法に従つて焼付けてカチオン型電
着塗料塗膜を形成させる。この塗膜の膜厚には特
に限定はないが、一般には15〜30μ程度の厚さと
する。 次に、本発明方法の第2工程において、カチオ
ン型電着塗料塗膜の上に、中塗塗装としてエポキ
シ樹脂系又はポリエステル樹脂系粉体塗料を一般
的方法、例えば静電吹付塗装によつて塗装し、常
法に従つて焼付けて前記粉体塗料の中塗塗膜を形
成させる。 本発明方法において中塗塗装用塗料として使用
されるエポキシ樹脂系粉体塗料としては、例えば
通常の固型のビスフエノールAタイプのエポキシ
樹脂をジシアンジアミド、促進ジシアンジアミ
ド、アミン類、酸無水物、酸ジヒドラジド、酸末
端ポリエステル樹脂などで硬化させるタイプなど
を使用することができ、ポリエステル粉体塗料と
しては、テレフタル酸を主たる酸成分とし、これ
をエチレングリコール、ネオペンチルグリコー
ル、1,4―ブタンジオール、1,6―ヘキサン
ジオール、トリメチロールプロパンなどのポリオ
ールと縮合させたポリエステル樹脂をブロツクイ
ソシアネート、メラミン化合物、エポキシ化合物
などで硬化させるタイプ及び自己硬化させるタイ
プなどを用いることがどきる。 中塗塗膜の膜厚には、特に限定はないが、一般
には10〜200μ程度の厚さが適当である。膜厚が
10μ未満では耐チツピング性が不十分となるので
実用上あまり好ましくない。特に自動車の車体を
塗装する場合には自動車走行中に石ころなどが当
りやすい車体下部を、例えば80μ以上程度の厚膜
に塗装し、屋根部や上側部などを例えば10〜60μ
程度の薄膜に塗装することにより耐チツピング性
の著しく改良された塗膜を形成することができ
る。特に、本発明方法に従えば、中塗塗料として
前記粉体塗料を使用するので、溶剤型塗料の如く
1回塗りで塗装できる膜厚の制限が無く、1回塗
りで厚膜塗装が必要な部分に対しては厚膜に、薄
膜塗装で良い部分には薄膜に、しかも徐々に膜厚
を変化させることができるので塗膜面に段差がつ
くこともなく1回の塗装及び焼付で所望の塗膜を
得ることができる。 本発明方法の第3工程においては、前記中塗塗
膜上に従来一般的に使用されている溶液型メタリ
ツクベース塗料を常法に従つて塗装し、焼付ける
ことなく、クリヤー粉体塗料を一般的な任意の方
法で塗装し、溶液型メタリツクベース塗料の塗膜
をクリヤー粉体塗料の塗膜とを同時に焼付ける。
これらの塗膜厚には特に限定はないが、溶液型メ
タリツクベース塗料の塗膜厚は通常10〜40μ程度
とし、クリヤー粉体塗料の塗膜厚は通常20〜150
μ程度とする。 本発明方法の第3工程において使用されるメタ
リツクベース塗料としては、得られる被覆の呈す
るメタリツク感の点から溶液型のものが好ましく
溶液型のものであれば、例えば通常の溶剤型のほ
かに、ハイソリツド、非水分散型、水溶性、エマ
ルジヨン、スラリーなどの任意のメタリツクベー
ス塗料を用いることができるが、例えばメラミン
アクリル樹脂系、N―メチロールアクリルアミド
硬化型アクリル樹脂系、グリシジル及びカルボキ
シル基を有するアクリル樹脂系、ブロツクイソシ
アネート硬化型アクリル樹脂系などの樹脂系のも
のが好ましい。 一方、溶液型メタリツクベース塗料塗膜の上に
塗装されるクリヤー塗料としては、耐候法、塗膜
外観、黄変性の点から粉体塗料が好ましく、任意
のクリヤー粉体塗料を使用することができるが、
耐候性及び耐久性の面からアクリル樹脂系粉体塗
料の使用が特に好ましい。 以上のようにしてカチオン型電着塗料→エポキ
シ樹脂系又はポリエステル樹脂系粉体塗料→溶液
型メタリツクベース塗料+クリヤー粉体塗料の順
に塗装することによつて金属素材上に耐久性、耐
食性(ソルトスプレー性、耐湿性、曝露後の剥離
性など)及び耐チツピング性などに優れたメタリ
ツク被覆を低公害塗装することができる。かかる
塗装系において塗膜の耐チツピング性が著しく改
良される機構について必ずしも明確ではないが、
本発明者等の知見によれば、溶液型ベース/粉体
クリヤーのメタリツク塗膜に中塗としてポリエス
テル樹脂系又はエポキシ樹脂系粉体塗料を、そし
て下塗としてカチオン型電着塗料を用いることに
より以下の理由により塗膜の耐チツピング性が改
良されるものと推定される。 塗膜の耐チツピング性を決定する要因として、
(i)上塗塗膜の強度、(ii)中塗塗膜の柔軟性及び(iii)下
塗塗膜の柔軟性と金属素材に対する密着性があ
る。すなわち先ず上塗塗膜(特にクリヤー塗膜)
がチツピングをひき起す石に対する衝撃に十分耐
える強度(及び柔軟性)を保持することが第一条
件であり、かかる観点から塗膜の剛直な溶液型メ
タリツクベース塗料とやや柔軟なクリヤー粉体塗
膜の組み合せが耐チツピング性メタリツク被覆の
上塗塗膜として好適である。次に、もし上塗塗膜
にその強度以上の衝撃が与えられた場合には、中
塗及び下塗塗膜がその衝撃エネルギーを吸収でき
なければ(即ち、塗膜が剛直であれば)塗膜が剥
離するが、中塗及び下塗塗膜が衝撃エネルギーを
吸収できれば(即ち、塗膜が柔軟であれば)塗膜
の剥離は起らない。更に、下塗塗膜には素材との
密着性が要求され、もし素材との密着性が十分で
なければ衝撃によつて塗膜が素材から剥離するた
めチツピング性に劣ることとなる。従つて、十分
な柔軟性と素材との十分な密着性(及び耐食性)
を兼備する塗膜が有れば下塗と中塗とは一層の塗
膜で良いが現実にはかかる性質を兼備する塗膜は
得難く、本発明者等の研究によれば剛直ではある
が素材との密着性及び耐食性に優れるカチオン型
電着塗膜と柔軟性に優れるエポキシ樹脂系又はポ
リエステル樹脂系粉体塗膜との組合せによつて所
望の耐チツピング性に優れたメタリツク塗料が得
られることを見出した。中塗塗料としてはエポキ
シ樹脂系又はポリエステル樹脂系粉体塗料を用い
ることが必要でアクリル樹脂系などのその他の粉
体塗料では耐チツピング性に優れた塗膜は得られ
ない。また前述の如く中塗塗膜の膜厚は厚い程耐
チツピング性が向上するので自動車の車体下部な
ど特に耐チツピング性が要求される部分を厚膜に
することもできる。従来の塗装系においては、例
えばアニオン型電着塗膜の上にメタリツク塗膜を
被覆することが行なわれているが、アニオン型電
着塗膜は柔軟性を有し、チツピングの衝撃エネル
ギーは吸収できるが素材との密着性が不十分なた
め素材からの塗膜の剥離が起り、また耐食性も十
分でない。これに対し、アニオン型に代えて単に
カチオン型電着塗膜を用いた場合には密着性は良
好なものの塗膜が剛直であるためチツピングの衝
撃エネルギーを吸収できず、塗膜のワレ、ハガレ
が起るので好ましくない。これに対し、本発明の
塗装系では、前述の如く素材との密着性及び耐食
性に優れたカチオン型電着塗膜の上に中塗塗膜と
して柔軟性に優れたエポキシ樹脂系又はポリエス
テル樹脂系粉体塗料の塗膜を必要な膜厚に形成さ
せるので衝撃エネルギーを十分吸収することがで
き、耐チツピング性に優れた塗膜を得ることがで
きる。 以下、実施例及び比較例に基づいて本発明を更
に詳細に説明するが、本発明の範囲をこれらの実
施例に限定するものではないことはいうまでもな
い。 実施例および比較例 粉体塗料の調製 下記に掲げる組成の配合物をスーパーミキサー
を用いて乾式混合し、次いでコニーダー(スイス
ブス社製PR―46型)にて温度100℃で溶融混練し
た。これをハンマーミルで粉砕し、150メツシユ
の金網でふるつてエポキシ粉体塗料A及びB、ポ
リエステル粉体塗料C〜Eおよびアクリル粉体塗
料Fをそれぞれ製造した。
The present invention relates to a metallic coating method, and more particularly to a low-pollution metallic coating method that provides a coating film with excellent chipping resistance and corrosion resistance. Metallic coating is widely used as a coating method for car bodies, etc., and it not only gives the coated surface a metallic appearance, but also provides long-term durability and durability.
In particular, it is required to have chipping resistance (the coating film does not peel off even when a foreign object such as a stone hits the coating film) and that the coated surface does not corrode from the peeled surface. Furthermore, a coating method that saves resources and reduces pollution is desired. From this point of view, a method has been proposed as a metallic coating method for automobile bodies, in which the coating is applied in the order of anionic electrodeposition paint, solvent-based metallic base, and clear powder paint. A film cannot be obtained. For this reason, attempts have been made to apply a solvent-based intermediate coating on top of the anionic electrodeposition coating, but not only the chipping resistance and corrosion resistance are not sufficiently improved, but the process of solvent-based intermediate coating increases by one step. Therefore, this method increases costs and is also problematic from the viewpoint of resource conservation and pollution prevention. From this point of view, the present inventors have carried out intensive research to improve the corrosion resistance and chipping resistance, which were problems in the coating systems of the solution-type metallic base and clear powder coating mentioned above. A cationic electrodeposition paint is painted and baked on the applied metal material, then an epoxy resin-based or polyester resin-based powder paint is painted and baked, and then a solution-based metallic base paint is applied,
It was discovered that a metallic coating with excellent chipping resistance and corrosion resistance can be obtained by painting a clear powder coating thereon without baking and baking it, which led to the creation of the present invention. The coating method of the present invention will be explained in more detail below. In the first step of the method of the present invention, the surface of the metal to be coated is subjected to, for example, derusting or degreasing treatment as necessary, or surface treatment such as film conversion treatment such as zinc phosphate treatment. , apply cationic electrodeposition paint and bake. As the cationic electrodeposition paint, any conventionally known cationic electrodeposition paint can be used. For example, an epoxy resin-based cationic electrodeposition paint can be suitably used as the resin forming the basic resin core. . This epoxy resin-based cationic electrodeposition paint is made by water-solubilizing a polyamine resin having a large number of amino groups in the epoxy resin core using an organic or inorganic acid as a neutralizing agent.For example, Power Top U-30, U-60 (Nippon Paint Co., Ltd.)
It is possible to use commercially available products such as those available from Such a cationic electrodeposition paint can be applied to a surface to be coated by a general method such as electrodeposition coating, and then baked according to a conventional method to form a cationic electrodeposition paint film. The thickness of this coating film is not particularly limited, but it is generally about 15 to 30 microns thick. Next, in the second step of the method of the present invention, an epoxy resin-based or polyester resin-based powder paint is applied as an intermediate coating on the cationic electrodeposition paint film by a general method, for example, by electrostatic spraying. Then, it is baked according to a conventional method to form an intermediate coating film of the powder paint. The epoxy resin powder coating used as the intermediate coating in the method of the present invention includes, for example, a normal solid bisphenol A type epoxy resin mixed with dicyandiamide, promoted dicyandiamide, amines, acid anhydrides, acid dihydrazide, etc. Types that are cured with acid-terminated polyester resins, etc. can be used, and polyester powder coatings have terephthalic acid as the main acid component, which is mixed with ethylene glycol, neopentyl glycol, 1,4-butanediol, 1, A type in which a polyester resin condensed with a polyol such as 6-hexanediol or trimethylolpropane is cured with a blocked isocyanate, a melamine compound, an epoxy compound, etc., and a self-curing type may be used. The thickness of the intermediate coating film is not particularly limited, but generally a thickness of about 10 to 200 μm is appropriate. Film thickness
If it is less than 10μ, the chipping resistance will be insufficient, so it is not very preferable from a practical standpoint. In particular, when painting the body of a car, the lower part of the car body, which is likely to be hit by stones while the car is running, should be coated with a thick film of, for example, 80μ or more, and the roof and upper side parts should be coated with a film of 10 to 60μ, for example.
By applying the coating to a relatively thin film, it is possible to form a coating film with significantly improved chipping resistance. In particular, according to the method of the present invention, since the powder coating is used as an intermediate coating, there is no limit to the film thickness that can be applied in one coat, as is the case with solvent-based paints, and areas that require thick coating in one coat are not limited. A thick film can be applied to areas where a thin film is suitable, and a thin film can be applied to areas where a thin film is suitable.Furthermore, the film thickness can be gradually changed, so the desired coating can be achieved in one coat and bake without creating any steps on the coating surface. membrane can be obtained. In the third step of the method of the present invention, a commonly used solution-type metallic base paint is applied on the intermediate coat film according to a conventional method, and a clear powder paint is applied as a conventional method without baking. The coating film of the solution-type metallic base paint and the coating film of the clear powder paint are baked at the same time.
There are no particular limitations on the thickness of these coatings, but the coating thickness of solution-type metallic base paints is usually about 10 to 40μ, and the coating thickness of clear powder coatings is usually about 20 to 150μ.
It should be around μ. The metallic base paint used in the third step of the method of the present invention is preferably a solution-type paint from the viewpoint of the metallic feel of the resulting coating. Any metallic base paint such as high solids, non-aqueous dispersion type, water soluble, emulsion, slurry etc. can be used, such as melamine acrylic resin system, N-methylolacrylamide curable acrylic resin system, acrylic resin having glycidyl and carboxyl groups. Resin-based materials such as resin-based and blocked isocyanate-curable acrylic resins are preferred. On the other hand, as the clear paint to be applied on the solution-type metallic base paint film, powder paint is preferable from the viewpoint of weather resistance, paint film appearance, and yellowing, but any clear powder paint can be used. but,
From the viewpoint of weather resistance and durability, it is particularly preferable to use an acrylic resin powder coating. As described above, by applying the cationic electrodeposition paint → epoxy resin or polyester resin powder paint → solution type metallic base paint + clear powder paint in this order, durability and corrosion resistance (salt It is possible to apply a low-pollution metallic coating with excellent sprayability, moisture resistance, peelability after exposure, etc.) and chipping resistance. Although the mechanism by which the chipping resistance of the coating film is significantly improved in such a coating system is not necessarily clear,
According to the findings of the present inventors, the following can be achieved by using a polyester resin-based or epoxy resin-based powder paint as an intermediate coat and a cationic electrodeposition paint as an undercoat on a solution-based base/powder clear metallic coating film. It is presumed that the chipping resistance of the coating film is improved for this reason. The factors that determine the chipping resistance of the paint film are:
(i) strength of the top coat, (ii) flexibility of the intermediate coat, and (iii) flexibility and adhesion to the metal material of the undercoat. In other words, first the top coat (especially the clear coat)
The first condition is to maintain sufficient strength (and flexibility) to withstand the impact against stones that can cause chipping, and from this point of view, the solution-based metallic base paint has a rigid coating and the clear powder coating has a slightly flexible coating. A combination of these is suitable as a top coat for chipping-resistant metallic coatings. Next, if the topcoat is subjected to an impact greater than its strength, if the intermediate and base coats cannot absorb the impact energy (i.e., if the paint is rigid), the paint will peel off. However, if the intermediate coat and base coat can absorb the impact energy (ie, if the coating is flexible), peeling of the coating will not occur. Furthermore, the undercoat film is required to have sufficient adhesion to the material, and if the adhesion to the material is not sufficient, the coating will peel off from the material due to impact, resulting in poor chipping properties. Therefore, sufficient flexibility and sufficient adhesion to the material (and corrosion resistance)
If there is a coating film that has both of these properties, it would be fine to use a single layer for the undercoat and intermediate coating, but in reality, it is difficult to obtain a coating film that has both of these properties.According to the research of the present inventors, although it is rigid, it is difficult to obtain a coating film that has both of these properties. A metallic paint with excellent chipping resistance can be obtained by combining a cationic electrodeposited coating film with excellent adhesion and corrosion resistance with an epoxy resin-based or polyester resin-based powder coating film with excellent flexibility. I found it. It is necessary to use an epoxy resin-based or polyester resin-based powder paint as the intermediate coating; other powder paints such as acrylic resin-based paints cannot provide a coating film with excellent chipping resistance. Furthermore, as mentioned above, the thicker the intermediate coating film, the better the chipping resistance, so a thicker film can be applied to areas where chipping resistance is particularly required, such as the lower part of an automobile body. In conventional coating systems, for example, a metallic coating is coated on top of an anionic electrodeposition coating, but the anionic electrodeposition coating is flexible and absorbs the impact energy of chipping. However, the adhesion to the material is insufficient, resulting in peeling of the coating from the material, and corrosion resistance is also insufficient. On the other hand, when a cationic electrodeposited coating is simply used instead of an anionic coating, the adhesion is good, but the coating is rigid and cannot absorb the impact energy of chipping, resulting in cracking and peeling of the coating. This is not desirable because it causes In contrast, in the coating system of the present invention, as described above, a highly flexible epoxy resin or polyester resin powder is used as an intermediate coating on a cationic electrodeposited coating that has excellent adhesion to materials and corrosion resistance. Since the coating film of the body paint is formed to the required thickness, impact energy can be sufficiently absorbed, and a coating film with excellent chipping resistance can be obtained. The present invention will be described in more detail below based on Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited to these Examples. Examples and Comparative Examples Preparation of Powder Coatings Blends having the compositions listed below were dry mixed using a super mixer, and then melted and kneaded at a temperature of 100°C in a co-kneader (model PR-46 manufactured by Swissbus). This was ground in a hammer mill and sifted through a 150-mesh wire mesh to produce epoxy powder coatings A and B, polyester powder coatings C to E, and acrylic powder coating F, respectively.

【表】【table】

【表】【table】

【表】 塗装試験 リン酸亜鉛処理を施した0.8×90×150mmSPC―
1鋼板に第2表に掲げた電着塗料を20μ塗装し、
170℃で30分間焼付けた。次いで上で調製した中
塗粉体塗料を粉体静電塗装機(サメス社製スター
ジエツトガン)にて60μの厚さに静電塗装し、
170℃で30分間焼付けた。この中塗粉体塗膜を
#400サンドペーパーにて空とぎをおこなつた
後、溶剤型メタリツクベース(注9)を25μ塗装
し、20℃にて10分間セツテイング後、その上にア
クリルクリヤー粉体塗料(注10)を60μの厚さに
静電塗装し、170℃で30分間焼付けた。 この塗板の試験結果を第2表に示す。 (注9) アクリルワニス(メチルメタクリレー
ト10重量部、n―ブチルメタクリレート
30重量部、エチルアクリレート15重量
部、2―エチルヘキシルアクリレート8
重量部、アクリル酸2重量部、2―ヒド
ロキシエチルメタクリレート5重量部、
N―n―ブトキシメチルアクリルアミド
10重量部、スチレン20重量部、キシロー
ル80重量部、ブタノール20重量部および
アゾビスイソブチロニトリル1重量部の
混合物を溶液重合することによつて得た
アクリルワニス)100重量部、アルペー
スト1109MA(東洋アルミニウム製)5
重量部、フタロシアニンブルー0.5重量
部および三菱カーボンMA―1000.01重量
部から通常の方法にて製造した溶剤型塗
料 (注10) アクリル樹脂(グリシジルメタクリレ
ート22.5重量部、メチルメタクリレート
40重量部、ブチルメタクリレート17.5重
量部、スチレン20重量部、アゾビスイソ
ブチロニトリル2重量部およびt―ドデ
シルメルカプタン2.5重量部の混合物を
通常の方法で懸濁重合したアクリル樹
脂)100重量部、ドデカン2酸18重量部
およびモダフロー(モンサント製)1部
を通常の方法にて溶融混練し、粉砕、
150メツシユでふるつたクリヤーアクリ
ル粉体塗料
[Table] Paint test 0.8 x 90 x 150 mm SPC treated with zinc phosphate -
1 Apply 20μ of the electrodeposition paint listed in Table 2 to a steel plate,
Baked at 170°C for 30 minutes. Next, the intermediate powder paint prepared above was electrostatically coated to a thickness of 60μ using a powder electrostatic coating machine (Starjet gun manufactured by Sames).
Baked at 170°C for 30 minutes. After sanding this intermediate powder coating film with #400 sandpaper, 25μ of solvent-based metallic base (Note 9) was applied, and after setting for 10 minutes at 20℃, acrylic clear powder was applied on top. Paint (Note 10) was applied electrostatically to a thickness of 60μ and baked at 170℃ for 30 minutes. The test results for this coated plate are shown in Table 2. (Note 9) Acrylic varnish (10 parts by weight of methyl methacrylate, n-butyl methacrylate)
30 parts by weight, 15 parts by weight of ethyl acrylate, 8 parts by weight of 2-ethylhexyl acrylate
parts by weight, 2 parts by weight of acrylic acid, 5 parts by weight of 2-hydroxyethyl methacrylate,
N-n-butoxymethylacrylamide
Acrylic varnish obtained by solution polymerizing a mixture of 10 parts by weight, 20 parts by weight of styrene, 80 parts by weight of xylene, 20 parts by weight of butanol and 1 part by weight of azobisisobutyronitrile) 100 parts by weight, Alpaste 1109MA (Toyo Aluminum) 5
Part by weight, solvent-based paint (Note 10) manufactured from 0.5 parts by weight of Phthalocyanine Blue and 0.01 parts by weight of Mitsubishi Carbon MA-1000 Acrylic resin (22.5 parts by weight of glycidyl methacrylate, methyl methacrylate)
100 parts by weight of an acrylic resin obtained by suspension polymerization of a mixture of 40 parts by weight, butyl methacrylate, 17.5 parts by weight, 20 parts by weight of styrene, 2 parts by weight of azobisisobutyronitrile and 2.5 parts by weight of t-dodecyl mercaptan, 18 parts by weight of dodecanedioic acid and 1 part of Modaflow (manufactured by Monsanto) were melt-kneaded in a conventional manner, crushed,
Clear acrylic powder paint with 150 mesh

【表】 次に前記各実験において使用したエポキシ粉体
塗料、ポリエステル粉体塗料、アクリル粉体塗料
及び溶剤型中塗塗料塗膜の物性を確認した。第3
表に結果を示す。
[Table] Next, the physical properties of the epoxy powder paint, polyester powder paint, acrylic powder paint, and solvent-type intermediate paint film used in each of the above experiments were confirmed. Third
The results are shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 金属素材もしくは化成処理を施した金属素材
上にカチオン型電着塗料を塗装焼付し、次いでエ
ポキシ樹脂系又はポリエステル樹脂系粉体塗料を
塗装焼付した後、更に溶液型メタリツクベース塗
料を塗装し、焼付けることなく、その上にクリヤ
ー粉体塗料を塗装し、焼付けることを特徴とする
メタリツク被覆方法。
1. Coating and baking a cationic electrodeposition paint on a metal material or a metal material that has undergone chemical conversion treatment, then coating and baking an epoxy resin-based or polyester resin-based powder coating, and then applying a solution-type metallic base paint, A metallic coating method characterized by painting a clear powder coating on it and baking it without baking.
JP12169580A 1980-09-04 1980-09-04 Metallic coating Granted JPS5748367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12169580A JPS5748367A (en) 1980-09-04 1980-09-04 Metallic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12169580A JPS5748367A (en) 1980-09-04 1980-09-04 Metallic coating

Publications (2)

Publication Number Publication Date
JPS5748367A JPS5748367A (en) 1982-03-19
JPS6211907B2 true JPS6211907B2 (en) 1987-03-16

Family

ID=14817584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12169580A Granted JPS5748367A (en) 1980-09-04 1980-09-04 Metallic coating

Country Status (1)

Country Link
JP (1) JPS5748367A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173309U (en) * 1985-04-16 1986-10-28
JPS62262777A (en) * 1986-05-09 1987-11-14 Kansai Paint Co Ltd Formation of corrosion preventive coated film
DE4125459A1 (en) * 1991-08-01 1993-02-04 Herberts Gmbh METHOD FOR PRODUCING STONE IMPACT-RESISTANT MULTI-LAYER PAINTINGS AND FILLER MATERIALS USED THEREFOR

Also Published As

Publication number Publication date
JPS5748367A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
JPS6265767A (en) Method for painting onto steel products
JPS62262777A (en) Formation of corrosion preventive coated film
JP4350182B2 (en) Anticorrosion paint composition, anticorrosion coating film, and method for anticorrosion of metal substrate surface
JPS6211907B2 (en)
JPH06304519A (en) Formation of coating film
JP2512907B2 (en) Painting method
JPH09187722A (en) Method for forming coating film
JP3408718B2 (en) Method of forming metal material surface coating structure
JP3710843B2 (en) Coating method
JP2003154310A (en) Method for forming coating film on aluminum product
JP3294943B2 (en) High corrosion resistance coated steel sheet with extremely excellent work adhesion
JP2892052B2 (en) How to paint galvanized steel
JP3969462B2 (en) Painting method
JP4162769B2 (en) Coating film forming method and coating film
JP2790402B2 (en) Primer composition for aluminum castings
JPS61114780A (en) Method for painting outer panel part of automobile
JPS62258775A (en) Method for painting metal material
JPS6261679A (en) Method for painting steel material
JPH0551553A (en) Primer composition
JPH11131259A (en) Anticorrosive coating of galvanized steel
JPH0472592B2 (en)
JPS58196872A (en) Chipping-resistive coating method
JPS62152570A (en) Painting method
JPS62258784A (en) Method for anticorrosion painting of automotive outer panel part
JPS61271062A (en) Formation of coated film