JPH0469336B2 - - Google Patents

Info

Publication number
JPH0469336B2
JPH0469336B2 JP58187528A JP18752883A JPH0469336B2 JP H0469336 B2 JPH0469336 B2 JP H0469336B2 JP 58187528 A JP58187528 A JP 58187528A JP 18752883 A JP18752883 A JP 18752883A JP H0469336 B2 JPH0469336 B2 JP H0469336B2
Authority
JP
Japan
Prior art keywords
ion
film
sensitive glass
insulating film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187528A
Other languages
Japanese (ja)
Other versions
JPS6079257A (en
Inventor
Hiroyoshi Mizuguchi
Mitsuyoshi Yoshii
Shotaro Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP58187528A priority Critical patent/JPS6079257A/en
Publication of JPS6079257A publication Critical patent/JPS6079257A/en
Publication of JPH0469336B2 publication Critical patent/JPH0469336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、電界効果型イオン選択性電極に関
する。さらに詳しくは、液体中の特定のイオンの
濃度を測定でき一般分析や臨床分析等に有用な電
界効果型イオン選択性電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a field-effect ion-selective electrode. More specifically, the present invention relates to a field-effect ion-selective electrode that can measure the concentration of specific ions in a liquid and is useful for general analysis, clinical analysis, and the like.

(ロ) 従来技術 最近、イオン選択性電極の小型化、軽量化等の
点から電界効果型トランジスタのゲート部に金属
電極に代えてイオン感応ガラス膜を形成させた電
界効果型イオン選択性電極(以下IS−FET電極)
が提案されるようになつている。そして、イオン
感応ガラス膜の形成は通常、電界効果型トランジ
スタ素子への熱影響を減少しかつ均一な薄膜を得
る観点から、溶融法の代わりに金属アルコキシド
溶液を用いた溶液法によつて行なわれている。こ
の溶液法は、所望のイオン感応ガラス組成に対応
する金属アルコキシドを含有する溶液を、塗布し
そこで加水分解させてゲル化しさらに加熱処理し
て酸化物ガラスに変換する方法である。
(b) Prior art Recently, in order to reduce the size and weight of ion-selective electrodes, field-effect ion-selective electrodes (i.e., IS-FET electrode below)
are increasingly being proposed. The formation of ion-sensitive glass films is usually carried out by a solution method using a metal alkoxide solution instead of a melting method, from the viewpoint of reducing the thermal influence on field effect transistor elements and obtaining a uniform thin film. ing. This solution method is a method in which a solution containing a metal alkoxide corresponding to a desired ion-sensitive glass composition is applied, hydrolyzed therein to form a gel, and further heat-treated to convert it into an oxide glass.

しかし、かような溶液法によつて電界効果型ト
ランジスターのゲート部表面のSiO2絶縁膜上に
直接イオン感応ガラス膜を形成させたものは従来
から全く提案されていない。すなわち上記アルコ
キシド溶液にはアルカリ金属イオンやアルカリ土
類金属イオンが含まれており、これらがゲート表
面のSiO2絶縁膜中に入り込んで残存し、絶縁性
ひいては素子の半導体特性を阻害すると考えられ
ていたからである。
However, no proposal has been made to form an ion-sensitive glass film directly on the SiO 2 insulating film on the gate surface of a field effect transistor using such a solution method. In other words, the alkoxide solution contains alkali metal ions and alkaline earth metal ions, and these were thought to enter and remain in the SiO 2 insulating film on the gate surface, impairing the insulation properties and ultimately the semiconductor properties of the device. It is.

従つて、ゲート部表面のSiO2絶縁膜上にかよ
うな有害金属イオンによる悪影響を防止する表面
安定化膜、例えば、Si3N4膜を、イオン感応ガラ
ス膜形成前に予め形成させておくことが、IS−
FET電極にとつて必須要件とされていた(特開
昭52−26292号公報及び特開昭55−140142号公報
参照)。
Therefore, a surface stabilizing film, for example, a Si 3 N 4 film, which prevents the adverse effects of such harmful metal ions, is formed on the SiO 2 insulating film on the surface of the gate portion before forming the ion-sensitive glass film. That is IS-
This was considered an essential requirement for FET electrodes (see Japanese Patent Laid-Open No. 52-26292 and Japanese Patent Laid-Open No. 55-140142).

しかし、かような安定化膜、ことにSi3N4膜を
SiO2からなるゲート部絶縁膜上に形成し、その
上にイオン感応ガラス膜を形成したIS−FET電
極は歩留りの点で充分に満足できるものではなか
つた。
However, such stabilizing films, especially Si 3 N 4 films,
An IS-FET electrode formed on a gate insulating film made of SiO 2 and an ion-sensitive glass film formed thereon was not fully satisfactory in terms of yield.

この点に関し、本発明者らは種々研究、検討を
重ねた結果、電界効果型トランジスターのSiO2
絶縁膜ゲート部表面に直接イオン感応ガラス膜を
形成したものが、良好なイオン感応特性を示す事
実を見出し、しかもかような直接形成したIS−
FETが、Si3N4のような表面安定化膜を介して形
成した従来のIS−FETよりもイオン応答性、歩
留りの点で優れているという驚くべき事実を見出
し、この発明に到達した。
Regarding this point, as a result of various studies and studies, the inventors found that SiO 2 of field effect transistors
It was discovered that an ion-sensitive glass film formed directly on the surface of the insulating film gate part exhibits good ion-sensitivity characteristics.
The inventors discovered the surprising fact that FETs are superior to conventional IS-FETs formed using surface-stabilizing films such as Si 3 N 4 in terms of ion response and yield, and thus arrived at this invention.

(ハ) 発明の目的 この発明は、イオン応答性及び生産効率のより
優れたIS−FETを得ることを一つの目的とする
ものである。
(c) Purpose of the Invention One purpose of the present invention is to obtain an IS-FET with better ion responsiveness and production efficiency.

(ニ) 発明の構成 かくしてこの発明によれば、ソース部、ドレイ
ン部及びゲート部から構成された電界効果型トラ
ンジスタ素子と、ゲート部表面を構成するSiO2
絶縁膜上に直接形成されたイオン感応ガラス膜と
を備えてなる電界効果型イオン選択性電極が提供
される。
(d) Structure of the Invention According to the present invention, there is provided a field effect transistor element composed of a source part, a drain part, and a gate part, and a SiO 2 which constitutes the surface of the gate part.
A field-effect ion-selective electrode is provided that includes an ion-sensitive glass film formed directly on an insulating film.

この発明における電界効果型トランジスタ素子
としては、電子工業分野でFETとして知られた
デバイスが適用される。ただし通常のFETでは
ゲート部絶縁膜上に金属電極を取り付けた形態で
用いられるが、この発明においては金属電極の代
わりにイオン感応ガラス膜がゲート部絶縁膜上に
直接形成される。
As the field effect transistor element in this invention, a device known as FET in the electronics industry is applied. However, in a normal FET, a metal electrode is attached on the gate insulating film, but in this invention, an ion-sensitive glass film is formed directly on the gate insulating film instead of the metal electrode.

この発明のイオン感応ガラス膜は通常、金属ア
ルコキシドを原料とする溶液をゲート部絶縁膜上
にスピンナー法やデイツプ法などにより塗布しそ
こで金属アルコキシドを加水分解しさらに加熱処
理することにより作製される。
The ion-sensitive glass film of the present invention is usually produced by applying a solution containing a metal alkoxide as a raw material onto the gate insulating film by a spinner method or dip method, hydrolyzing the metal alkoxide therein, and then subjecting it to a heat treatment.

上記金属アルコキシドとしては、イオン選択性
ガラス電極の溶融製造において使用される各種無
機酸化物(Na2O、SiO2、A2O3、B2O3等)、
に対応する低級アルコキシド金属が用いられ、具
体的にはNaOCH3、Ca(OC2H52、Si(OC2H54
A(OC3H73、B(OC2H53等が挙げられる。
Examples of the metal alkoxides include various inorganic oxides (Na 2 O, SiO 2 , A 2 O 3 , B 2 O 3 , etc.) used in the melt production of ion-selective glass electrodes;
Lower alkoxide metals corresponding to are used, specifically NaOCH 3 , Ca(OC 2 H 5 ) 2 , Si(OC 2 H 5 ) 4 ,
Examples include A(OC 3 H 7 ) 3 and B(OC 2 H 5 ) 3 .

この発明において上記金属アルコキシドは複数
組合せて用いられる。この組合せは所望のイオン
感応性ガラス組成に対応して決定される。例えば
Na+感応性ガラスを意図する際には、Si、Na、
A及びBのアルコキシドを組合せればよく、PH
感応性ガラスを意図する場合には、Si、Na及び
Caのアルコキシドを組合せればよく、他の組合
せについても同様である。
In this invention, a plurality of the metal alkoxides mentioned above are used in combination. This combination is determined depending on the desired ion-sensitive glass composition. for example
When intending Na + sensitive glass, Si, Na,
It is sufficient to combine the alkoxides of A and B, and the PH
If sensitive glass is intended, Si, Na and
It is sufficient to combine Ca alkoxides, and the same applies to other combinations.

上記、金属アルコキシドの混合物は、まず溶液
としてFETのゲート部絶縁膜表面に塗着され加
水分解に供され均一なゲル状態を形成する。この
際、溶媒としては揮発性親水性溶媒を用いるのが
好ましい。この溶媒中には若干の水分が含まれて
いてもよいが、通常、水が充分に存在すると金属
アルコキシドのうち加水分解され易いもの、例え
ばNaOCH3やA(OC3H73が急速にゲル化し
て均一なゲル状態が得られない惧れがあり好まし
くない。なお、溶媒に溶解するに当つて最も融点
の高い金属アルコキシドの融点程度迄加熱してで
きるだけ均一な溶液とすることが望ましい。
The metal alkoxide mixture described above is first applied as a solution to the surface of the gate insulating film of the FET and subjected to hydrolysis to form a uniform gel state. At this time, it is preferable to use a volatile hydrophilic solvent as the solvent. This solvent may contain some water, but normally, when there is sufficient water, metal alkoxides that are easily hydrolyzed, such as NaOCH 3 and A(OC 3 H 7 ) 3 , are rapidly This is not preferable since it may gel and make it impossible to obtain a uniform gel state. In addition, when dissolving in a solvent, it is desirable to heat the solution to about the melting point of the metal alkoxide having the highest melting point to make the solution as uniform as possible.

上記揮発性親水性溶媒としては例えばメタノー
ル、エタノール等が挙げられる。なお、金属アル
コキシド溶液の粘度は10〜40cpが適しており、
20〜25cpが好ましい。
Examples of the volatile hydrophilic solvent include methanol and ethanol. In addition, the suitable viscosity of the metal alkoxide solution is 10 to 40 cp.
20-25 cp is preferred.

上記、塗着された溶液中の金属アルコキシドは
溶媒を通じて吸収される水分によつてそれぞれ
徐々に加水分解され、溶媒の蒸散と共に均一なゲ
ル状膜を形成する。このようにして得たゲル状膜
を加熱することにより、ゲル状膜の加水分解物が
脱水縮合してガラス状(酸化物ガラス)となり、
この発明に用いるイオン感応性ガラス膜が得られ
る。この際の加熱温度は通常300〜500℃程度で充
分であり従来の溶融法のごとき高温を用いる必要
はない。
The metal alkoxides in the applied solution are gradually hydrolyzed by water absorbed through the solvent, and as the solvent evaporates, a uniform gel-like film is formed. By heating the gel-like film obtained in this way, the hydrolyzate of the gel-like film undergoes dehydration condensation and becomes glass-like (oxide glass).
An ion-sensitive glass membrane used in this invention is obtained. The heating temperature at this time is usually about 300 to 500°C, which is sufficient, and there is no need to use high temperatures as in conventional melting methods.

なお、形成させるイオン感応ガラス膜の厚みは
通常、0.1〜10μmが適当である。
Note that the thickness of the ion-sensitive glass film to be formed is usually 0.1 to 10 μm.

(ホ) 実施例 原料としてSi(OC2H54、NaOCH3、A(O
−iC3H73及びB(OC2H53を意図するガラス組成
(SiO2、66mo%:Na2O、20mo%:A2
O3、11mo%:B2O3、3mo%)に対応する量
メタノール中に加えて溶解した。この際、Si
(OC2H54の使用量は0.024moであり、金属ア
ルコキシドの溶解は、メタノールに添加後、80℃
で約2時間還流することにより行なつた。
(E) Example Si(OC 2 H 5 ) 4 , NaOCH 3 , A(O
- Glass composition intended for iC 3 H 7 ) 3 and B(OC 2 H 5 ) 3 (SiO 2 , 66 mo%: Na 2 O, 20 mo%: A 2
Amounts corresponding to O 3 , 11 mo%: B 2 O 3 , 3 mo%) were added and dissolved in methanol. At this time, Si
The amount of (OC 2 H 5 ) 4 used was 0.024 mo, and the metal alkoxide was dissolved at 80°C after being added to methanol.
This was done by refluxing for about 2 hours.

上記溶液を、電界効果型トランジスタ素子
(0.5mm×6.5mm×0.2mm:ゲート部表面積約0.06mm2
のゲート部絶縁膜(SiO2膜)上にデイツプ法に
より塗布して均一な液膜を形成させた。この際、
溶液の粘度は約25cpであつた。塗布後、上記素
子を空気中に約1時間放置して空気中の水分によ
り金属アルコキシドを加水分解させた。
Apply the above solution to a field-effect transistor element (0.5 mm x 6.5 mm x 0.2 mm: gate surface area approximately 0.06 mm 2 ).
A uniform liquid film was formed on the gate insulating film (SiO 2 film) using the dip method. On this occasion,
The viscosity of the solution was approximately 25 cp. After coating, the element was left in the air for about 1 hour to allow the metal alkoxide to be hydrolyzed by moisture in the air.

次いでこの素子を電気炉中に入れ500〜600℃で
約10分間熱処理を行なうことにより厚さ約1600Å
のナトリウムイオン感応ガラス膜をゲート部
SiO2絶縁膜上に直接形成した第1図に示すごと
きこの発明の電界効果型イオン選択性電極を得
た。
Next, this element was placed in an electric furnace and heat-treated at 500 to 600°C for about 10 minutes, resulting in a thickness of about 1600 Å.
The sodium ion sensitive glass membrane of the gate part
A field effect type ion selective electrode of the present invention as shown in FIG. 1 was obtained which was formed directly on a SiO 2 insulating film.

なお、図中、1は、ソース部11、ドレイン部
12、ゲート部13及びSiO2絶縁膜14から構
成されてなる電界効果型トランジスタ素子を示
し、2はナトリウムイオン感応ガラス膜を示す。
In the figure, 1 indicates a field effect transistor element composed of a source section 11, a drain section 12, a gate section 13, and an SiO 2 insulating film 14, and 2 indicates a sodium ion-sensitive glass film.

上記この発明のナトリウムIS−FETのNa+
量に対する応答性(電位変化)を従来法に準じて
測定した結果を比較例と共に第3図に示す。
The responsiveness (potential change) of the sodium IS-FET of the present invention to Na + activity was measured according to a conventional method, and the results are shown in FIG. 3 together with a comparative example.

なお、比較例は、従来例を代表するもので、
SiO2絶縁膜14とナトリウムイオン感応ガラス
膜2との間にSi3N4膜3を介在させたものであ
る。
Note that the comparative example is representative of the conventional example.
A Si 3 N 4 film 3 is interposed between a SiO 2 insulating film 14 and a sodium ion-sensitive glass film 2.

このように、Na+活量に対する電位変化は
58.2mV/decであり理論値(59.0mV/dec)に
ほぼ一致しており、応答性が優れていることが判
明した。これに対しSi3N4膜上にガラス膜2を形
成させた比較例においては48.0mV/decであつ
た。比較例において応答特性が劣るのは、Si3N4
上ではガラス膜が均一に形成することが困難でク
ラツクが存在し、Si3N4膜の露出部分があつて応
答性を損なつているものと考えられる。
Thus, the potential change for Na + activity is
It was found that the response was excellent, which was 58.2 mV/dec, which almost matched the theoretical value (59.0 mV/dec). On the other hand, in the comparative example in which the glass film 2 was formed on the Si 3 N 4 film, the voltage was 48.0 mV/dec. In the comparative example, the response characteristics are inferior to Si 3 N 4
It is thought that it is difficult to form the glass film uniformly on the top, and cracks are present, and that the exposed portions of the Si 3 N 4 film are damaged, impairing responsiveness.

次に、測定対象の溶液のPHの影響について、
Na+濃度を10-1mo/としPHを変化させるこ
とにより測定した。この結果を比較例(上記と同
様)と共に第4図に示した。
Next, regarding the influence of PH of the solution to be measured,
It was measured by setting the Na + concentration to 10 -1 mo/ and changing the pH. The results are shown in FIG. 4 together with a comparative example (same as above).

このように、PH6〜9の間で一定電位が示され
ており、イオン感応ガラス膜が理想的に均一に形
成されていることが確認された。これに対し比較
例ではPH変化により電位が大きく変化しており、
イオン感応ガラス膜とSi3N4膜との間に不適合性
ことに露出部分が存在することが確認された。
Thus, a constant potential was shown between pH 6 and 9, confirming that the ion-sensitive glass film was ideally and uniformly formed. On the other hand, in the comparative example, the potential changes significantly due to PH changes,
It was confirmed that an exposed portion existed between the ion-sensitive glass membrane and the Si 3 N 4 membrane due to incompatibility.

以上の実施例などによりSiO2絶縁膜に直接、
ガラス膜を形成したこの発明のIS−FETは、Si3
N4を介して形成した従来のIS−FETに比してイ
オン応答性が優れかつ歩留りもよいことが判明し
た。さらにSi3N4膜等の表面安定化膜を形成させ
る必要がないため製造上も簡便であり、生産効率
も優れていることも判つた。
Directly on the SiO 2 insulating film using the above examples etc.
The IS-FET of this invention formed with a glass film is Si 3
It was found that the ion response was superior to that of conventional IS-FETs formed using N 4 and the yield was also good. Furthermore, it was found that manufacturing is simple and has excellent production efficiency since there is no need to form a surface stabilizing film such as a Si 3 N 4 film.

(ヘ) 発明の効果 以上述べたように、この発明のIS−FETは、
優れたイオン応答性を有しかつ生産効率上も有利
であり、種々の分析、測定分野に有用であり、こ
とに小型化、軽量化の点から臨床分析において有
用である。
(f) Effects of the invention As stated above, the IS-FET of this invention has the following effects:
It has excellent ion responsiveness and is advantageous in terms of production efficiency, and is useful in various analysis and measurement fields, and is particularly useful in clinical analysis because of its miniaturization and weight reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電界効果型イオン選択性電
極(IS−FET)を例示する模式的部分断面図、
第2図は従来のIS−FETを例示する第1図相当
図、第3図及び第4図は、この発明のIS−FET
の応答特性及びPHの影響を比較例と共にそれぞれ
示すグラフである。 1……電界効果型トランジスタ素子、11……
ソース部、12……ドレイン部、13……ゲート
部、14……SiO2絶縁膜、2……ナトリウムイ
オン感応ガラス膜、3……Si3N4膜。
FIG. 1 is a schematic partial cross-sectional view illustrating the field-effect ion-selective electrode (IS-FET) of the present invention;
FIG. 2 is a diagram corresponding to FIG. 1 illustrating a conventional IS-FET, and FIGS. 3 and 4 show an IS-FET of the present invention.
3 is a graph showing the response characteristics of the sample and the influence of PH along with a comparative example. 1... Field effect transistor element, 11...
Source part, 12...Drain part, 13...Gate part, 14 ... SiO2 insulating film, 2...Sodium ion sensitive glass film, 3... Si3N4 film.

Claims (1)

【特許請求の範囲】 1 ソース部、ドレイン部及びゲート部から構成
された電界効果型トランジスタ素子と、ゲート部
表面を構成するSiO2絶縁膜上に直接形成された
イオン感応ガラス膜とを備えてなる電界効果型イ
オン選択性電極。 2 イオン感応ガラス膜が、所望のイオン感応ガ
ラス組成に対応する金属アルコキシドの溶液を用
いた溶液法により形成される特許請求の範囲第1
項記載の電極。
[Claims] 1. A field effect transistor element comprising a source part, a drain part, and a gate part, and an ion-sensitive glass film formed directly on a SiO 2 insulating film forming the surface of the gate part. A field-effect ion-selective electrode. 2. Claim 1, wherein the ion-sensitive glass film is formed by a solution method using a solution of a metal alkoxide corresponding to a desired ion-sensitive glass composition.
Electrode as described in Section.
JP58187528A 1983-10-06 1983-10-06 Fet ion selective electrode Granted JPS6079257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187528A JPS6079257A (en) 1983-10-06 1983-10-06 Fet ion selective electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187528A JPS6079257A (en) 1983-10-06 1983-10-06 Fet ion selective electrode

Publications (2)

Publication Number Publication Date
JPS6079257A JPS6079257A (en) 1985-05-07
JPH0469336B2 true JPH0469336B2 (en) 1992-11-05

Family

ID=16207660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187528A Granted JPS6079257A (en) 1983-10-06 1983-10-06 Fet ion selective electrode

Country Status (1)

Country Link
JP (1) JPS6079257A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204367A (en) * 1990-11-30 1992-07-24 Horiba Ltd Method for manufacturing ph response film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562547A (en) * 1979-06-21 1981-01-12 Olympus Optical Co Ltd Electric field effect semiconductor ion sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562547A (en) * 1979-06-21 1981-01-12 Olympus Optical Co Ltd Electric field effect semiconductor ion sensor

Also Published As

Publication number Publication date
JPS6079257A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
KR940010562B1 (en) Ion-sensing fet with ta2o5 hydrogen ion-sensing film
Yin et al. Study of indium tin oxide thin film for separative extended gate ISFET
US4232326A (en) Chemically sensitive field effect transistor having electrode connections
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
US6218208B1 (en) Fabrication of a multi-structure ion sensitive field effect transistor with a pH sensing layer of a tin oxide thin film
JPS58164268A (en) Thin film silicon transistor
JP2633281B2 (en) Electrochemical sensor and manufacturing method thereof
JPH0469336B2 (en)
JPH0469337B2 (en)
Bergveld et al. From conventional membrane electrodes to ion-sensitive field-effect transistors
JPS61120958A (en) Ion sensor having glass response film
JPH0437945B2 (en)
JPS62132160A (en) Biosensor using separation gate type isfet
JPS5924245A (en) Preparation of ion sensor
JP3026012B2 (en) Chlorine ion sensor and its divided parts
JPH0740607B2 (en) Method of manufacturing thin film transistor
JPH0452409B2 (en)
JPH0350985B2 (en)
JPS60120240A (en) Isfet sensor
JPS6156956A (en) Reference electrode
JPS57155775A (en) Semiconductor device
JP2999522B2 (en) Ion sensor
JPH07117524B2 (en) Semiconductor chemical sensor
JP2590607B2 (en) Manufacturing method of liquid crystal display device
JPS62245956A (en) Production of isfet ph sensor having good water resistance