JPS5924245A - Preparation of ion sensor - Google Patents

Preparation of ion sensor

Info

Publication number
JPS5924245A
JPS5924245A JP13430882A JP13430882A JPS5924245A JP S5924245 A JPS5924245 A JP S5924245A JP 13430882 A JP13430882 A JP 13430882A JP 13430882 A JP13430882 A JP 13430882A JP S5924245 A JPS5924245 A JP S5924245A
Authority
JP
Japan
Prior art keywords
ion
glass
electrode
film
metal alkoxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13430882A
Other languages
Japanese (ja)
Inventor
Shotaro Oka
正太郎 岡
Osamu Tawara
修 田原
Hiroyoshi Mizuguchi
博義 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP13430882A priority Critical patent/JPS5924245A/en
Publication of JPS5924245A publication Critical patent/JPS5924245A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/36Glass electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain an ion sensor having stable quality, by a method wherein an ion sensor substrate is coated with a volatile hydrophilic solvent solution containing a plurality of metal alkoxides corresponding to a desired ion responsive glass composition and each metal alkoxides are subjected to hydrolysis and subsequently subjected to heat treatment to form an ion responsive glass film. CONSTITUTION:10g mixed metal alkoxides containing Si(OC2H5)4, NaOCH3, Al(OC3H7)3 and B(OC2H5)3 respectively in a mole ratio of 49:22:19.5:9.5 is added to 10ml ethanol to be uniformly stirred and mixed to prepare a mixed metal alkoxides-containing solution which is, in turn, applied to the pH responsive surface 9 of a pH glass electrode cylinder 8 and hydrolyzed thereon to form a uniform gel like film on said pH responsive surface. In the next step, said gel like film is subjected to heat treatment to form a Na<+> ion responsive glass thin film 10 through dehydro-condensation. In the next step, an inner electrode 11 comprising Ag/AgCl is inserted into the electrode cylinder and a 140mM NaCl solution is injected thereinto as an internal liquid 12 to obtain a Na<+> ion selective glass electrode 13.

Description

【発明の詳細な説明】 この発明は、イオンセンサーの製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an ion sensor.

さらに詳しくは、安定した品質で薄膜のイオン感応性ガ
ラス膜を有するイオンセンサーの前便な製造法に関する
More specifically, the present invention relates to an expedited manufacturing method of an ion sensor having a thin ion-sensitive glass membrane of stable quality.

従来、pH電極に代表されるように、イオン選択性ガラ
ス電極のイオン感応性ガラス膜は各種原料を高温(通常
1400℃以上)溶融して一定形状に成形する方法で作
製されている。しかしこの方法では、高温溶融時に揮発
性成分の蒸発による組成変化が起こり易く意図する組成
のガラス膜を得ることが困難であり、ガラス中に気泡発
生などによる作製上の困難さがあった。さらに成形上、
ガラス膜厚には限界がありそのため得られたガラス電極
も大きな内部抵抗を有し、正確な電気化学計測上、不利
であった。
Conventionally, ion-sensitive glass membranes of ion-selective glass electrodes, as typified by pH electrodes, have been produced by melting various raw materials at high temperatures (usually 1400° C. or higher) and molding them into a certain shape. However, with this method, it is difficult to obtain a glass film with the intended composition because the composition tends to change due to evaporation of volatile components during high-temperature melting, and there are production difficulties due to the generation of bubbles in the glass. Furthermore, in molding,
There is a limit to the thickness of the glass film, and therefore the obtained glass electrode also has a large internal resistance, which is disadvantageous in terms of accurate electrochemical measurements.

一方、最近電界効果トランジスター型イオン選択性電極
(IS−FET)が提案されるようになってきた。しか
しかようなl5−FETに感応膜としてイオン感応性ガ
ラス膜を適用することは困難であった。すなわち、電界
効果トランジスター(FET)のゲート上にガラスを被
覆するためには、ガラスの内部抵抗を極端に小さくする
必要があり、通常、薄膜状(0,3μm以下)としなけ
ればならない。そのためにはスパッタリング等の方法を
用いる必要があるが、薄膜は得られてもその組成をコン
トロールすることはできず、せいぜい若干pH応答性の
ガラス膜(組成のコントロールがなくても通常応答性M
)が得られるにすぎなかった。
On the other hand, recently, a field effect transistor type ion selective electrode (IS-FET) has been proposed. However, it has been difficult to apply an ion-sensitive glass membrane as a sensitive membrane to such an 15-FET. That is, in order to cover the gate of a field effect transistor (FET) with glass, it is necessary to make the internal resistance of the glass extremely low, and usually it must be in the form of a thin film (0.3 μm or less). For this purpose, it is necessary to use methods such as sputtering, but even if a thin film is obtained, its composition cannot be controlled.
) was obtained.

ン感応性を示すガラス組成に対応して金属アルコキシド
を混合し、これを均一に加水分解させた後加熱処理する
ことにより組成がコントロールされたイオン感応性ガラ
スが得られ、この方法を用いることによりイオンセンサ
ー基材に薄膜のイオン感応性ガラス膜を簡便に形成でき
る事実を見出しこの発明に到達した。
By mixing metal alkoxides corresponding to the glass composition exhibiting ion-sensitivity, uniformly hydrolyzing the mixture, and then heat-treating it, an ion-sensitive glass with a controlled composition can be obtained. The present invention was achieved by discovering the fact that a thin ion-sensitive glass film can be easily formed on an ion sensor substrate.

かくしてこの発明によれば、所望のイオン感応性ガラス
組成に対応する複数の金属アルコキシドを含有する揮発
性親水性溶媒溶液を、イオンセンサー基材に塗着し、そ
こで各々の金属アルコキシドを加水分解させさらに加熱
処理してイオン感応性ガラス膜を形成させることを特徴
とするイオンセンサーの製造法が提供される。
Thus, according to the invention, a volatile hydrophilic solvent solution containing a plurality of metal alkoxides corresponding to a desired ion-sensitive glass composition is applied to an ion sensor substrate, where each metal alkoxide is hydrolyzed. A method for manufacturing an ion sensor is provided, which further comprises performing a heat treatment to form an ion-sensitive glass film.

この発明に用いる金属アルコキシドとしては、イオン選
択性ガラス電極の溶融製造において使用される各種無機
酸化物(Na20XSiO2、AI!2o3、B2O3
等)に対応する低級アルコキシド金属が用いられ、具体
的にはNaOCH3、Ca(OC2H5)2、s i(
QC2n s )いAl!(OC3H7)3、B(OC
2H5) 3等が挙げられる。この発明において上記金
属アルコキシドは複数組合せて用いられる。この組合せ
は所望のイオン感応性ガラス組成に対応して決定される
。例えばNa感応性ガラスを意図する際には、Si 、
 Na、 Al及びBのアルコキシドを組合せればよく
1.H感応性ガラスを意図する場合には、Sl % N
a及びCaのアルコキシドを組合せればよく、他の組合
せについても同様である。
The metal alkoxides used in this invention include various inorganic oxides (Na20XSiO2, AI!2o3, B2O3
etc.), and specifically, lower alkoxide metals corresponding to NaOCH3, Ca(OC2H5)2, s i(
QC2ns) Al! (OC3H7)3,B(OC
2H5) 3 etc. are mentioned. In this invention, a plurality of the metal alkoxides mentioned above are used in combination. This combination is determined depending on the desired ion-sensitive glass composition. For example, when Na-sensitive glass is intended, Si,
A combination of Na, Al and B alkoxides is sufficient.1. If H-sensitive glass is intended, Sl % N
It is sufficient to combine a and Ca alkoxides, and the same applies to other combinations.

この発明において上記、金属アルコキシドの混合物は、
まず溶液としてイオンセンサー基材に塗着され加水分解
に供され均一なゲル状膜を形成する。この際、溶媒とし
ては揮発性親水性溶媒を用いるのが好ましい。この溶媒
中には若干の水分が含まれていてもよいが、通常、水が
充分に存在すると金属アルコキシドのうち加水分解され
易いもの、例えばNaOCH3やAl (OC3H7)
 3が急速にゲル化して均一なゲル状膜が得られない慣
れがあり好ましくない。なお、溶媒に溶解するに当って
最も融点の高い金属アルコキシドの融点程度迄加熱して
できるだけ均一な溶液とすることが望ましい。
In this invention, the above-mentioned mixture of metal alkoxides is
First, it is applied as a solution to the ion sensor substrate and subjected to hydrolysis to form a uniform gel-like film. At this time, it is preferable to use a volatile hydrophilic solvent as the solvent. This solvent may contain some water, but if water is present in sufficient amount, metal alkoxides that are easily hydrolyzed, such as NaOCH3 and Al (OC3H7), are usually dissolved.
3 tends to rapidly gel, making it impossible to obtain a uniform gel-like film, which is undesirable. In addition, when dissolving in a solvent, it is desirable to heat the solution to about the melting point of the metal alkoxide having the highest melting point to make the solution as uniform as possible.

上記揮発性親水性溶媒としては例えばメタノール、エタ
ノール等が挙げられる。
Examples of the volatile hydrophilic solvent include methanol and ethanol.

上記、塗着された溶液中の金属アルコキシドは溶媒を通
じて吸収される水分によってそれぞれ徐々に加水分解さ
れ、溶媒の蒸散と共に均一なゲル状膜を形成する。この
ようにして得たゲル状膜を加熱することにより、ゲル状
膜の加水分解物が脱水縮合してガラス状となり、この発
明のイオン感応性ガラス膜が得られる。この際の加熱温
度は通常800〜500℃程度で充分であり従来の溶融
法のごとき高温を用いる必要はない。この発明の方法は
上記のごとく、原料を溶液の形態で適用できるため厚み
の制御も簡単に行なえ、さらに薄膜の形成も容易である
。そして従来のような高温の溶融処理を用いないため意
図する組成のガラス膜を安定に形成させることができる
The metal alkoxides in the applied solution are gradually hydrolyzed by water absorbed through the solvent, and as the solvent evaporates, a uniform gel-like film is formed. By heating the gel-like membrane thus obtained, the hydrolyzate of the gel-like membrane undergoes dehydration condensation and becomes glassy, yielding the ion-sensitive glass membrane of the present invention. The heating temperature at this time is usually about 800 to 500°C, which is sufficient, and there is no need to use high temperatures as in conventional melting methods. As described above, in the method of the present invention, since the raw materials can be applied in the form of a solution, the thickness can be easily controlled, and furthermore, it is easy to form a thin film. Furthermore, since a high-temperature melting process as in the conventional method is not used, a glass film having an intended composition can be stably formed.

この発明の方法によって、イオン選択性ガラス電極、コ
ーチイツトワイヤー型イオン選択性電極、l5−FET
などのイオンセンサーが得られる。
By the method of the present invention, an ion-selective glass electrode, a coachite wire type ion-selective electrode, an 15-FET
You can obtain ion sensors such as

イオン選択性ガラス電極を作製する際には、先端にイオ
ン感応性ガラス膜を被覆できる担体、例えばガラスを備
えた電極筒を基材として用い、この基材の表面に前述の
とと(被覆を行なうのが適当である。通常、予め作製し
た又は市販のガラス電極筒のイオン感応面に被覆し、適
宜内部極や内部液を具備させることにより、Naイオン
選択性電極等の所望のイオン選択性電極を簡便に得るこ
とができる。またコーチイツトワイヤー型のイオン選択
性電極を作製する際には第1図に示すように金、白金等
の金属リード線(1)にアマルガムや固体電解質(例え
ば、遷移金属のハロゲン化物や硫化物)等の電子電導性
又はイオン電導性の物質7m(2)を被覆しこの上にこ
の発明のイオン感応性ガラス膜(3)を被覆形成させる
ことにより簡便に得ることができる。また、l5−FE
Tを作製する場合には、予め得られたpH感応性l5−
FETを基材としその感応向(ゲート)上にこの発明の
イオン感応性ガラス薄膜を被覆形成することにより簡便
に得ることができる。もちろん第2図に示すとと<FE
Tのチャンネル領域上にSiO2よりなる絶縁層(4)
を形成し、その上にゲート部として窒化ケイ素(513
N4 ) tblを形成した素子を基材とし、この窒化
ケイ素上にこの発明のイオン感応性ガラス薄膜(3)を
被覆形成させてもよい。なお(6)はソース部分、(7
)はドレイン部分である。かようなFETの作製や絶縁
層(4)及びSi3N4層(5)形成の処理手順は例え
ば” J、 Appl、 phys、 、 49.58
 (1980)、松尾正之等“に開示された公知の方法
に準じて行なえばよい。
When producing an ion-selective glass electrode, an electrode tube with a carrier, such as glass, whose tip can be coated with an ion-sensitive glass membrane is used as a base material, and the surface of this base material is coated with the above-mentioned coating. Usually, by coating the ion-sensitive surface of a prefabricated or commercially available glass electrode tube and providing an appropriate internal electrode or internal solution, desired ion selectivity such as Na ion selective electrode can be achieved. Electrodes can be easily obtained.Also, when producing a coachite wire type ion-selective electrode, as shown in Figure 1, a metal lead wire (1) such as gold or platinum is coated with amalgam or solid electrolyte (e.g. , halides and sulfides of transition metals), etc., and then coated with the ion-sensitive glass film (3) of the present invention. Also, l5-FE
When producing T, the previously obtained pH-sensitive l5-
It can be easily obtained by using an FET as a base material and coating the ion-sensitive glass thin film of the present invention on its sensitive side (gate). Of course, as shown in Figure 2, <FE
Insulating layer (4) made of SiO2 on the channel region of T
silicon nitride (513
The ion-sensitive glass thin film (3) of the present invention may be formed on the silicon nitride by using the element on which N4) tbl is formed as a base material. Note that (6) is the source part, (7
) is the drain part. The processing procedures for manufacturing such an FET and forming the insulating layer (4) and the Si3N4 layer (5) are described in, for example, "J, Appl, phys, 49.58
(1980) and Masayuki Matsuo et al.

以上述べたように、この発明の方法によれば、従来の溶
融法のごとき高温加熱を必要とせず安定な品質のイオン
センサーを作製することができる。
As described above, according to the method of the present invention, an ion sensor of stable quality can be produced without requiring high-temperature heating unlike the conventional melting method.

さらに原料を溶液として用いるためコーチイツトワイヤ
型のごとき微小なイオン選択性電極を簡便に得ることが
でき、さらに薄膜の感応膜が形成できるので、従来作製
が困難とされていたガラス感応膜型のl5−FETの作
製が可能となった。
Furthermore, since the raw materials are used as a solution, minute ion-selective electrodes such as coachite wire type electrodes can be easily obtained, and thin sensitive membranes can be formed. It became possible to fabricate a 15-FET.

以下、この発明を実施例により説明する。This invention will be explained below with reference to Examples.

実施例1゜ Si(OC2H5)4、NaOCH3、Al(OC3H
7)3及びB(OC2II5)3 をそれぞれモル比4
9:22:19.5=9.5で含有する混合金属アルコ
キシド10gをエタノールlOmf’に加え温浴中80
℃下で約8時間撹拌混合し均一な混合金属アルコキシド
の溶液を得た。この溶液を予め用意したpHガラス電極
筒(8)のpH感応面(9)に塗布し、室温下で約10
分間放置した。これにより金属アルコキシドは空気中の
水分によって加水分解し、pI−1kJ応面の上に均一
なゲル状膜が形成される。次いでこのゲル状膜を電気炉
によって約10分間空気中で約500℃まで加熱処理を
行なった。これによりゲル状膜は脱水縮合してNa+イ
オン感応性ガラス薄膜(10)が形成される。こののち
電極筒にAg/AgC1の内部極(II)を挿設し14
0 mMのNaC1溶液を内部液(12)として注入す
ることにより第8図に示すとときNa″−イオン選択性
ガラス電極(13)が得られた。
Example 1゜Si(OC2H5)4, NaOCH3, Al(OC3H
7) 3 and B(OC2II5)3 each in a molar ratio of 4
10 g of mixed metal alkoxide containing 9:22:19.5 = 9.5 was added to ethanol lOmf' and heated to 80 g in a hot bath.
The mixture was stirred and mixed at ℃ for about 8 hours to obtain a uniform mixed metal alkoxide solution. This solution was applied to the pH sensitive surface (9) of the pH glass electrode tube (8) prepared in advance, and the solution was heated for about 10 minutes at room temperature.
Leave it for a minute. As a result, the metal alkoxide is hydrolyzed by moisture in the air, and a uniform gel-like film is formed on the pI-1kJ reaction surface. Next, this gel-like film was heated in an electric furnace to about 500° C. in air for about 10 minutes. As a result, the gel-like film is dehydrated and condensed to form an Na+ ion-sensitive glass thin film (10). After this, insert the internal electrode (II) of Ag/AgC1 into the electrode tube and
By injecting 0 mM NaCl solution as the internal solution (12), a Na″-ion selective glass electrode (13) as shown in FIG. 8 was obtained.

この電極(1鴫のNa+イオンに対する応答性を、Ag
 / AgC4を内部極とし飽和KC!溶液を内部液と
する参照電極を用いて測定した結果を@4図に示す。こ
のようにNa+イオン濃度10〜10  の範囲で直線
性が得られ、その傾きは52 mV/ decであった
The response to Na+ ions of this electrode (Ag
/ Saturation KC with AgC4 as internal pole! The results of measurements using a reference electrode with a solution as the internal liquid are shown in Figure @4. In this way, linearity was obtained in the Na+ ion concentration range of 10 to 10, and the slope was 52 mV/dec.

実施例2゜ Si(OC2H5)4、Na0CII3及びCa(OC
2H5)2をそれぞれモル比72:20:8で自存する
混合金属アルコキシドlogをエタノール10dに加え
実施例1と同様にして溶液を得た。この溶液を、予め用
意したNa+イオン選択性電極筒のNa+イオン感応面
に塗布し実施例1と同様にしてゲル状膜をjし成させ、
加熱処理してpH感応性ガラス薄膜を形成させた。そし
てAg/AgC1の内部極を挿設しINのKCI溶液を
注入することによりpHガラス電極が得られた。この電
極のpHに対する応答性を、Ag /AgC1を内部極
とし0. I N NaNO3を内部液とする参照電極
を用いて測定した結果を第5図に示す。なあ、第5図中
実線部はネルンストスロープを示し、この発明のpHガ
ラス電極は理論値にほぼ一致する感度を有することがわ
かる。
Example 2゜Si(OC2H5)4, Na0CII3 and Ca(OC
A solution was obtained in the same manner as in Example 1 by adding logs of mixed metal alkoxides existing in 2H5)2 at a molar ratio of 72:20:8, respectively, to 10 d of ethanol. This solution was applied to the Na+ ion-sensitive surface of the Na+ ion-selective electrode tube prepared in advance, and a gel-like film was formed in the same manner as in Example 1.
A pH-sensitive glass thin film was formed by heat treatment. Then, a pH glass electrode was obtained by inserting an internal electrode of Ag/AgC1 and injecting an IN KCI solution. The pH responsiveness of this electrode was determined to be 0.00% with Ag/AgC1 as the internal electrode. FIG. 5 shows the results of measurement using a reference electrode with I N NaNO3 as the internal liquid. The solid line in FIG. 5 indicates the Nernst slope, and it can be seen that the pH glass electrode of the present invention has a sensitivity that almost matches the theoretical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は、それぞれこの発明によって得られた
イオンセンサーを例示する模式的構成説明図、第4図及
び第5図はそれぞれこの発明によって得られたイオンセ
ンサーの特性を例示するグラフである。 +l)・・・金属リード線、 (2)・・・電子電導性又はイオン電導性の物質層、(
3)・・・イオン感応性ガラス膜、(4)・・・絶縁層
、価)・・・窒化ケイ素、     (6)・・ソース
部分、(7)−・ドレイン部分、 (8)・・・pHガラス電極筒、(9)・・・pH感応
面、叫・・・Na+イオン感応性ガラス#膜、(11)
・・・内部極、       (14・・・内部液、0
31・・・Na+イオン選択性ガラス電極。 11−
1 to 8 are schematic structural explanatory diagrams illustrating the ion sensor obtained by the present invention, and FIGS. 4 and 5 are graphs illustrating the characteristics of the ion sensor obtained by the present invention, respectively. It is. +l)...metal lead wire, (2)...electronically conductive or ionically conductive material layer, (
3)...Ion-sensitive glass film, (4)...Insulating layer, valence)...Silicon nitride, (6)...Source part, (7)--Drain part, (8)... pH glass electrode tube, (9)...pH sensitive surface, layer...Na+ ion sensitive glass #membrane, (11)
...Internal pole, (14...Internal liquid, 0
31...Na+ ion selective glass electrode. 11-

Claims (1)

【特許請求の範囲】 fl)  所望のイオン感応性ガラス組成に対応する複
数の金属アルコキシドを含有する揮発性親水性溶媒溶液
を、イオンセンサー基材に塗着し、そこで各々の金属ア
ルコキシドを加水分解させさらに加熱処理してイオン感
応性ガラス膜を形成させることを特徴とするイオンセン
サーの製造法。 (2)イオンセンサーが、イオン選択性ガラス電極であ
る特許請求の範囲第1項記載の製造法。 (3)イオンセンサーが、コーチイツトワイヤ型イオン
選択性電極である特許請求の範囲第1項記載の製造法。 (4)イオンセンサーが、電界効果トランジスター型イ
オン選択性電極である特許請求の範囲第1項記載の製造
法。
[Claims] fl) A volatile hydrophilic solvent solution containing a plurality of metal alkoxides corresponding to the desired ion-sensitive glass composition is applied to an ion sensor substrate, where each metal alkoxide is hydrolyzed. 1. A method for producing an ion sensor, characterized by forming an ion-sensitive glass film by further heat treatment. (2) The manufacturing method according to claim 1, wherein the ion sensor is an ion-selective glass electrode. (3) The manufacturing method according to claim 1, wherein the ion sensor is a coachite wire type ion-selective electrode. (4) The manufacturing method according to claim 1, wherein the ion sensor is a field effect transistor type ion selective electrode.
JP13430882A 1982-07-31 1982-07-31 Preparation of ion sensor Pending JPS5924245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13430882A JPS5924245A (en) 1982-07-31 1982-07-31 Preparation of ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13430882A JPS5924245A (en) 1982-07-31 1982-07-31 Preparation of ion sensor

Publications (1)

Publication Number Publication Date
JPS5924245A true JPS5924245A (en) 1984-02-07

Family

ID=15125252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13430882A Pending JPS5924245A (en) 1982-07-31 1982-07-31 Preparation of ion sensor

Country Status (1)

Country Link
JP (1) JPS5924245A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140142A (en) * 1979-03-20 1980-11-01 Olympus Optical Co Ltd Field-effect semiconductor sensor and its manufacture
JPS55146034A (en) * 1979-05-02 1980-11-14 Olympus Optical Co Ltd Manufacture for field effect type semiconductor sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140142A (en) * 1979-03-20 1980-11-01 Olympus Optical Co Ltd Field-effect semiconductor sensor and its manufacture
JPS55146034A (en) * 1979-05-02 1980-11-14 Olympus Optical Co Ltd Manufacture for field effect type semiconductor sensor

Similar Documents

Publication Publication Date Title
US4883563A (en) Method of manufacturing a thin glass membrane
Wu et al. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection
US3718569A (en) Method of making solid state glass electrode
US3498901A (en) Glass electrode
JPS5924245A (en) Preparation of ion sensor
JP3771707B2 (en) Liquid junction member for reference electrode and reference electrode
US3649506A (en) Solid state glass electrode
JPS61142455A (en) Method and probe for measuring activity of impurity element in molten metal
JPS60115841A (en) Ion sensor
JPH0469336B2 (en)
JPS62132160A (en) Biosensor using separation gate type isfet
US3415731A (en) Glass electrodes and method for producing the same
JPS6319817B2 (en)
JPS6366454A (en) Enzyme sensor and manufacture thereof
JP3026012B2 (en) Chlorine ion sensor and its divided parts
JP3659552B2 (en) Ion concentration measuring electrode and manufacturing method thereof
JPH0437945B2 (en)
US4058437A (en) Process for selectively measuring sodium ions in solution
JPH0127574B2 (en)
JPS5924246A (en) Ion selective electrode and preparation thereof
JPH044545B2 (en)
JPS6337254A (en) Hydrogen ion selective electrode
JPS6122777B2 (en)
JPS6319816B2 (en)
JPH03285839A (en) Glass for ion concentration sensor