JPH0468975B2 - - Google Patents

Info

Publication number
JPH0468975B2
JPH0468975B2 JP59278851A JP27885184A JPH0468975B2 JP H0468975 B2 JPH0468975 B2 JP H0468975B2 JP 59278851 A JP59278851 A JP 59278851A JP 27885184 A JP27885184 A JP 27885184A JP H0468975 B2 JPH0468975 B2 JP H0468975B2
Authority
JP
Japan
Prior art keywords
catalyst
tio
activity
denitrification
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59278851A
Other languages
Japanese (ja)
Other versions
JPS61153139A (en
Inventor
Yasuyoshi Kato
Kunihiko Konishi
Masao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59278851A priority Critical patent/JPS61153139A/en
Publication of JPS61153139A publication Critical patent/JPS61153139A/en
Publication of JPH0468975B2 publication Critical patent/JPH0468975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は脱硝触媒の再生法に係り、特に使用済
のアンモニア接触還元脱硝触媒を大がかりな化学
処理を要することなく、再利用可能にする再生方
法に関するものである。 (従来の技術) アンモニア(NH3)接触還元脱硝法は、装置
構造ならびに運転操作が簡単であることから、火
力発電用ボイラを始めとする大容量の排煙脱硝装
置に広く用いられている。これら装置には通常数
十から数百m3の触媒が使用されており、触媒活性
の低下等により使用できなくなつた廃触媒の量は
膨大な量になると見込まれている。このため、使
用済の触媒を種々の処理により再生するか、有価
物を回収することが、社会的にも経済的にも重要
な課題となつている。 脱硝触媒の再生法に関しては従来より種々検討
されているがその方法を大別すると次の3つにな
る。 (1) 水、酸性溶液等で洗浄し、触媒毒を除去する
ことにより活性を回腹せしめる方法 (2) 加熱により、活性低下の原因となつている酸
性硫安を除去する方法 (3) バナジウムV化合物などの活性成分を添加す
る方法 (発明が解決しようとする問題点) これらのうち(1)の方法は、ナトリウム(Na)、
カリウム(K)などのアルカリ金属による被毒に
対しては効果があるものの、熱によるシンタリン
グによつて低下した活性を回復させることはでき
ない。また(2)の方法は、Na、Kによる被毒、シ
ンタリングには効果がない。さらに(3)は、活性の
回復は顕著であるものの、反面、SO2の酸化活性
が増大し、実用上大きな問題となる。このよう
に、いづれの方法も一長一短があり、種々の原因
が複合して活性低下をもたらす脱硝触媒の場合の
一般的な再生法として採用するには問題がある。 本発明の目的は、上記した従来技術の欠点をな
くし、チタンを含有するアンモニア接触還元脱硝
触媒の再生において、簡単な処理工程によりどの
ような原因によつて劣化した触媒でも容易に再生
し得る方法を提供することにある。 (問題点を解決するための手段) 要するに本発明は、触媒成分としてチタンを含
有する使用済のアンモニア接触還元脱硝触媒に酸
化チタン(TiO2)、オルトチタン酸(TiO
(OH)4)、メタチタン酸(TiO(OH)2)などの
TiO2前駆体が選ばれた一種以上のチタン化合物
を、TiO2として再生触媒に対して0を越えて70
重量%以内の範囲で添加し、乾式もしくは湿式で
混合後、成形することにより、触媒活性を未使用
触媒と同等のレベルまで回復させるものである。 本発明により触媒活性が回復するのは次のよう
な理由による。すなわち、本発明者らの研究によ
れば、脱硝触媒の活性低下現象(劣化)は、Na、
K等のアルカリ金属元素が還元材であるNH3
吸着点に吸着したり、酸性硫安(NH4HSO4)が
触媒表面に析出してNH3吸着点が有効に使用さ
れなくなるか、シンタリングによりNH3吸着点
の絶対量が減少するかによるものと推定され、触
媒を再生するためには何らかの方法でNH3吸着
点を増加せしめればよいと推定された。このた
め、活性低下した酸化チタン/酸化モリブデン触
媒(Ti/Mo=90/10モル/モル)に種々の酸化
物を添加し、その脱硝活性とNH3吸着量を測定
したところ、第2図に示したように、TiO2を添
加したものにおいてのみ顕著なNH3吸着量と活
性回復減少が認められ、本発明の再生法を実現す
るに到つた。 本発明において、TiO2(またはその前駆体)の
添加量が70重量%を越えると、顕著な活性増加は
期待できず、不経済である。なお、下限は特に限
定されず、効果が認められる有効量以上であれば
よい。 本発明に用いる被再生触媒としては、アンモニ
ア接触還元脱硝触媒で少なくともチタンを触媒成
分として含有しているものであればよく、例えば
酸化チタン−酸化モリブデン、酸化チタン−酸化
バナジウム触媒などがあげられる。 本発明の再生処理に先だち不純物を除去した
り、加熱などの補助的な再生処理を追加しても、
本発明の範囲をはずれるものではない。また、
TiO2添加に加えて、新たな活性成分を添加する
ことも、本発明の範囲に含まれる。 本発明は、具体的には、次にしめす処理工程に
より実施される。 (a) 使用済触媒の形状に応じて、触媒成分と非触
媒成分とに分離する工程、 (b) 触媒成分を微粉砕する工程、 (c) 得られた触媒粉末に酸化チタン(TiO2)、メ
タチタン酸(TiO(OH)2)、ホルトチタン酸
(Ti(OH)4)などのチタン化合物の一種以上の
化合物を、TiO2として0を越えて70重量%以
下、望ましくは10〜50重量%になるように添加
後、乾式または湿式で混合(必要に応じて混
練)する工程、 (d) 上記工程で得られた混合物を通常の方法で成
形、乾燥、焼成することにより触媒成形体とす
る成形−賦活化工程。 これらの工程のうち、本発明の主眼となるべき
工程は(c)に示した使用済触媒と酸化チタンまたは
その前駆体を一定比率で混合することにあり、最
終的に目的とする再生触媒が得られれば、(a),
(b),(c)の各工程は適宜省略または変更しても差支
えない。 (実施例) 以下、本発明を実施例により詳述する。 実施例 1〜5 重油焚ボイラの排煙脱硝装置に用いて活性低下
した酸化チタン/酸化モリブデン触媒(Ti/Mo
=90/10原子比)を200メツシユ以下、90%以上
になるように粉砕したもの40gに、酸化チタン粉
末(比表面積230m2/g、H2SO45重量%含有)
を1g(実施例1)、4.4g(実施例2)、17.1g
(実施例3)、40g(実施例4)および93.3g(実
施例5)添加し、水を加えて混練した。得られた
ペーストを乾燥後油圧プレスにより径5mm、長さ
5mmのペレツト状に成形し、次いで450℃で2時
間焼成した。 比較例 1および2 未使用触媒および実施例1〜5で使用した使用
済触媒に、酸化チタン粉末を添加しないで、実施
例1〜5、ならびに比較例1および2の触媒を10
〜20メツシユに粉砕し、下記条件で脱硝活性を測
定した。 空間速度 SV:60000h ガス組成:NO 200ppm NH3 240ppm SO2 500ppm CO2 12% O2 3% H2O 12% N2 残部 反応温度:350℃ また、同上条件におけるNH3の吸着量をNH3
注入を中断した場合の触媒層出口NHx濃度の応
答特性の解析により求めた。それらの結果を第1
図に示した。 第1図の結果から、酸化チタンを添加した実施
例1〜5は、添加しない比較例2に比べ著しく活
性及びNH3吸着量および脱硝率(触媒活性)が
増加し、TiO2添加量が10〜50重量%の範囲では、
未使用触媒(比較例1)と同等の活性を有するこ
とが判つた。 実施例 6および7 実施例4の酸化チタンに替えて、それぞれメタ
チタン酸(TiO(OH)2)スラリ(実施例6)およ
びオルトチタン酸(Ti(OH)4)スラリ(実施例
7)をTiO2として40gとなるように添加し、同
様の方で触媒を調製した。 実施例 8 実施例4の水を加えた混練に替えて、V型ミキ
サによる乾式混合法を用い、他は同様の操作で触
媒を調製した。 実施例 9および10 実施例4の操作に先だち、使用済触媒を触媒の
10倍容量の水および1N硫酸で洗浄して不純物を
除去後、乾燥する工程を追加して触媒調製した。 実施例 11 実施例4に用いた使用済触媒に替えて、使用済
酸化チタン/酸化バナジウム触媒(Ti/V=
95/5原子比)を用いて同様の操作により触媒を
調製した。 比較例 3および4 実施例11に用いた触媒と同組成の未使用触媒
と、実施例11に用いた使用済触媒とに酸化チタン
粉末を添加しない他は同様の方法で触媒を調製し
た。 実施例6〜11および比較例1〜4の各触媒に対
し、前記方法と同様の方法で脱硝活性を測定した
結果を第1表に示す。
(Industrial Application Field) The present invention relates to a method for regenerating a denitrification catalyst, and particularly to a method for regenerating a used ammonia catalytic reduction denitrification catalyst without requiring extensive chemical treatment. (Prior Art) The ammonia (NH 3 ) catalytic reduction denitrification method is widely used in large-capacity flue gas denitrification equipment such as boilers for thermal power generation because the equipment structure and operation are simple. These devices usually use several tens to hundreds of cubic meters of catalyst, and it is expected that the amount of spent catalyst that can no longer be used due to a decrease in catalytic activity will be enormous. For this reason, it has become an important issue both socially and economically to regenerate used catalysts through various treatments or recover valuables. Various methods for regenerating denitrification catalysts have been studied in the past, and these methods can be broadly classified into the following three types. (1) A method of rejuvenating the activity by washing with water, acidic solution, etc. to remove catalyst poisons (2) A method of removing acidic ammonium sulfate, which is the cause of decreased activity, by heating (3) Vanadium V Method of adding active ingredients such as compounds (problems to be solved by the invention) Among these, method (1) includes adding sodium (Na),
Although it is effective against poisoning by alkali metals such as potassium (K), it cannot restore the activity reduced by sintering due to heat. Furthermore, method (2) is ineffective against poisoning and sintering by Na and K. Furthermore, in (3), although the recovery of activity is remarkable, on the other hand, the oxidation activity of SO 2 increases, which poses a big problem in practical use. As described above, each method has its advantages and disadvantages, and there are problems in adopting it as a general regeneration method for denitration catalysts whose activity is reduced due to a combination of various causes. The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a method for regenerating ammonia catalytic reduction denitrification catalysts containing titanium, by which catalysts deteriorated due to any cause can be easily regenerated through simple treatment steps. Our goal is to provide the following. (Means for Solving the Problems) In short, the present invention combines titanium oxide (TiO 2 ) and orthotitanic acid (TiO
(OH) 4 ), metatitanic acid (TiO(OH) 2 ), etc.
The TiO 2 precursor contains one or more selected titanium compounds as TiO 2 on the regenerated catalyst in excess of 70
By adding within % by weight, mixing in a dry or wet process, and then molding, the catalyst activity can be restored to a level equivalent to that of an unused catalyst. The reason why the catalyst activity is recovered by the present invention is as follows. In other words, according to the research conducted by the present inventors, the activity reduction phenomenon (deterioration) of the denitrification catalyst is caused by Na,
Alkali metal elements such as K are adsorbed to the adsorption sites of the reducing agent NH 3 , acidic ammonium sulfate (NH 4 HSO 4 ) is deposited on the catalyst surface, and the NH 3 adsorption sites are not used effectively, or sintering occurs. It is presumed that this is due to a decrease in the absolute amount of NH 3 adsorption points, and that it is necessary to increase the number of NH 3 adsorption points by some method in order to regenerate the catalyst. For this reason, various oxides were added to the titanium oxide/molybdenum oxide catalyst (Ti/Mo = 90/10 mol/mol) whose activity had decreased, and the denitrification activity and NH 3 adsorption amount were measured. As shown, a remarkable decrease in the amount of NH 3 adsorption and activity recovery was observed only in the case where TiO 2 was added, which led to the realization of the regeneration method of the present invention. In the present invention, if the amount of TiO 2 (or its precursor) added exceeds 70% by weight, no significant increase in activity can be expected and it is uneconomical. Note that the lower limit is not particularly limited, as long as it is at least an effective amount at which the effect is recognized. The regenerated catalyst used in the present invention may be any ammonia catalytic reduction denitrification catalyst containing at least titanium as a catalyst component, such as titanium oxide-molybdenum oxide, titanium oxide-vanadium oxide catalyst, and the like. Even if impurities are removed prior to the regeneration treatment of the present invention or supplementary regeneration treatment such as heating is added,
This is not outside the scope of the invention. Also,
In addition to adding TiO 2 , it is also within the scope of the invention to add new active ingredients. Specifically, the present invention is carried out by the following processing steps. (a) A step of separating the spent catalyst into catalyst components and non-catalyst components according to the shape, (b) A step of finely pulverizing the catalyst component, (c) Adding titanium oxide (TiO 2 ) to the obtained catalyst powder. , metatitanic acid (TiO(OH) 2 ), forthotitanic acid (Ti(OH) 4 ) and other titanium compounds in an amount of more than 0 and 70% by weight or less, preferably 10 to 50% by weight as TiO 2 %, and then dry or wet mixing (kneading if necessary); (d) The mixture obtained in the above step is molded, dried, and fired in a conventional manner to form a catalyst molded body. Molding-activation process. Among these steps, the main focus of the present invention is to mix the spent catalyst shown in (c) with titanium oxide or its precursor at a certain ratio, and the final goal is to obtain the regenerated catalyst. If obtained, (a),
Steps (b) and (c) may be omitted or changed as appropriate. (Example) Hereinafter, the present invention will be explained in detail with reference to Examples. Examples 1 to 5 Titanium oxide/molybdenum oxide catalyst (Ti/Mo
= 90/10 atomic ratio) was crushed to 200 mesh or less and 90% or more, and 40g was added to titanium oxide powder (specific surface area 230m 2 /g, containing 5% by weight of H 2 SO 4 ).
1g (Example 1), 4.4g (Example 2), 17.1g
(Example 3), 40g (Example 4) and 93.3g (Example 5) were added, and water was added and kneaded. After drying, the resulting paste was formed into pellets with a diameter of 5 mm and a length of 5 mm using a hydraulic press, and then baked at 450°C for 2 hours. Comparative Examples 1 and 2 The catalysts of Examples 1 to 5 and Comparative Examples 1 and 2 were added to the unused catalysts and the used catalysts of Examples 1 to 5 without adding titanium oxide powder.
It was crushed into ~20 meshes and the denitrification activity was measured under the following conditions. Space velocity SV: 60000h Gas composition: NO 200ppm NH 3 240ppm SO 2 500ppm CO 2 12% O 2 3% H 2 O 12% N 2 balance Reaction temperature: 350°C Also, the adsorption amount of NH 3 under the same conditions as above is NH 3
This was determined by analyzing the response characteristics of the NHx concentration at the catalyst bed outlet when injection was interrupted. those results first
Shown in the figure. From the results shown in Figure 1, Examples 1 to 5 in which titanium oxide was added had significantly increased activity, NH3 adsorption amount, and denitrification rate (catalytic activity) compared to Comparative Example 2 in which titanium oxide was not added, and the amount of TiO2 added was 10%. In the range of ~50% by weight,
It was found that the catalyst had the same activity as the unused catalyst (Comparative Example 1). Examples 6 and 7 In place of titanium oxide in Example 4, metatitanic acid (TiO(OH) 2 ) slurry (Example 6) and orthotitanic acid (Ti(OH) 4 ) slurry (Example 7) were used as TiO 2 was added to give a total weight of 40 g, and a catalyst was prepared in the same manner. Example 8 A catalyst was prepared in the same manner as in Example 4, except that a dry mixing method using a V-type mixer was used instead of the kneading with water added in Example 4. Examples 9 and 10 Prior to the operation of Example 4, the spent catalyst was
The catalyst was prepared by adding a step of washing with 10 times the volume of water and 1N sulfuric acid to remove impurities and then drying. Example 11 Instead of the spent catalyst used in Example 4, a spent titanium oxide/vanadium oxide catalyst (Ti/V=
A catalyst was prepared in the same manner using 95/5 atomic ratio). Comparative Examples 3 and 4 Catalysts were prepared in the same manner as the unused catalyst used in Example 11 and the used catalyst used in Example 11, except that titanium oxide powder was not added. Table 1 shows the results of measuring the denitrification activity of each of the catalysts of Examples 6 to 11 and Comparative Examples 1 to 4 using a method similar to the method described above.

【表】【table】

【表】 第1表の結果から、(イ)TiO2原料としてTiO2
他、メタチタン酸、オルトチタン酸が使用できる
こと、(ロ)本発明の処理に先だち、水洗、酸洗等の
処理を併用しても好結果を与えること、(ハ)本発明
の方法は、酸化チタン/酸化モリブデン触媒のみ
ならず、酸化チタン/酸化バナジウム触媒などの
他の脱硝触媒の活性回復に著しく効果があること
が明らかである。 (発明の効果) 本発明によれば、被再生触媒に酸化チタンまた
はその前駆体を添加することにより、NH3の吸
着量を増加させ、活性を回復させることができる
ので、アルカリ被毒、熱によるシンタリングなど
の種々のNH3吸着量低下要因が複合して作用し
た劣化触媒に対し著しい効果がある。また、特殊
な化学処理や排水処理を必要とする工程を含まな
いため、極めて簡便な設備により、未使用触媒と
同程度の性能を有する触媒を得ることができる。
特に、使用済触媒の粉砕工程以外は、そのまま通
常の触媒製造設備と併用できるので、実用上極め
て有利である。
[Table] From the results in Table 1, (a) metatitanic acid and orthotitanic acid can be used in addition to TiO 2 as the TiO 2 raw material, and (b) treatments such as water washing and pickling are carried out prior to the treatment of the present invention. (iii) The method of the present invention is extremely effective in restoring the activity of not only titanium oxide/molybdenum oxide catalysts but also other denitrification catalysts such as titanium oxide/vanadium oxide catalysts. is clear. (Effects of the Invention) According to the present invention, by adding titanium oxide or its precursor to the regenerated catalyst, the adsorption amount of NH 3 can be increased and the activity can be restored. It has a remarkable effect on degraded catalysts that have been affected by a combination of various factors that reduce NH 3 adsorption, such as sintering. Furthermore, since it does not involve any process that requires special chemical treatment or wastewater treatment, it is possible to obtain a catalyst with performance comparable to that of an unused catalyst using extremely simple equipment.
In particular, it is extremely advantageous in practice because it can be used in conjunction with ordinary catalyst manufacturing equipment, except for the step of pulverizing the spent catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例にあげる被再生触媒
に対するTiO2添加量とNH3吸着量および脱硝率
との関係を示す図、第2図は、本発明における
TiO2の添加効果を他の添加物と比較した説明図
である。
FIG. 1 is a diagram showing the relationship between the amount of TiO 2 added, the amount of NH 3 adsorption, and the denitrification rate for the regenerated catalyst given in the example of the present invention, and FIG.
FIG. 2 is an explanatory diagram comparing the effect of adding TiO 2 with other additives.

Claims (1)

【特許請求の範囲】 1 チタンを含有するアンモニア接触還元脱硝触
媒の再生方法において、被再生触媒に酸化チタン
(TiO2)またはTiO2前駆体から選ばれた一種以
上のチタン化合物を、TiO2として再生触媒に対
して0を越えて70重量%添加混合することを特徴
とする脱硝触媒の再生法。 2 特許請求の範囲第1項において、被再生触媒
をあらかじめ、水または希硫酸で洗浄する脱硝触
媒の再生法。 3 特許請求の範囲第1項または第2項におい
て、チタン化合物の添加を乾式混合、または水を
加えた混練により行なう脱硝触媒の再生法。
[Claims] 1. In a method for regenerating an ammonia catalytic reduction denitrification catalyst containing titanium, one or more titanium compounds selected from titanium oxide (TiO 2 ) or a TiO 2 precursor are used as TiO 2 in the catalyst to be regenerated. A method for regenerating a denitrification catalyst, characterized by adding and mixing more than 0 to 70% by weight with respect to the regenerated catalyst. 2. The method for regenerating a denitrification catalyst according to claim 1, wherein the catalyst to be regenerated is washed with water or dilute sulfuric acid in advance. 3. The method for regenerating a denitration catalyst according to claim 1 or 2, wherein the titanium compound is added by dry mixing or kneading with water.
JP59278851A 1984-12-27 1984-12-27 Regeneration method of denitrating catalyst Granted JPS61153139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278851A JPS61153139A (en) 1984-12-27 1984-12-27 Regeneration method of denitrating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278851A JPS61153139A (en) 1984-12-27 1984-12-27 Regeneration method of denitrating catalyst

Publications (2)

Publication Number Publication Date
JPS61153139A JPS61153139A (en) 1986-07-11
JPH0468975B2 true JPH0468975B2 (en) 1992-11-04

Family

ID=17603023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278851A Granted JPS61153139A (en) 1984-12-27 1984-12-27 Regeneration method of denitrating catalyst

Country Status (1)

Country Link
JP (1) JPS61153139A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389005B2 (en) * 1996-06-25 2003-03-24 三菱重工業株式会社 Nitrogen oxide removal catalyst
JP2006192344A (en) * 2005-01-12 2006-07-27 Babcock Hitachi Kk Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP5526369B2 (en) * 2009-04-20 2014-06-18 バブコック日立株式会社 Denitration catalyst regeneration method
CN101921916B (en) * 2010-08-16 2014-05-28 华电电力科学研究院 Method for recycling metal oxide from waste flue gas denitration catalyst
JP2014213293A (en) * 2013-04-26 2014-11-17 バブコック日立株式会社 Regeneration method of used denitration catalyst
JP6441140B2 (en) * 2014-03-28 2018-12-19 日揮触媒化成株式会社 Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
JP7451195B2 (en) * 2020-01-31 2024-03-18 三菱重工業株式会社 Manufacturing method of regenerated denitrification catalyst

Also Published As

Publication number Publication date
JPS61153139A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US7666808B2 (en) Denitrification catalyst regeneration method
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
KR100370460B1 (en) DeNOx CATALYST FOR REDUCING THE NOx CONCENTRATION IN A STREAM OF FLUID, AND METHOD OF MANUFACTURING THE CATALYST
EP0161206A2 (en) Method for regenerating a denitration catalyst
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPH0468975B2 (en)
JPH045494B2 (en)
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
US6858562B1 (en) Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof
JP3150519B2 (en) Regeneration method of denitration catalyst
JPS5812057B2 (en) Shiyokubaisosabutsu
JP5526369B2 (en) Denitration catalyst regeneration method
JPH0417083B2 (en)
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JPS6248537B2 (en)
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JPH11267459A (en) Reducing method of nitrogen oxide and so3 in exhaust gas
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JPH06182202A (en) Low temperature denitration catalyst
JPH0446621B2 (en)
JPS60209252A (en) Regeneration method of denitration catalyst
JP3507538B2 (en) Exhaust gas purification catalyst and purification method
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPH0596165A (en) Denitrating catalyst inhibiting oxyidation of sulfur dioxide and its production
JP2016068031A (en) Denitration catalyst and denitration method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees