JPS6248537B2 - - Google Patents

Info

Publication number
JPS6248537B2
JPS6248537B2 JP56098361A JP9836181A JPS6248537B2 JP S6248537 B2 JPS6248537 B2 JP S6248537B2 JP 56098361 A JP56098361 A JP 56098361A JP 9836181 A JP9836181 A JP 9836181A JP S6248537 B2 JPS6248537 B2 JP S6248537B2
Authority
JP
Japan
Prior art keywords
catalyst
denitrification
vanadium
titania
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56098361A
Other languages
Japanese (ja)
Other versions
JPS58247A (en
Inventor
Juzo Nawa
Noriaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP56098361A priority Critical patent/JPS58247A/en
Publication of JPS58247A publication Critical patent/JPS58247A/en
Publication of JPS6248537B2 publication Critical patent/JPS6248537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種燃焼装置より排出される排ガス中
の窒素酸化物を、アンモニアの存在下で接触還元
除去するために用いられた少なくともバナジウ
ム、チタニアを含む被毒脱硝触媒の再生法に関す
るものである。 各種燃焼装置より排出される排ガス中に含まれ
る窒素酸化物は大気汚染の原因物質の一つである
のでその除去法が種々提案されているが、その中
でも特に還元剤としてのアンモニアの存在下で排
ガスを触媒と接触させて、窒素酸化物を窒素と水
に分解する接触還元法が多く実用化されている。 そして、この接触還元法に用いられる脱硝触媒
はバナジウムおよびチタニアを含む触媒が優れた
活性と長い寿命を有するので最も多く用いられて
いる。しかしながら、これらのバナジウムおよび
チタニアを含む脱硝触媒も長時間の使用により排
ガス中に含まれるダストの付着堆積や排ガス中に
含まれるSO2ガスの脱硝触媒によるSO3への転化
にもとづくアンモニアガスとの反応により硫酸ア
ンモニウムを生成し、その硫酸アンモニウムが脱
硝触媒に付着堆積する等のいわゆる触媒被毒によ
り、脱硝特性が大巾に低下することが避けられな
いものであつた。そして、従来、このような被毒
脱硝触媒の再生法としては、例えば水洗後100〜
500℃で焼成する方法(特開昭51−80696号)、水
又は稀無機酸溶液で洗浄するか又は蒸気を吹きつ
ける方法(特開昭52−27091号)、蓚酸水溶液を接
触させバナジウム成分の一部を抽出後バナジウム
化合物を含浸担持し焼成する方法(特開昭54−
10294号)等が提案され実施されている。これら
の洗浄処理法により、触媒に付着したダストや水
溶性の触媒劣化の原因物質がある程度まで除去さ
れるため触媒性能の回復効果はかなり認められ
る。 しかしながら、触媒被毒にともなつて増加した
SO2転化率を十分低下回復することができず、必
ずしも満足できる脱硝触媒の再生法ではなかつ
た。 本発明の脱硝触媒の再生法は、従来のこのよう
な欠点を解決するためになされたものであり、特
に触媒性能およびSO2転化率の特性回復に優れた
触媒の再生法であり、排ガス中の窒素酸化物をア
ンモニアの存在下で接触還元除去する少なくとも
バナジウム、チタニアを含む脱硝触媒の再生法に
おいて、被毒触媒を水又は無機酸溶液で洗浄した
後、タングステンを含有する溶液に浸漬し、触媒
の見掛け体積1m3当りWO3に換算して0.01Kg〜10
Kgのタングステン化合物を触媒に含浸担持し、次
いで乾燥後400〜650℃で焼成する脱硝触媒の再生
法である。 以下、本発明を更に詳しく説明する。 バナジウム−チタニア系触媒、バナジウム−タ
ングステン−チタニア系触媒あるいはこれらの成
分の中にモリブデン、鉄、銅、クロム、ニツケ
ル、コバルト、セリウム等の触媒活性物質の1種
以上を含有する少なくともバナジウム、チタニア
を含む脱硝触媒よりなり、長時間の使用により脱
硝性能の低下したいわゆる被毒脱硝触媒を常温〜
90℃の水又は温水、あるいは10%以下の濃度の塩
酸、硫酸等の無機酸溶液中で例えば超音波洗浄等
で洗浄する。この洗浄により触媒表面および内部
に入り込んだダストとともにアルカリ金属化合物
や触媒成分と反応した水溶性の被毒物質等が除去
される。この場合、洗浄に要する時間はダストや
被毒物質の付着状況や洗浄液の温度、無機酸の濃
度、撹拌等の条件により異なるが通常10分〜3時
間程度でよい。この洗浄によりダストや被毒物質
を除去した触媒を乾燥し、その触媒をタングステ
ンを含む溶液中に浸漬し、触媒の見掛け体積1m3
当りWO3に換算して0.01Kg〜10Kg、好ましくは
0.1Kg〜3Kgのタングステン化合物を触媒に含浸
担持させた後、400℃〜650℃、好ましくは500℃
〜600℃で焼成する触媒の再生法である。なお、
含浸に用いるタングステンを含む溶液としては、
パラタングステン酸アンモニウムをモノエタノー
ルアミンやメタノールアミン等の有機溶剤に溶解
したものや、市販のタングステン酸水溶液を用い
るとよい。 また、WO3の含浸担持の方法としては、目標
とする担持量に合わせてWO3の濃度を調製し一
度で含浸させてもよいし、薄い濃度の液を用いて
繰り返し含浸し担持させてもよいが、WO3の担
持量が0.01Kg/m3以下では脱硝率とSO2転化率の
回復効果が小さいため好ましくなく、また10Kg/
m3以上担持しても脱硝率およびSO2転化率のいず
れも効果の向上があまり期待できず、経済的に意
味がないためである。 さらに、担持後の焼成温度を400℃〜650℃にす
るのは、400℃以下では担持したタングステン化
合物が完全にWO3になりきらないためであり650
℃以上では元の触媒に含有されているバナジウム
成分が溶融を起こし、触媒比表面積の低下を招
き、脱硝率の低下とSO2転化率の増加を生ずるた
めである。なお、本発明で再生処理ができる少な
くともバナジウム、チタニアを含む脱硝触媒とし
ては、ムライト、コージエライト等の基材上に活
性物質を担持したいわゆる被覆触媒でもあるいは
活性物質で触媒を形成したいわゆるソリツド触媒
でもよく、また触媒の形状はハニカム状、ペレツ
ト状、パイプ状等のいずれもよいものである。 次に、本発明を実施例により具体的に説明す
る。触媒成分としてV2O53.0%、TiO297%からな
るハニカム触媒(以下触媒Aという)および
V2O51.0%、WO37.0%、TiO292%からなるハニ
カム触媒(以下触媒Bという)、V2O51.0%、
MoO35.5%、TiO293.5%からなるハニカム触媒
(以下触媒Cという)、V2O52.0%、Fe2O33.0%、
CuO2.5%、TiO292.5%からなるハニカム触媒
(以下触媒Dという)、V2O51.0%、MoO33.0%、
WO35.0%、TiO291.0%からなるハニカム触媒
(以下触媒Eという)を用い第1表に示した条件
でボイラー排ガス中で12000時間使用したところ
380℃における脱硝率とSO2転化率は第2表に示
すように初期に比べ触媒性能の低下が起こつた。
The present invention relates to a method for regenerating a poisoned denitrification catalyst containing at least vanadium and titania used for catalytic reduction removal of nitrogen oxides in exhaust gases discharged from various combustion devices in the presence of ammonia. Nitrogen oxides contained in the exhaust gas emitted from various combustion devices are one of the causes of air pollution, and various methods have been proposed for their removal. Many catalytic reduction methods have been put into practical use, in which exhaust gas is brought into contact with a catalyst to decompose nitrogen oxides into nitrogen and water. As the denitrification catalyst used in this catalytic reduction method, catalysts containing vanadium and titania are most often used because they have excellent activity and long life. However, when these denitration catalysts containing vanadium and titania are used for a long period of time, the dust contained in the exhaust gas can accumulate, and the SO 2 gas contained in the exhaust gas can be converted to SO 3 by the denitration catalyst. Ammonium sulfate is produced by the reaction, and the ammonium sulfate adheres to and accumulates on the denitrification catalyst, resulting in so-called catalyst poisoning, which inevitably causes a significant decrease in the denitrification properties. Conventionally, as a method for regenerating such a poisoned denitrification catalyst, for example, after washing with water,
A method of firing at 500℃ (Japanese Unexamined Patent Publication No. 51-80696), a method of washing with water or a dilute inorganic acid solution or spraying with steam (Japanese Unexamined Patent Application No. 52-27091), and a method of contacting with an oxalic acid aqueous solution to remove the vanadium component. A method of impregnating and supporting a vanadium compound after extracting a portion and firing it (Japanese Patent Application Laid-Open No. 1983-
10294) etc. have been proposed and implemented. These cleaning treatment methods remove to some extent dust adhering to the catalyst and water-soluble substances that cause catalyst deterioration, and are therefore highly effective in restoring catalyst performance. However, it increased with catalyst poisoning.
It was not possible to sufficiently reduce and recover the SO 2 conversion rate, and this was not necessarily a satisfactory method for regenerating the denitrification catalyst. The denitrification catalyst regeneration method of the present invention was developed to solve these conventional drawbacks, and is a catalyst regeneration method that is particularly excellent in recovering the characteristics of catalyst performance and SO 2 conversion rate. In a method for regenerating a denitrification catalyst containing at least vanadium and titania in which nitrogen oxides are removed by catalytic reduction in the presence of ammonia, the poisoned catalyst is washed with water or an inorganic acid solution, and then immersed in a solution containing tungsten, 0.01Kg~10 in terms of WO3 per 1m3 of apparent volume of catalyst
This is a denitrification catalyst regeneration method in which the catalyst is impregnated and supported with kg of tungsten compound, then dried and calcined at 400 to 650°C. The present invention will be explained in more detail below. A vanadium-titania catalyst, a vanadium-tungsten-titania catalyst, or at least vanadium or titania containing one or more catalytically active substances such as molybdenum, iron, copper, chromium, nickel, cobalt, and cerium in these components. The so-called poisoned denitrification catalyst, which has degraded denitrification performance due to long-term use, is removed from room temperature to
Clean with ultrasonic cleaning, etc. in water at 90°C or warm water, or in an inorganic acid solution such as hydrochloric acid or sulfuric acid with a concentration of 10% or less. This cleaning removes dust that has entered the catalyst surface and inside, as well as water-soluble poisoning substances that have reacted with alkali metal compounds and catalyst components. In this case, the time required for cleaning varies depending on the adhesion status of dust and poisonous substances, the temperature of the cleaning liquid, the concentration of inorganic acid, stirring conditions, etc., but is usually about 10 minutes to 3 hours. The catalyst from which dust and poisonous substances have been removed by this cleaning is dried, and the catalyst is immersed in a solution containing tungsten to reduce the apparent volume of the catalyst to 1 m 3 .
0.01Kg to 10Kg in terms of WO 3 per unit, preferably
After impregnating and supporting the catalyst with 0.1Kg to 3Kg of tungsten compound, the temperature is 400℃ to 650℃, preferably 500℃.
This is a catalyst regeneration method that involves firing at ~600℃. In addition,
Solutions containing tungsten used for impregnation include:
It is preferable to use ammonium paratungstate dissolved in an organic solvent such as monoethanolamine or methanolamine, or a commercially available aqueous tungstic acid solution. In addition, as a method for impregnating and supporting WO 3 , the concentration of WO 3 may be adjusted according to the target amount of support and impregnation may be carried out at once, or it may be carried out by repeatedly impregnating and supporting using a solution with a thin concentration. However, if the supported amount of WO 3 is less than 0.01 Kg/m 3 , it is not preferable because the recovery effect on the denitrification rate and SO 2 conversion rate is small.
This is because even if m 3 or more is supported, neither the denitrification rate nor the SO 2 conversion rate can be expected to improve much, and it is economically meaningless. Furthermore, the reason why the calcination temperature after supporting is set to 400°C to 650°C is because the supported tungsten compound cannot completely convert into WO 3 at temperatures below 400°C.
This is because at temperatures above 0.degree. C., the vanadium component contained in the original catalyst melts, leading to a decrease in the specific surface area of the catalyst, resulting in a decrease in the denitrification rate and an increase in the SO 2 conversion rate. The denitrification catalyst containing at least vanadium and titania that can be regenerated in the present invention may be a so-called coated catalyst in which an active substance is supported on a base material such as mullite or cordierite, or a so-called solid catalyst in which the catalyst is formed of an active substance. The shape of the catalyst may be honeycomb, pellet, pipe, etc. Next, the present invention will be specifically explained using examples. A honeycomb catalyst (hereinafter referred to as catalyst A) consisting of 3.0% V 2 O 5 and 97% TiO 2 as catalyst components;
Honeycomb catalyst (hereinafter referred to as catalyst B) consisting of V 2 O 5 1.0%, WO 3 7.0%, TiO 2 92%, V 2 O 5 1.0%,
Honeycomb catalyst (hereinafter referred to as catalyst C) consisting of MoO 3 5.5%, TiO 2 93.5%, V 2 O 5 2.0%, Fe 2 O 3 3.0%,
Honeycomb catalyst (hereinafter referred to as catalyst D) consisting of CuO 2.5%, TiO 2 92.5%, V 2 O 5 1.0%, MoO 3 3.0%,
A honeycomb catalyst (hereinafter referred to as catalyst E) consisting of 5.0% WO 3 and 91.0% TiO 2 was used for 12,000 hours in boiler exhaust gas under the conditions shown in Table 1.
As shown in Table 2, the denitrification rate and SO 2 conversion rate at 380°C showed a decrease in catalyst performance compared to the initial stage.

【表】【table】

【表】 この性能の低下した5つの被毒触媒を第3表に
示した条件で、触媒の見掛け体積の3倍の水又は
無機酸の水溶液中で超音波洗浄装置を用い洗浄し
た後、パラタングステン酸アンモニウムのモノエ
タノールアミン溶解溶液中に触媒を浸漬しWO3
に換算して第3表に記載する量含浸担持し、つい
で乾燥、第3表中に記載する条件で焼成して再生
触媒No.1〜No.33を得た。そして、これらの再生し
た触媒を第1表に示した排ガス条件下で脱硝率お
よびSO2転化率を比較測定した。結果は第3表に
記載するとおりである。なお、比較のために本発
明の範囲外のものを比較例として、又、従来法の
ものを従来例として第3表に併せ記載した。
[Table] The five poisoned catalysts with degraded performance were cleaned using an ultrasonic cleaning device in water or an aqueous solution of an inorganic acid with an amount three times the apparent volume of the catalyst under the conditions shown in Table 3. Immersing the catalyst in a monoethanolamine solution of ammonium tungstate in WO 3
The catalysts were impregnated and supported in the amount shown in Table 3 in terms of the amount of catalyst, dried, and calcined under the conditions shown in Table 3 to obtain regenerated catalysts No. 1 to No. 33. Then, the denitrification rate and SO 2 conversion rate of these regenerated catalysts were comparatively measured under the exhaust gas conditions shown in Table 1. The results are shown in Table 3. For comparison, those outside the scope of the present invention are listed as comparative examples, and those made using the conventional method are listed as conventional examples in Table 3.

【表】【table】

【表】 第3表の結果より明らかなとおり、本発明の触
媒の再生法によれば、脱硝率およびSO2転化率と
も初期特性まで完全に回復することができるが、
本発明範囲外のものおよび従来法のものは脱硝率
およびSO2転化率とも初期値まで回復することは
できないものであつた。 以上、述べたとおり本発明は、バナジウム、チ
タニアを含む被毒脱硝触媒を洗浄した後、タング
ステンの所定量を含浸担持する簡単な操作によ
り、脱硝率およびSO2転化率とも初期値まで完全
に回復することができる再生法であり、現在火力
発電所等のボイラー排ガス中の窒素酸化物除去に
大量に用いられているバナジウム、チタニアを含
む脱硝触媒の再生法として極めて有用であり、産
業上有益な被毒脱硝触媒の再生法である。
[Table] As is clear from the results in Table 3, according to the catalyst regeneration method of the present invention, both the denitrification rate and the SO 2 conversion rate can be completely restored to their initial characteristics.
Both the denitrification rate and the SO 2 conversion rate could not be recovered to their initial values in the cases outside the scope of the present invention and those using the conventional method. As described above, in the present invention, after cleaning the poisoned denitrification catalyst containing vanadium and titania, both the denitrification rate and the SO 2 conversion rate can be completely restored to their initial values by a simple operation of impregnating and supporting a predetermined amount of tungsten. It is an extremely useful regeneration method for denitrification catalysts containing vanadium and titania, which are currently used in large quantities to remove nitrogen oxides from boiler exhaust gas in thermal power plants, etc., and is an industrially useful method. This is a method for regenerating poisoned denitrification catalysts.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス中の窒素酸化物をアンモニアの存在下
で接触還元除去する少なくともバナジウム、チタ
ニアを含む脱硝触媒の再生法において、被毒触媒
を水又は無機酸溶液で洗浄した後タングステンを
含有する溶液に浸漬し触媒の見掛け体積1m3当り
WO3に換算して0.01Kg〜10Kgのタングステン化合
物を触媒に含浸坦持し、次いで乾燥後400〜650℃
で焼成することを特徴とする脱硝触媒の再生法。
1 In a method for regenerating a denitrification catalyst containing at least vanadium and titania in which nitrogen oxides in exhaust gas are removed by catalytic reduction in the presence of ammonia, the poisoned catalyst is washed with water or an inorganic acid solution and then immersed in a solution containing tungsten. per 1 m3 of apparent volume of catalyst
A catalyst is impregnated and supported with 0.01Kg to 10Kg of tungsten compound in terms of WO 3 , and then dried at 400 to 650℃.
A method for regenerating a denitrification catalyst, which is characterized by firing the denitrification catalyst.
JP56098361A 1981-06-26 1981-06-26 Regenerating method for denitrating catalyst Granted JPS58247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098361A JPS58247A (en) 1981-06-26 1981-06-26 Regenerating method for denitrating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098361A JPS58247A (en) 1981-06-26 1981-06-26 Regenerating method for denitrating catalyst

Publications (2)

Publication Number Publication Date
JPS58247A JPS58247A (en) 1983-01-05
JPS6248537B2 true JPS6248537B2 (en) 1987-10-14

Family

ID=14217734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098361A Granted JPS58247A (en) 1981-06-26 1981-06-26 Regenerating method for denitrating catalyst

Country Status (1)

Country Link
JP (1) JPS58247A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034743A (en) * 1983-08-08 1985-02-22 Babcock Hitachi Kk Regeneration of used denitration catalyst
JPS60209252A (en) * 1984-04-03 1985-10-21 Mitsubishi Heavy Ind Ltd Regeneration method of denitration catalyst
JPS60212238A (en) * 1984-04-05 1985-10-24 Mitsubishi Heavy Ind Ltd Regeneration of ammonia catalytic reducing and denitration catalyst
JP2991431B2 (en) * 1987-06-05 1999-12-20 バブコツク日立株式会社 Catalyst for catalytic reduction and denitration of ammonia and its production method
US6395665B2 (en) * 1998-07-24 2002-05-28 Mitsubishi Heavy Industries, Ltd. Methods for the regeneration of a denitration catalyst
DE59900514D1 (en) * 1998-08-26 2002-01-17 Integral Umwelt Und Anlagentec METHOD FOR REGENERATING USED DeNOx or Dedioxin CATALYSTS
CN106944138B (en) * 2016-01-07 2019-07-12 中国石油化工股份有限公司 A kind of utilization method of useless hydrogenation catalyst
CN106944114B (en) * 2016-01-07 2019-08-06 中国石油化工股份有限公司 A kind of utilization method of useless hydrotreating catalyst

Also Published As

Publication number Publication date
JPS58247A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US5599758A (en) Regeneration of catalyst/absorber
US6395665B2 (en) Methods for the regeneration of a denitration catalyst
US4615991A (en) Method for recovering denitrating catalyst
US6596661B2 (en) Process for regenerating a deactivated catalyst
JP3377715B2 (en) Regeneration method of denitration catalyst
JP3059136B2 (en) Regeneration method of denitration catalyst
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
JPS6248537B2 (en)
JP2000037634A (en) Method for regenerating treatment of dentirating catalyst
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JP3150519B2 (en) Regeneration method of denitration catalyst
KR20190049746A (en) DENOX catalyst regeneration method
JPS60209252A (en) Regeneration method of denitration catalyst
JPH0468975B2 (en)
JPS6321536B2 (en)
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPS6034743A (en) Regeneration of used denitration catalyst
JP2002316051A (en) Method and apparatus for regenerating denitration catalyst or dioxin decomposition catalyst
JP2000167405A (en) Method for catalyst regeneration by coating
KR20190050992A (en) Methods for reducing nitric oxide compounds
JPH02293051A (en) Method for regenerating catalyst for purification of exhaust gas
JP3796214B2 (en) Method for regenerating degraded catalyst
JPS60209251A (en) Regeneration method of denitration catalyst
CA2207275C (en) Regeneration of catalyst/absorber
JPS596945A (en) Regeneration of titania catalyst