JPH0468749B2 - - Google Patents

Info

Publication number
JPH0468749B2
JPH0468749B2 JP57162702A JP16270282A JPH0468749B2 JP H0468749 B2 JPH0468749 B2 JP H0468749B2 JP 57162702 A JP57162702 A JP 57162702A JP 16270282 A JP16270282 A JP 16270282A JP H0468749 B2 JPH0468749 B2 JP H0468749B2
Authority
JP
Japan
Prior art keywords
battery
lead
discharge
anode
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57162702A
Other languages
Japanese (ja)
Other versions
JPS5951484A (en
Inventor
Yoshikazu Ishikura
Akira Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57162702A priority Critical patent/JPS5951484A/en
Priority to US06/452,054 priority patent/US4473623A/en
Priority to GB08236632A priority patent/GB2119161B/en
Priority to FR8221945A priority patent/FR2519193B1/en
Priority to DE19823248401 priority patent/DE3248401A1/en
Publication of JPS5951484A publication Critical patent/JPS5951484A/en
Publication of JPH0468749B2 publication Critical patent/JPH0468749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池、特に、遊離の電解液が存
在しないように電解液量を制限した形体のいわゆ
るリテナー式鉛蓄電池の保存方法も関するもので
あり、放電後、長時間放置しても、電池特性を低
下させることのない保存方法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention also relates to a method for preserving lead-acid batteries, particularly so-called retainer type lead-acid batteries in which the amount of electrolyte is limited so that no free electrolyte is present. The present invention provides a storage method that does not cause deterioration of battery characteristics even if the battery is left for a long time after discharge.

背景技術 リテナー式鉛蓄電池は、電解液量を制限し、
且、陰極容量を陽極容量より10ないし30%大きく
して、充電時陽極が先に満充電となるようにし、
過充電の際、陽極より発生する酸素を陰極で吸
収、消費する形体がとられている。
Background technology Retainer type lead-acid batteries limit the amount of electrolyte,
In addition, the cathode capacity is made 10 to 30% larger than the anode capacity so that the anode is fully charged first during charging.
During overcharging, the cathode absorbs and consumes oxygen generated from the anode.

而して、この電池を放電後、長時間放置すると
陽極において、陽極活物質層を支持する鉛又は鉛
合金よりなる陽極集電体表面の腐食層が、不活性
なpbSO4(硫酸鉛)層に転化して陽極活物質層と
陽極集電体との間の抵抗が高くなり、その結果、
充電効率が悪くなつて容量が十分回復されず、電
池特性が劣化することになる。
If this battery is left for a long time after discharging, the corrosion layer on the surface of the anode current collector made of lead or lead alloy that supports the anode active material layer will form an inert pbSO 4 (lead sulfate) layer. , the resistance between the anode active material layer and the anode current collector increases, and as a result,
Charging efficiency deteriorates, capacity is not fully recovered, and battery characteristics deteriorate.

さて、本発明者等が、種々検討したところ、上
述した原因は次の理由によるものと考えられる。
すなわち、電池組立後の充放電の繰り返しにおい
ては、陽極酸化により、陽極集電体の表面に、
pbO2(二酸化鉛)腐食層が形成されることにな
る。このpbO2腐食層は、通常の充放電の繰り返
しにおいては、放電状態においても、pbO2とし
て存在しているので問題はないが、この状態で長
時間放置すると、集電体であるpb(鉛)がイオン
化してpb++イオンとなり、又腐食層を形成する
pbO2層のpb++イオンとなる。そして、これらの
pb++イオンが電解液中に残存しているSO4 --イオ
ンと化学的に結合して、pbSO4となり、この
pbSO4が不活性な状態になり易いため、上述した
問題が生ずることになる。
As a result of various studies conducted by the inventors, it is believed that the above-mentioned cause is due to the following reasons.
In other words, during repeated charging and discharging after assembly of the battery, anodic oxidation causes the surface of the anode current collector to
A pbO 2 (lead dioxide) corrosion layer will form. This pbO 2 corrosion layer poses no problem during normal charge/discharge cycles because it exists as pbO 2 even in the discharge state, but if left in this state for a long time, the current collector PB (lead) ) is ionized to become pb ++ ions and forms a corrosion layer.
It becomes pb ++ ions with two layers of pbO. And these
The pb ++ ions chemically combine with the SO 4 -- ions remaining in the electrolyte to form pbSO 4 , and this
Since pbSO 4 tends to become inactive, the above-mentioned problems arise.

発明の目的 本発明は放電放置において、集電体表面の
pbO2腐食層が不活性なpbSO4層に転化するのを
抑制し、長時間放置においても、電池特製の劣化
しない鉛蓄電池の保存方法を提供することを目的
とする。
Purpose of the invention The present invention aims to improve the surface of the current collector during discharging.
The purpose of the present invention is to provide a method for preserving lead-acid batteries that suppresses the conversion of a pbO 2 corrosion layer into an inactive pbSO 4 layer and does not deteriorate even when left for a long time.

発明の構成 本発明は上述した目的を達成すべくなされたも
ので、次のように構成される。すなわち、陰陽極
板及びセパレータに含浸保持され遊離の電解液を
制限した鉛蓄電池を保存する方法であつて、放電
を終了した前記鉛蓄電池を放置する際に、陰陽両
極間を負荷接続した状態で放置することを特徴と
する鉛蓄電池の保存方法である。
Configuration of the Invention The present invention has been made to achieve the above-mentioned object, and is configured as follows. That is, it is a method for preserving a lead-acid battery in which the cathode and anode plates and the separator are impregnated and held to limit free electrolyte, and when the lead-acid battery is left after discharging, the cathode and anode are connected with a load. This is a method of preserving lead-acid batteries, which is characterized by leaving them as they are.

実施例 以下、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.

電池の作成; 鋳造、打抜きあるいはエキスバンド加工により
得られた鉛−カルシウム合金を、50×50×2mm及
び50×50×1mmの寸法に裁断したるものを、陽極
集電体及び陰極集電体とし、pbO(一酸化鉛)と
水よりなる活物質ペーストを、ローラにより厚み
1.0mm及び0.7mmに圧延した寸法50×50mmのシート
状活物質層の圧着して陽極板及び陰極板とする。
このようにして構成された陽極板および陰極板
は、夫々厚み2.4mm及び1.2mmである。
Creating a battery: A lead-calcium alloy obtained by casting, punching, or expanded band processing is cut into sizes of 50 x 50 x 2 mm and 50 x 50 x 1 mm, and is used as an anode current collector and a cathode current collector. Then, the active material paste consisting of pbO (lead monoxide) and water is rolled into a thick layer using a roller.
Sheet-like active material layers with dimensions of 50 x 50 mm rolled to 1.0 mm and 0.7 mm are pressed together to form an anode plate and a cathode plate.
The anode plate and cathode plate constructed in this manner have a thickness of 2.4 mm and 1.2 mm, respectively.

以上のようにして得た1枚の陽極板と2枚の陰
極板をガラス繊維製セパレータを介して、交互に
積重した電極郡を樹脂製の電槽内に介挿する。
One anode plate and two cathode plates obtained as described above are stacked alternately with a glass fiber separator in between, and the electrode group is inserted into a resin battery case.

次いで、比重1.30の硫酸電解液を、10cc注液し
て、極板およびセパレータに含浸保持せしめたの
ち、陰陽極外部端子を取付けた電槽蓋を装着して
容量1AHの鉛蓄電池を得た。そして、化成して
使用可能とする。
Next, 10 cc of sulfuric acid electrolyte having a specific gravity of 1.30 was injected to impregnate and hold the electrode plates and separators, and then a container lid with cathode and anode external terminals attached was attached to obtain a lead-acid battery with a capacity of 1 AH. Then, it is chemically converted to make it usable.

上述した製法により作成して化成後の鉛蓄電池
を初充電して、所定電流にて放電し、放電終了
後、本発明方法により放置した電池Aと、比較の
ため開路状態にて放置し比較電池Bとの電池性能
を比較した。
A lead-acid battery produced by the above-mentioned manufacturing method and after chemical formation was first charged, discharged at a predetermined current, and after discharging, battery A was left by the method of the present invention, and a comparative battery was left in an open circuit state for comparison. The battery performance was compared with B.

測定方法は、化成後の鉛蓄電池を定着圧
(2.5V)で16時間充電し、0.2c電流で放電して放
電終止電圧(1.7V)に達するまでの放電容量を
100とし、放電終了後、本発明方法による電池A
と、比較電池Bとを、それぞれ室温、3カ月間、
6カ月間、12ケ月間放置した後、定量圧(2.5V)
で16時間充電し、0.2c電流で放電して、放電終止
電圧を1.7Vとして放電容量を測る方法を用いた。
The measurement method is to charge a lead-acid battery after chemical formation at a fixing pressure (2.5V) for 16 hours, discharge it at a current of 0.2c, and measure the discharge capacity until it reaches the final discharge voltage (1.7V).
100, and after discharging, battery A according to the method of the present invention
and Comparative battery B, respectively, at room temperature for 3 months.
Fixed pressure (2.5V) after being left for 6 months or 12 months
A method was used in which the battery was charged for 16 hours, discharged at a current of 0.2c, and the discharge capacity was measured with an end-of-discharge voltage of 1.7V.

本発明方法による保存方法を用いた電池Aは放
電終了跡、陰陽極端子間を負荷接続して放置さ
れ、この負荷として、実施例では0.1c電流相当の
抵抗負荷(20Ω)を接続した。
Battery A, which was stored according to the method of the present invention, was left with a load connected between the anode and cathode terminals at the end of discharge, and in the example, a resistive load (20Ω) corresponding to a current of 0.1c was connected as this load.

また、比較電池Bは、前述したように、放電終
了後、開路状態で放置した。
Further, as described above, Comparative Battery B was left in an open circuit state after completion of discharging.

第1図は本発明方法による電池Aと比較電池B
との放電放置特性を比較したものであり、図より
比較電池Bでは、放置後放電容量は初期放電容量
に対して、12カ月間放置した後のものでは20%以
下であるのに対し、本発明方法による電池Aによ
れば12カ月間放置したものにおいても、放電容量
は初期放電容量に対して90%以上を維持してお
り、放電放置特性が向上していることがわかる。
Figure 1 shows a battery A manufactured by the method of the present invention and a comparative battery B.
The figure shows that for comparative battery B, the discharge capacity after being left for 12 months is less than 20% of the initial discharge capacity; According to the battery A produced by the invention method, even when left for 12 months, the discharge capacity maintained 90% or more of the initial discharge capacity, indicating that the discharge storage characteristics were improved.

第2図ないし第4図は本発明方法による電池A
と比較電池Bとの間の放置後、定電圧充電を行つ
た場合の充電特性図であり、第2図は放置期間が
3ケ月間の場合、第3図は同6カ月間の場合、第
4図は12カ月間の場合をそれぞれ示す。図より本
発明方法による電池Aによれば、放置期間が長く
なつても、電池電圧は上昇せず、充電時の電流受
入れ性の容易さをあらわしている。これに対し、
比較電池Bによれば、放置期間が長くなるのにつ
れて、電池電圧は上昇し、12カ月間放置したもの
では、充電時の電池電圧が設定電圧(2.5V)ま
で上昇しており、充電時の電流の受入れ性が低下
しており、本発明法の効果は明白である。
Figures 2 to 4 show a battery A manufactured by the method of the present invention.
These are charging characteristics diagrams when constant voltage charging is performed after being left unused for 3 months and comparative battery B. Figure 4 shows the case for 12 months. As can be seen from the figure, according to the battery A manufactured by the method of the present invention, the battery voltage does not increase even if the battery is left unused for a long time, indicating that the battery can easily accept current during charging. In contrast,
According to Comparative Battery B, the battery voltage increases as the storage period increases, and for the battery that was stored for 12 months, the battery voltage rose to the set voltage (2.5V) when charging. The acceptability of current is reduced, and the effect of the method of the invention is obvious.

このことは、充放電の繰り返しによつて、陽極
集電体表面に形成されたpbO2の腐食層が、開始
状態で放置する場合には、長期間放置で、pb++
イオンとなり、そして、このpb++イオンが電解
液中に残存しているSO4 --イオンと反応結合し
て、不活性なpbSO4層が生成し、そのために、放
置後の充電時に電圧上昇をひき起し、充電不良と
いう問題がおこる。これに対して、本発明方法の
如く、陰陽両極間を負荷接続した状態で放置すれ
ば、負荷接続による放電は、電池電圧に対応して
放電電流が流れるために、放電末期では微少電流
放電となり、そのめめに、活性質の放電がより進
行した状態で極板表面部を中心に均一に放電が終
了し、電解液に残存するSO4 --イオンがほとんど
消費されるので、集電体のpbO2腐食層における
pb++とSO4 --によるpbSO4生成が抑制されるの
で、長期間の放電放置においても放電放置で生じ
るpbO2腐食層のpbSO4化による充電電流の通電
性能の低下という問題点も起こらずに、長期間の
放置後も、充電、特に定電圧充電に対して有効な
効果を示し、電池特性の低下を防止することが可
能となる。
This means that if the pbO 2 corrosion layer formed on the anode current collector surface due to repeated charging and discharging is left in the initial state, the pb ++
ions, and these pb ++ ions react and combine with the SO 4 -- ions remaining in the electrolyte to form an inert pbSO 4 layer, which causes a voltage increase when charging after being left unused. This causes the problem of charging failure. On the other hand, if the negative and positive electrodes are left connected with a load as in the method of the present invention, the discharge due to the load connection will result in a minute current discharge at the end of discharge because the discharge current flows in accordance with the battery voltage. As a result, the discharge of the active material progresses evenly, and the discharge ends uniformly around the surface of the electrode plate, and most of the SO 4 -- ions remaining in the electrolyte are consumed, so that the current collector in the pbO2 corrosion layer
Since pbSO 4 generation by pb ++ and SO 4 -- is suppressed, the problem of deterioration of charging current carrying performance due to pbSO 4 conversion of the pbO 2 corrosion layer that occurs during long-term discharge does not occur. Even after being left unused for a long period of time, it exhibits an effective effect on charging, especially constant voltage charging, making it possible to prevent deterioration of battery characteristics.

また、負荷接続した状態で放置するために、放
電終了した鉛蓄電池の陰陽両極間に負荷接続する
手段としては、例えば、放電終了時に際して、陰
陽両極間に負荷を接続する切換制御装置を鉛蓄電
池にあらかじめ電池に内臓されておいても良い。
この切換制御装置としては、例えば、電池の放電
深度の程度を電池の閉路電圧が放電終止電圧
(17V)より小さいか否かにより検出して、負荷
の陰陽両極間への接続を制御すればよく、例え
ば、次のように構成すればよい。すなわち、陰陽
極端子を有する鉛蓄電池の閉路電圧を検出する検
出手段と、その検出電圧を放電終止電圧と比較す
る比較手段と、検出電圧が放電終止電圧であると
きの比較手段の出力に基いて作動する切換保持回
路手段と、この回路手段の出力により負荷を陰陽
極端子間に接続するスイツチ手段とを具備した切
換制御装置等を用いれば良い。
In addition, in order to leave the lead-acid battery with a load connected, for example, as a means for connecting a load between the negative and anode poles of a lead-acid battery that has finished discharging, it is possible to It may be built into the battery in advance.
This switching control device may, for example, detect the depth of discharge of the battery based on whether the closed circuit voltage of the battery is lower than the end-of-discharge voltage (17V) and control the connection between the negative and positive poles of the load. For example, it may be configured as follows. That is, based on the detection means for detecting the closed circuit voltage of a lead-acid battery having negative and anode terminals, the comparison means for comparing the detected voltage with the final discharge voltage, and the output of the comparison means when the detected voltage is the final discharge voltage. A switching control device or the like may be used, which includes an operating switching holding circuit means and a switch means for connecting a load between negative and anode terminals by the output of this circuit means.

本明の効果 以上説明したように、本発明方法によれば、放
電を終了し鉛蓄電地の陰陽両極間を負荷接続して
放置することにより、集電体表面のpbO2腐食層
が不活性なpbSO4層に転化するのを抑制し、長期
間放置しても電池特性が劣化することを防止でき
るなど、その工業的価値は極めて大きい。
Effects of the Present Invention As explained above, according to the method of the present invention, the pbO 2 corrosion layer on the surface of the current collector becomes inactive by terminating the discharge and leaving the negative and anode electrodes of the lead-acid battery connected with a load. Its industrial value is extremely large, as it can suppress the conversion to four pbSO layers and prevent battery characteristics from deteriorating even if left for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明方法により保存した電池
Aと比較電池Bとの電池特性比較図であり、第1
図囲は放電放置特性比較図、第2図ないし第4図
は一定期間放置後、定電圧充電を行つた場合の充
電特性図であり、第2図は3カ月間放置した場
合、第3図は6カ月間放置した場合、第4図は12
カ月間放置した場合を夫々示す。
Each of the drawings is a comparison diagram of battery characteristics between battery A and comparative battery B stored by the method of the present invention.
The box in the figure is a comparison diagram of discharge characteristics, and Figures 2 to 4 are charging characteristics diagrams when constant voltage charging is performed after being left unused for a certain period of time. If left for 6 months, Figure 4 shows 12
The results are shown below after being left unused for a month.

Claims (1)

【特許請求の範囲】[Claims] 1 陰陽極板及びセパレータに含浸保持され遊離
の電解液が存在しないように電解液量を制限した
鉛蓄電池を保存する方法であつて、放電を終了し
た前記鉛蓄電池を放置する際に、陰陽両極間を負
荷接続した状態で放置することを特徴とする鉛蓄
電池の保存方法。
1 A method for preserving a lead-acid battery in which the cathode and anode plates and separators are impregnated and held so that the amount of electrolyte is limited so that there is no free electrolyte, and when the lead-acid battery is left after discharging, both cathode and anode electrodes are A method for storing lead-acid batteries characterized by leaving them with a load connected between them.
JP57162702A 1981-12-28 1982-09-17 Storing method of lead storage battery Granted JPS5951484A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57162702A JPS5951484A (en) 1982-09-17 1982-09-17 Storing method of lead storage battery
US06/452,054 US4473623A (en) 1981-12-28 1982-12-22 Lead acid battery and method of storing it
GB08236632A GB2119161B (en) 1981-12-28 1982-12-23 Lead acid battery and method of storing it
FR8221945A FR2519193B1 (en) 1981-12-28 1982-12-28 LEAD AND ACID BATTERY, AND METHOD FOR STORING THE SAME
DE19823248401 DE3248401A1 (en) 1981-12-28 1982-12-28 LEAD ACCUMULATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162702A JPS5951484A (en) 1982-09-17 1982-09-17 Storing method of lead storage battery

Publications (2)

Publication Number Publication Date
JPS5951484A JPS5951484A (en) 1984-03-24
JPH0468749B2 true JPH0468749B2 (en) 1992-11-04

Family

ID=15759673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162702A Granted JPS5951484A (en) 1981-12-28 1982-09-17 Storing method of lead storage battery

Country Status (1)

Country Link
JP (1) JPS5951484A (en)

Also Published As

Publication number Publication date
JPS5951484A (en) 1984-03-24

Similar Documents

Publication Publication Date Title
JPH10188963A (en) Sealed lead-acid battery
JPS5894770A (en) Leakage-less closed type lead battery
JPH0468749B2 (en)
JPS61165956A (en) Sealed type lead acid battery
JPS5933754A (en) Lead-acid battery
JP3221154B2 (en) Sealed lead-acid battery
JPH0574464A (en) Sealed lead-acid storage battery
JPH03129678A (en) Nonaqueous electrolyte secondary battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP2000243456A (en) Method for charging lead-acid battery
JPS59151780A (en) Discharge control device of lead-acid battery
JP2808685B2 (en) Lead storage battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JPS59151781A (en) Standing control device of lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPS59169064A (en) Storage method of lead storage battery
JP2001273883A (en) Sealed lead-acid battery
JPH05242882A (en) Lead-acid battery
JPH0559553B2 (en)
JPH0896834A (en) Alkaline silver oxide-mh storage battery
JPH05159797A (en) Sealed lead-acid battery
JPS5848367A (en) Lead storage battery
WO2000046868A1 (en) Lead-tin alloy current collectors, batteries made thereof and methods for manufacturing same
JPS61198574A (en) Lead storage battery