JPH0472044A - Manufacture of aluminum alloy for packaging container having high strength and low orientation property - Google Patents

Manufacture of aluminum alloy for packaging container having high strength and low orientation property

Info

Publication number
JPH0472044A
JPH0472044A JP18492990A JP18492990A JPH0472044A JP H0472044 A JPH0472044 A JP H0472044A JP 18492990 A JP18492990 A JP 18492990A JP 18492990 A JP18492990 A JP 18492990A JP H0472044 A JPH0472044 A JP H0472044A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
strength
cold rolling
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18492990A
Other languages
Japanese (ja)
Inventor
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18492990A priority Critical patent/JPH0472044A/en
Publication of JPH0472044A publication Critical patent/JPH0472044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PURPOSE:To obtain an aluminum alloy for a packaging container by specifying the amounts of Mn, Mg and Cu as main alloy elements and manufacturing conditions in an Al alloy having a specified compsn. CONSTITUTION:This Al alloy is formed by subjecting the ingot of an allay contg., as essential components, by weight, 0.5 to 1.5% Mn, 0.5 to 3% Mg and 0.5 to 3% Cu, furthermore contg. one or more kinds among <=0.7% Fe, <=0.6%. Si, 0.4% Zn, <=0.3% Cr and <=0.05% Ti and the balance A to homogenizing heat treatment at 500 to 600 deg.C and hot rolling at 270 to 600 deg.C and thereafter combinedly executing process annealing at 350 to 550 deg.C and cold rolling at 30 to 70% cold rolling ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、包装容器用アルミニウム合金の製造に係り、
主としてD I (Drawn &  I roned
)缶に適する扱き加工用アルミニウム合金板材の製造方
法に関するものである。 (従来の技術及び解決しようとする課題)ビール、炭酸
飲料等の飲料缶或いは食缶等に用いられるアルミニウム
缶は、DI加加工−はDRD(Drawn & Red
rawn)加工の何れかによって作られており、前者の
加工方式により得られたものをDI缶、後者の加工方式
により得られたものをDRD缶と称されている。 DI缶は、通常、缶底厚さ0.30−0.35m+aの
缶であり、これを製造する代表的工程としては、素材→
絞り加工(通常2回)→扱き加工(通常3回)→内面塗
装→外面塗装→ネッキング→フランジングからなる工程
である。この際、素材のアルミニウム合金板材としては
、以下の■〜■の特性を備えていることが特に重要であ
る。 ■必要な缶底強度を得るための素材強度。 ■扱き加工時に金型との耐焼付き性に優れること。すな
わち、素材自体が自己潤滑作用を有していること。 ■DI加工後の耳の発生が小さいこと。すなわち、方向
性が小さいこと。 ■エンドとの巻き締め部のフランジ加工性に優れること
。 前記■については、缶強度(=耐圧)Pは下記の(1)
式で表わされる。 P=にσt1・2   ・・・・・・(1)(ここで、
σ:素材強度(耐力)、t:板厚、k:缶底の形状で決
定される形状係数)したがって1缶の耐圧を上げるには
次の3つの方法が存在することになる。 ■強度の高い素材を使用する。 ■耐圧の高い缶底形状を開発する。 ■素材の板厚を厚くする。 そして、最近では素材の薄肉化の要求が強くなり、高耐
圧缶底形状の開発や素材強度の開発が強く要望されてき
た。 この点、従来よりアルミニウム缶ボディーとして使用さ
れている3004合金材(An−1,2Mn −1、1
Mg)(標準耐力24〜26 kgf/m112)につ
いても、特許第1519469号(特公昭61−746
5号)「キャンボディ用焼付硬化型アルミニウム合金硬
質板及びその製造法」にみられるように、3004系合
金のような非熱処理型合金に対して析出強化の考え方を
導入した高強度材(耐力28〜29 kg/am”)が
開発され、薄肉化材として広く用いられている。 しかし、将来的にも、更なる薄肉化の要求が国外・国内
ともにあり、従来の概念を打破する超高強度材の開発が
必要になった。 本発明は、かNる要請に応えるべくなされたものであっ
て、高強度を有し、DI缶として必要な上記用件を満た
し得る高強度且つ低方向を有する包装容器用アルミニウ
ム合金を製造する方法を提供することを目的とするもの
である。 (課題を解決するための手段) 上記目的を達成するため、本発明者らはアルミニウム合
金の成分組成、製造条件等につき鋭意研究を重ねた結果
、主要合金元素としてMn、Mg、Cuの添加量の検討
に基づき化学成分を調整すると共に、均質化熱処理、熱
間圧延、冷間圧延、中間焼鈍の各条件の適正化により、
高強度且つ低耳率を有するキャンボディ用材が得られる
ことを見い呂したものである。 すなわち、本発明は、Mn:0.5〜1.5%、Mg:
0.5〜3%及びCu:0.5〜3%を必須成分として
含有し、更にFe:0.7%以下、Si:0.6%以下
、Zn:0.4%以下、Cr:0.3%以下及びTi:
0.05%以下のうちの1種又は2種以上を含有し、残
部がAn及び不純物からなるアルミニウム合金鋳塊に5
00〜600℃で均熱化熱処理を施し、270〜600
℃で熱間圧延を行った後、350〜550℃の中間焼鈍
と冷延率30〜70%の冷間圧延を組み合わせて施すこ
とを特徴とする高強度且つ低方向性を有する包装容器用
アルミニウム合金の製造方法を要旨とするものである。 以下1本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由を説明する。 Mn: Mnは固溶体強化による強度の付与とAnとの金属間化
合物(Mn、 F e) A Q 、を形成し、微細粒
組織の付与並びに扱き加工時に上記金属間化合物による
金型の清浄効果による焼付き防止作用を付与するための
最重要元素である。しかし、0.5%未満では十分な強
度及び焼付き防止作用が得られない。また、Mnが1.
5%を超えると集合組織が発達し、耳率が高くなること
、フランジ加工時に金属間化合物回りの応力集中による
割れが発生し、製缶歩留まりを大きく損ねる。したがっ
て、Mn量は0.5〜1.5%の範囲とする。 Mg: Mgは固溶体強化により強度を付与する元素であるが、
0.5%未満では十分な強度が得られず、また、3%を
超えるとカップ成形中にSSマーク等の発生を招き、D
I缶の生成時に欠陥となり。 かつ、冷間圧延時の加工硬化が異常に大きくなり、材料
の成形性を大きく損ねる。したがって、Mg量は0.5
〜3%の範囲とする。 したがって、Fe量は0.7%以下とする。 Cu: Cuは固溶体強化・析出硬化により強度を付与する元素
であるが、0.5%未満では十分な強度が得られず、ま
た3%を超えて含有すると耐食性を大きく損ね、且つ強
度が大きくなって強度調整が困難となる。したがって、
Cu量は0.5〜3%の範囲であり、好ましくは、析呂
強化相S′CuMgAn2等による強化が期待される0
、6〜3%の範囲である。 以上の元素を必須成分として含有するが、本発明では以
下の元素Fe、Si、Zn、Cr及びTiのうちの1種
又は2種以上を適量含有させる。 Fe: Feは強度の付与に効果があるほか、(Fe、 Mn)
Si□An1□の晶出物として扱き加工時の焼付き防止
の効果をもたらすと同時に、前述のMnと(Mn、Fe
)An、の金属間化合物を形成する元素である。 しかし、0.7%を超えると粗大な金属間化合物(M 
n、Fe)An6を形成し、成形加工性を損ねる。 Si: Siは前述の(Mn、Fe)An6の晶出物として成形
時の焼付き防止効果をもたらす元素であるが、0.6%
を超えると粗大な晶出物が発生し、成形性を損なうこと
になる。したがって、Si量は0゜6%以下とする。 Zn: Znは強度をもたらす効果のほか、晶出物の微細化をも
たらす元素であるが、0.5%を超えると耐食性が劣化
するので、Zn量は0.4%以下とする。 Cr、 Ti: Cr−Tiはともに組織を微細に制御するために添加さ
れる元素であるが、それぞれ0.3%、0゜05%を超
えて添加されると粗大な金属間化合物が発生し、成形性
を損なうので、Cr量は0.3%以下、Ti量は0.0
5%以下とする。 次に本発明の製造方法について説明する。 上述の化学成分を有するアルミニウム合金は常法により
溶解、鋳造して鋳塊とする。鋳塊は例えばDC鋳造法に
より造塊される・ 得られた鋳塊には500〜600℃の温度で均質化熱処
理を施す必要がある。この均質化熱処理はミクロ偏析の
均質化と所望の金属間化合物の形成を目的とするもので
ある。しかし、5oO℃未満では十分なる均質化熱処理
効果と所望の金属間化合物(Mn、 Fe)AI2Gの
形成ができず、また600℃を超えると共晶融解等の恐
れがあるので、好ましくない。なお、加熱時間は特に制
限しないが、上記の温度範囲で3〜24時間の範囲が望
ましい。 次いで、出炉後、600〜270℃の温度で熱間圧延を
行い、約2〜5■mの熱間圧延板とする。 この際、270℃未満の温度で圧延が実施されると冷間
歪みが導入され、十分均一な熱間未再結晶組織が得られ
ない。なお、上記温度600℃は均質化熱処理温度の上
限値600℃により規定される値である。 その後、350〜550’Cの温度で中間焼鈍を実施し
、軟質材とする。中間焼鈍温度は、350℃未満では十
分な軟質材が得られず、また550℃を超えると異常粗
大粒の発生を招くので、350〜550℃の範囲とする
。中間焼鈍の加熱時間は適宜法められるが、350〜4
00℃の温度域では2〜4時間必要であり、連続焼鈍炉
を使用する高温処理の場合は、例えば500℃で0.5
〜10秒の加熱時間を目安とするのがよい。 なお、場合によっては、中間焼鈍に先立って仕上圧延率
調整のために中間圧延を実施することもある。 最後に、得られた材料に冷間圧延(仕上圧延)を付与し
て硬質材とする。この場合、30%未満の冷間圧延率で
は十分な強度が得られない。一方、70%を超える冷間
圧延率では、冷間圧延により優先方向に結晶粒が配向す
る集合組織が発達し、材料に方向性が生じる結果、缶に
成形するときに約3%以上の耳高となり、成形後のトリ
ミング量の増加が必要となって製品価値を著しく低下さ
せたり、過度の冷間加工による素材の加工硬化による缶
製缶時の割れ等の問題を招き易くなる。よって、冷間圧
延率は30〜70%の範囲とする。 以上の工程により、厚さ約0.3〜Q、4mm+の板材
が得られる。この板材は、通常の方法によってDI加工
、焼付は塗装、ネッキング、フランジング等の工程を経
て所望の寸法形状の缶に成形される。 (実施例) 次に本発明の実施例を示す。 失に貫上 第1表に示す化学成分を有する厚さ600m+*のアル
ミニウム合金鋳塊をDC鋳造法にて溶製し、面前後、5
75℃X6hrの均質化熱処理を施し、550〜300
”Cの温度で熱間圧延を行って、厚さ3m+wのホット
コイルとした。 次いで、中間圧延で0.6C)+m厚とし、500”C
X3秒の中間焼鈍を施し、仕上圧延にて0.30mm厚
の硬質板(仕上冷延率50%)とした。 得られた材料について、製造のまま及び塗装熱処理相当
処理(200’CX 20履in)を施した後の機械的
性質を調べると共に、耳率、絞り性(限界絞り率)、フ
ランジ加工性について評価を行った。 その結果を第1表に併記する。 なお、耳率はポンチ径40mmφ、絞り率40%にて求
めた。また、限界絞り率ではポンチ径33φとした。フ
ランジ加工性は0(良好)、0.・(不良)にて評価し
た。 第1表より、本発明例のアルミニウム合金板は何れも、
高強度で、耳率及び絞り加工性、フランジ加工性に優れ
た特性を有していることがわかる。 一方、比較例は強度不足で、耳率、成形加工性等が劣っ
ている。 実施例2 第1表中の&1のアルミニウム合金について、第2表に
示す種々の条件の製造工程にて最終板厚0.30mmの
硬質板を製造した。 得られた材料について実施例1の場合と同様に材料特性
を評価した。その結果を第2表に併記する。 第2表より、本発明例のアルミニウム合金板は何れも、
高強度で、耳率及び絞り加工性、フランジ加工性に優れ
た特性を有していることがわかる。 一方、比較例は強度不足で、耳率、成形加工性等が劣っ
ている。
(Industrial Application Field) The present invention relates to the production of an aluminum alloy for packaging containers,
Mainly DI (Drawn & I roned)
) This relates to a method for manufacturing aluminum alloy plate material for handling and processing suitable for cans. (Prior art and problems to be solved) Aluminum cans used for beverage cans such as beer and carbonated drinks, food cans, etc. are processed by DI processing and DRD (Drawn & Red).
cans obtained by the former processing method are called DI cans, and those obtained by the latter processing method are called DRD cans. DI cans are usually cans with a can bottom thickness of 0.30-0.35 m+a, and the typical manufacturing process is as follows:
The process consists of drawing (usually twice) → handling (usually three times) → inner surface painting → outer surface painting → necking → flanging. At this time, it is particularly important that the aluminum alloy plate used as the raw material has the following characteristics (1) to (4). ■Material strength to obtain the required can bottom strength. ■It has excellent seizure resistance with the mold during handling. In other words, the material itself has a self-lubricating effect. ■The occurrence of ears after DI processing is small. In other words, the directionality is small. ■Excellent flange workability at the tightening part with the end. Regarding the above ■, the can strength (= pressure resistance) P is as follows (1)
It is expressed by the formula. P = to σt1・2 ・・・・・・(1) (Here,
(σ: material strength (yield strength), t: plate thickness, k: shape factor determined by the shape of the can bottom) Therefore, there are the following three methods to increase the withstand pressure of one can. ■Use strong materials. ■Develop a can bottom shape with high pressure resistance. ■Increase the thickness of the material. Recently, there has been a strong demand for thinner materials, and there has been a strong demand for the development of high pressure-resistant can bottom shapes and the development of material strength. In this respect, the 3004 alloy material (An-1, 2Mn-1, 1
Mg) (standard yield strength 24-26 kgf/m112) is also disclosed in Patent No. 1519469 (Special Publication No. 61-746).
No. 5) "Bake-hardened aluminum alloy hard plate for canvas bodies and its manufacturing method", high-strength materials (yield strength 28-29 kg/am") has been developed and is widely used as a thinner material. However, in the future, there will be demands for even thinner walls both overseas and domestically, and ultra-high It has become necessary to develop a high-strength material.The present invention was made in response to these demands, and the present invention has been made to meet these demands. It is an object of the present invention to provide a method for manufacturing an aluminum alloy for packaging containers having As a result of intensive research into manufacturing conditions, etc., we adjusted the chemical composition based on the addition amount of Mn, Mg, and Cu as the main alloying elements, and also applied homogenization heat treatment, hot rolling, cold rolling, and intermediate annealing. By optimizing the conditions,
It was determined that a canvas material with high strength and low selvage ratio could be obtained. That is, in the present invention, Mn: 0.5 to 1.5%, Mg:
Contains 0.5-3% and Cu: 0.5-3% as essential components, and further contains Fe: 0.7% or less, Si: 0.6% or less, Zn: 0.4% or less, Cr: 0 .3% or less and Ti:
5% to an aluminum alloy ingot containing one or more of 0.05% or less, with the remainder consisting of An and impurities.
Soaking heat treatment at 00-600℃, 270-600℃
Aluminum for packaging containers having high strength and low directionality, characterized in that it is hot rolled at ℃ and then subjected to a combination of intermediate annealing at 350 to 550 ℃ and cold rolling at a cold rolling rate of 30 to 70%. The gist of this paper is the method for producing alloys. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. Mn: Mn imparts strength through solid solution strengthening, forms an intermetallic compound (Mn, Fe) A Q with An, imparts a fine grain structure, and has a mold cleaning effect due to the intermetallic compound during handling and processing. It is the most important element for providing anti-seize effect. However, if it is less than 0.5%, sufficient strength and anti-seizure effect cannot be obtained. Moreover, Mn is 1.
If it exceeds 5%, a texture will develop, the selvage rate will increase, and cracks will occur due to stress concentration around the intermetallic compound during flange processing, which will greatly impair can manufacturing yield. Therefore, the amount of Mn is set in the range of 0.5 to 1.5%. Mg: Mg is an element that imparts strength through solid solution strengthening.
If it is less than 0.5%, sufficient strength cannot be obtained, and if it exceeds 3%, SS marks etc. may occur during cup molding, resulting in D
It becomes a defect when the I can is produced. In addition, work hardening during cold rolling becomes abnormally large, greatly impairing the formability of the material. Therefore, the amount of Mg is 0.5
-3% range. Therefore, the amount of Fe is set to 0.7% or less. Cu: Cu is an element that imparts strength through solid solution strengthening and precipitation hardening, but if it is less than 0.5%, sufficient strength cannot be obtained, and if it is contained in more than 3%, corrosion resistance will be greatly impaired and the strength will be too high. This makes it difficult to adjust the strength. therefore,
The amount of Cu is in the range of 0.5 to 3%, and is preferably 0.5% to 3%.
, in the range of 6-3%. Although the above elements are contained as essential components, in the present invention, one or more of the following elements Fe, Si, Zn, Cr, and Ti are contained in appropriate amounts. Fe: Fe is effective in imparting strength, and (Fe, Mn)
It is treated as a crystallized product of Si□An1□ and has the effect of preventing seizure during processing.
) An is an element that forms an intermetallic compound. However, if it exceeds 0.7%, coarse intermetallic compounds (M
n, Fe) forms An6 and impairs moldability. Si: Si is an element that provides an anti-seizure effect during molding as a crystallized product of the aforementioned (Mn, Fe)An6, but at 0.6%
If it exceeds this amount, coarse crystallized substances will be generated and the moldability will be impaired. Therefore, the amount of Si is set to 0°6% or less. Zn: Zn is an element that not only provides strength but also makes crystallized substances finer. However, if it exceeds 0.5%, corrosion resistance deteriorates, so the amount of Zn is set to 0.4% or less. Cr, Ti: Both Cr-Ti are elements added to finely control the structure, but if added in excess of 0.3% and 0.05%, respectively, coarse intermetallic compounds will occur. , the amount of Cr is 0.3% or less, and the amount of Ti is 0.0%, since it impairs the formability.
5% or less. Next, the manufacturing method of the present invention will be explained. An aluminum alloy having the above-mentioned chemical components is melted and cast into an ingot using a conventional method. The ingot is formed by, for example, a DC casting method. The obtained ingot needs to be subjected to homogenization heat treatment at a temperature of 500 to 600°C. The purpose of this homogenization heat treatment is to homogenize microsegregation and form desired intermetallic compounds. However, if it is less than 500°C, a sufficient homogenizing heat treatment effect and the desired intermetallic compound (Mn, Fe) AI2G cannot be formed, and if it exceeds 600°C, there is a risk of eutectic melting, which is not preferable. Note that the heating time is not particularly limited, but a range of 3 to 24 hours within the above temperature range is desirable. Next, after being taken out of the furnace, hot rolling is performed at a temperature of 600 to 270°C to obtain a hot rolled plate of approximately 2 to 5 μm. At this time, if rolling is carried out at a temperature below 270° C., cold strain will be introduced and a sufficiently uniform hot unrecrystallized structure will not be obtained. Note that the above temperature of 600°C is a value defined by the upper limit of the homogenization heat treatment temperature of 600°C. Thereafter, intermediate annealing is performed at a temperature of 350 to 550'C to obtain a soft material. The intermediate annealing temperature is set in the range of 350 to 550°C, since a sufficiently soft material cannot be obtained if it is less than 350°C, and abnormally coarse grains occur if it exceeds 550°C. The heating time for intermediate annealing is determined as appropriate, but it is 350 to 4
In the temperature range of 00°C, 2 to 4 hours are required, and in the case of high-temperature treatment using a continuous annealing furnace, for example, 0.5 hours at 500°C.
It is best to aim for a heating time of ~10 seconds. In some cases, intermediate rolling may be performed to adjust the finish rolling rate prior to intermediate annealing. Finally, the obtained material is subjected to cold rolling (finish rolling) to form a hard material. In this case, sufficient strength cannot be obtained with a cold rolling reduction of less than 30%. On the other hand, at a cold rolling rate of more than 70%, cold rolling develops a texture in which crystal grains are oriented in a preferential direction, resulting in directional properties of the material, resulting in selvage of approximately 3% or more when forming into cans. This makes it necessary to increase the amount of trimming after molding, which significantly reduces product value, and tends to cause problems such as cracking during can manufacturing due to work hardening of the material due to excessive cold working. Therefore, the cold rolling rate is set in the range of 30 to 70%. Through the above steps, a plate material having a thickness of about 0.3 to Q and 4 mm+ is obtained. This plate material is formed into a can of desired size and shape through steps such as DI processing, baking, painting, necking, and flanging using conventional methods. (Example) Next, an example of the present invention will be shown. An aluminum alloy ingot with a thickness of 600m+* having the chemical composition shown in Table 1 was melted using the DC casting method, and
Homogenized heat treatment at 75℃ x 6hrs, 550~300℃
Hot rolling was carried out at a temperature of "C" to obtain a hot coil with a thickness of 3 m + w. Next, it was intermediate rolled to a thickness of 0.6 "C) + m, and then rolled to a temperature of 500" C.
Intermediate annealing was performed for 3 seconds, and finish rolling was performed to form a hard plate with a thickness of 0.30 mm (finish cold rolling rate: 50%). The mechanical properties of the obtained material as manufactured and after it has been subjected to a treatment equivalent to painting heat treatment (200'C I did it. The results are also listed in Table 1. Note that the selvage ratio was determined using a punch diameter of 40 mmφ and a drawing ratio of 40%. Further, the punch diameter was set to 33φ at the limit drawing rate. Flange workability is 0 (good), 0. - Rated as (Poor). From Table 1, all the aluminum alloy plates of the present invention examples are:
It can be seen that it has high strength, excellent selvage rate, drawing workability, and flange workability. On the other hand, the comparative example lacks strength and is inferior in selvage ratio, moldability, etc. Example 2 A hard plate having a final plate thickness of 0.30 mm was manufactured using the aluminum alloy &1 in Table 1 through the manufacturing process under various conditions shown in Table 2. The material properties of the obtained material were evaluated in the same manner as in Example 1. The results are also listed in Table 2. From Table 2, all of the aluminum alloy plates of the present invention examples are:
It can be seen that it has high strength, excellent selvage rate, drawing workability, and flange workability. On the other hand, the comparative example lacks strength and is inferior in selvage ratio, moldability, etc.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、特定の化学成分
のアルミニウム合金について製造条件を規制して適用す
るので、高強度で且つ低方向性を有する包装用アルミニ
ウム合金硬質板を製造することができる。特にDI缶の
製造に好適であり、その薄肉化に寄与する効果は非常に
大きい。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, manufacturing conditions are regulated and applied to aluminum alloys with specific chemical components, so that hard aluminum alloys for packaging with high strength and low directionality can be produced. Boards can be manufactured. It is particularly suitable for manufacturing DI cans, and has a very large effect in reducing the thickness of DI cans. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Mn:0.5〜1.5%、M
g:0.5〜3%及びCu:0.5〜3%を必須成分と
して含有し、更にFe:0.7%以下、Si:0.6%
以下、Zn:0.4%以下、Cr:0.3%以下及びT
i:0.05%以下のうちの1種又は2種以上を含有し
、残部がAn及び不純物からなるアルミニウム合金鋳塊
に500〜600℃で均熱化熱処理を施し、270〜6
00℃で熱間圧延を行った後、350〜550℃の中間
焼鈍と冷延率30〜70%の冷間圧延を組み合わせて施
すことを特徴とする高強度且つ低方向性を有する包装容
器用アルミニウム合金の製造方法。
In weight% (hereinafter the same), Mn: 0.5 to 1.5%, M
Contains g: 0.5-3% and Cu: 0.5-3% as essential components, further Fe: 0.7% or less, Si: 0.6%
Below, Zn: 0.4% or less, Cr: 0.3% or less, and T
i: An aluminum alloy ingot containing one or more of 0.05% or less, with the remainder consisting of An and impurities, is subjected to soaking heat treatment at 500 to 600 °C to produce 270 to 6
For packaging containers having high strength and low directionality, which is characterized by hot rolling at 00°C, followed by a combination of intermediate annealing at 350-550°C and cold rolling at a cold rolling rate of 30-70%. Method of manufacturing aluminum alloy.
JP18492990A 1990-07-12 1990-07-12 Manufacture of aluminum alloy for packaging container having high strength and low orientation property Pending JPH0472044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18492990A JPH0472044A (en) 1990-07-12 1990-07-12 Manufacture of aluminum alloy for packaging container having high strength and low orientation property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18492990A JPH0472044A (en) 1990-07-12 1990-07-12 Manufacture of aluminum alloy for packaging container having high strength and low orientation property

Publications (1)

Publication Number Publication Date
JPH0472044A true JPH0472044A (en) 1992-03-06

Family

ID=16161814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18492990A Pending JPH0472044A (en) 1990-07-12 1990-07-12 Manufacture of aluminum alloy for packaging container having high strength and low orientation property

Country Status (1)

Country Link
JP (1) JPH0472044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039206B1 (en) * 2008-03-19 2011-06-03 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet for battery case and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039206B1 (en) * 2008-03-19 2011-06-03 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet for battery case and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
TW202033775A (en) Method for manufacturing aluminum-manganese alloy
JPS62149857A (en) Production of aluminum alloy foil having excellent formability
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
EP3827109B1 (en) Method of manufacturing an al-mg-mn alloy plate product
JP2862198B2 (en) Aluminum alloy plate for DI can body
JPH0472044A (en) Manufacture of aluminum alloy for packaging container having high strength and low orientation property
JPH01123054A (en) Hard-baked-type high-strength can material and its production
JPH09272938A (en) Aluminum foil and its production
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPH01198454A (en) Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH0361350A (en) Manufacture of aluminum alloy for drawing having high strength and low directional property
JPH08127850A (en) Production of aluminum alloy sheet for forming low in edge ratio
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPH02270930A (en) Aluminum alloy hard sheet having excellent formability and its manufacture
JPS63282245A (en) Bakehard type high strength can material and its production
JPH07197175A (en) Aluminum alloy sheet for cap having excellent compressive strength and its production
JPS6280256A (en) Manufacture of material for redrawn vessel
JPH0413852A (en) Production of aluminum alloy hard sheet
JPH02170940A (en) High strength aluminum alloy thin sheet for baking finish and its production
JPH03146632A (en) Aluminum alloy hard sheet having excellent out of roundness in drawn cup and its manufacture
JPH0835045A (en) Production of di can body made of aluminum alloy