JPH0559553B2 - - Google Patents

Info

Publication number
JPH0559553B2
JPH0559553B2 JP61004104A JP410486A JPH0559553B2 JP H0559553 B2 JPH0559553 B2 JP H0559553B2 JP 61004104 A JP61004104 A JP 61004104A JP 410486 A JP410486 A JP 410486A JP H0559553 B2 JPH0559553 B2 JP H0559553B2
Authority
JP
Japan
Prior art keywords
charging
positive electrode
battery
active material
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61004104A
Other languages
Japanese (ja)
Other versions
JPS62163272A (en
Inventor
Toshihiro Inoe
Yoshihisa Yagyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61004104A priority Critical patent/JPS62163272A/en
Publication of JPS62163272A publication Critical patent/JPS62163272A/en
Publication of JPH0559553B2 publication Critical patent/JPH0559553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、密閉形鉛蓄電池の充電方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for charging a sealed lead-acid battery.

(従来の技術) 一般に、密閉形鉛蓄電池は高い経済性と、取扱
の容易性から近時、ポータブルVTR、ポータブ
ルテレビ等を始めとする多くのポータブル機器用
電源として重宝されてきているが、用途の拡大に
伴つて、短時間で充電が行なえること、小形軽量
であること、充電流が流れやすく充電の受入性に
優れていること、などが要求される。
(Prior Art) In general, sealed lead-acid batteries have recently become useful as power sources for many portable devices such as portable VCRs and portable televisions due to their high cost efficiency and ease of handling. With the expansion of technology, there are demands for batteries to be able to be charged in a short time, to be small and lightweight, to have an easy charge flow and to have excellent charge acceptance.

このうち、小形軽量化の方法としては、鉛合金
から構成される極板の格子体の重量を軽減させ、
活物質の充填量を高める方法が効果的である。し
かしながら、その方法によれば正極格子体の体積
の減少を伴い、正極活物質と正極格子体の接触面
積が少なくなることになる。
Among these methods, the method for reducing size and weight is to reduce the weight of the grid body of the electrode plate made of lead alloy,
An effective method is to increase the amount of active material filled. However, according to this method, the volume of the positive electrode lattice body is reduced, and the contact area between the positive electrode active material and the positive electrode lattice body is reduced.

第3図はこの発明の方法が適用される密閉形鉛
蓄電池の一例を示す断面図で、1は二酸化鉛を正
極活物質として正極板、2は海綿状鉛を負極活物
質とした負極板、3は微細ガラス繊維からなるセ
パレータであり、これに希硫酸電解液を遊離する
ことのない量で含浸させて密閉形鉛蓄電池を構成
している。なお、4は排気弁、5は正極端子、6
は負極端子、7は電槽、そして8は蓋である。
FIG. 3 is a cross-sectional view showing an example of a sealed lead-acid battery to which the method of the present invention is applied, in which 1 is a positive electrode plate using lead dioxide as a positive electrode active material, 2 is a negative electrode plate using spongy lead as a negative electrode active material, 3 is a separator made of fine glass fibers, which is impregnated with a dilute sulfuric acid electrolyte in an amount that will not be liberated to form a sealed lead-acid battery. Note that 4 is an exhaust valve, 5 is a positive terminal, and 6 is an exhaust valve.
is a negative electrode terminal, 7 is a battery case, and 8 is a lid.

この構成で、正極活物質の量は22.0g/セルと
し、また負極活物質の量は20.5g/セルとし、負
極活物質の量と正極活物質との量の比は0.932で、
公称容量12Vで6セル直列として12Vの鉛蓄電池
が形成される。
In this configuration, the amount of positive electrode active material is 22.0 g/cell, the amount of negative electrode active material is 20.5 g/cell, and the ratio of the amount of negative electrode active material to the amount of positive electrode active material is 0.932,
A 12V lead-acid battery is formed by arranging 6 cells in series with a nominal capacity of 12V.

一般に、この種の密閉形鉛蓄電池を放電する場
合、アンダカツト回路を有する機器に対して行な
うときは過放電させる危険性はないが、その回路
のない機器に、前述のような正極活物質と正極格
子体の接触面積が少ない密閉形鉛蓄電池を使用し
て放電すると、それは過放電させることになり、
正極格子体表面近傍のPH(水素イオン濃度)が上
昇し、その正極格子体表面には電子伝導性に劣る
pbO,pbOx(O<x<2)あるいはpbSO4、など
のいわゆる不働態皮膜が生じやすくなる。これら
の皮膜は充電時にも除去することは困難で、電圧
制御の充電を行なう場合は、上記のような電子伝
導度のよくない皮膜のため、電池の内部インピー
ダンスが急増して、充電開始後直ちに電池電圧が
充電制御電圧に達し、十分な充電電気量の充電を
短時間で行なうことが不可能で、そのため電池容
量の回復には一昼夜以上、充電を行なう必要があ
る。
In general, when discharging this type of sealed lead-acid battery into equipment that has an undercut circuit, there is no risk of over-discharging. When discharging using a sealed lead-acid battery with a small contact area of the grid, it will over-discharge,
The pH (hydrogen ion concentration) near the surface of the positive electrode lattice increases, and the surface of the positive electrode lattice has poor electron conductivity.
A so-called passive film such as pbO, pbO x (O<x<2) or pbSO 4 is likely to be formed. These films are difficult to remove even during charging, and when performing voltage-controlled charging, the internal impedance of the battery increases rapidly due to the film with poor electronic conductivity as described above, and the battery's internal impedance increases immediately after charging starts. When the battery voltage reaches the charging control voltage, it is impossible to charge a sufficient amount of electricity in a short period of time, and therefore, it is necessary to charge the battery over a day and night to recover the battery capacity.

第4図は、上記第3図の密閉形鉛蓄電池を12V
当たり15Ωの定抵抗で24時間放電して過放電し、
その後14.7Vで電圧制御充電し、その後の充電電
流をCRタイマで徐々に減少させるVテーパ方式
の充電を行なつた場合の、充電挙動を示したもの
である。
Figure 4 shows the sealed lead-acid battery shown in Figure 3 above at 12V.
Discharge with a constant resistance of 15 Ω for 24 hours and over discharge,
This figure shows the charging behavior when voltage-controlled charging is performed at 14.7V, followed by V-taper charging in which the charging current is gradually reduced by a CR timer.

すなわち、これによれば従来の電流制御充電方
法では充電開始後間もなく電圧制御が行なわれて
おり、十分な電気量の充電をすることが困難であ
る。
That is, according to this, in the conventional current control charging method, voltage control is performed soon after charging starts, making it difficult to charge with a sufficient amount of electricity.

なお、電圧制御充電を行わない定電流充電によ
れば過放電した電池の充電回復性は電圧制御充電
と比べて良好になるが、充電時に電解液が電気分
解されやすく、正極から酸素ガスが発生する欠点
がある。このような酸素ガスの発生は、軽量化を
達成する目的で、負極活物質の量を抑制した密閉
形鉛蓄電池においては、正極で発生した酸素ガス
を負極で完全に吸収させ密閉化することが困難に
なり、電解液が減少し充放電のサイクル寿命、放
電容量の低下をもたらすことになる。
Note that constant current charging without voltage control charging improves the recovery of overdischarged batteries compared to voltage control charging, but the electrolyte is more likely to be electrolyzed during charging, and oxygen gas is generated from the positive electrode. There are drawbacks to doing so. This generation of oxygen gas is caused by the fact that in sealed lead-acid batteries where the amount of negative electrode active material is suppressed in order to achieve weight reduction, the oxygen gas generated at the positive electrode cannot be completely absorbed by the negative electrode and sealed. This results in a decrease in the electrolytic solution, resulting in a decrease in the charge/discharge cycle life and discharge capacity.

(発明が解決しようとする問題点) 本発明は上記従来の密閉形鉛蓄電池における充
電、とくに過放電後の回復充電の困難性を解決し
て、短時間で電池容量を回復する密閉形鉛蓄電池
の短時間充電の方法を提供することを目的にす
る。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned difficulty in charging the conventional sealed lead-acid battery, especially recovery charging after overdischarge, and provides a sealed lead-acid battery that recovers battery capacity in a short time. The purpose is to provide a short-time charging method.

(問題点を解決するための手段) 上記の目的を達成するため本発明は、電圧制御
充電方法において、充電の制御電圧を検出する前
に、定電流または準定電流で一定の時間充電し、
その後、電圧制御を行なうまで定電流または準定
電流による大きな充電する2段の充電パターンを
用い、充電制御電圧に達した後に、トリクル電流
へと充電電流を大きい状態から小さい補足充電向
きに変化させることにより、充電開始時の充電電
流を流れ易くして解決する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a voltage control charging method in which charging is performed at a constant current or quasi-constant current for a certain period of time before detecting the charging control voltage,
After that, a two-stage charging pattern with large charging with constant current or quasi-constant current is used until voltage control is performed, and after reaching the charging control voltage, the charging current is changed from large state to trickle current toward small supplementary charging. This solves the problem by making it easier for the charging current to flow at the start of charging.

(作用) 本発明は充電開始後の一定時間は電圧制御を行
なわず、定電流または準定電流で充電されるか
ら、過放電された電池の正極格子体と正極活物質
界面に電子伝導性に欠ける皮膜が形成されていて
も、その皮膜を酸化させ電子伝導性に優れた
bpO2に変化させるから、電池の内部インピーダ
ンスが低下し、電圧制御充電であつても電池電圧
が制御電圧に達するまでに十分な電気量の充電を
行なうことが可能になる。
(Function) The present invention does not perform voltage control for a certain period of time after the start of charging, and is charged at a constant current or quasi-constant current. Even if a chipped film is formed, the film is oxidized and has excellent electron conductivity.
Since the battery is changed to bpO 2 , the internal impedance of the battery decreases, and even with voltage control charging, it becomes possible to charge a sufficient amount of electricity until the battery voltage reaches the control voltage.

(実施例) 以下、本発明を図面を用いて説明する。(Example) Hereinafter, the present invention will be explained using the drawings.

第1図、第2図は本発明の一実施例による充電
挙動を示し、第1図、第2図はそれぞれ、電圧制
御後の電流パターンを抵抗とコンデンサ等による
タイマ回路によつて、時間とともに減少させた
例、および電圧制御後に直ちに5/1000ないし20/1
000CA(Cは公称容量)のトリクル充電電流とし
た時の例を示している。いずれも、イないしハの
電流パターンの中で、イが定電流または準定電流
の電圧制御を行なわない部分、ロが電圧制御を行
なう部分、ハは電圧制御が行なわれた後の部分を
示している。
Figures 1 and 2 show charging behavior according to an embodiment of the present invention, and Figures 1 and 2 respectively show the current pattern after voltage control over time using a timer circuit including a resistor and a capacitor. 5/1000 or 20/1 immediately after reduced example and voltage control
An example is shown in which the trickle charging current is 000 CA (C is the nominal capacity). In each of the current patterns A to C, A shows the part where constant current or quasi-constant current voltage control is not performed, B shows the part where voltage control is performed, and C shows the part after voltage control is performed. ing.

上記のように本発明は、電圧制御充電装置にお
いて充電の制御電圧を検出する前に、定電流また
は準定電流で一定の時間充電し、その後、電圧制
御を行なうまで定電流または準定電流による大き
な電流で充電する2段の充電パターンにより、充
電制御電圧に達した後にトリクル電流へと充電電
流を大きい状態から小さい補足充電向きに変化さ
せるものである。
As described above, in the present invention, a voltage-controlled charging device charges at a constant current or quasi-constant current for a certain period of time before detecting the charging control voltage, and then charges at a constant current or quasi-constant current until voltage control is performed. A two-stage charging pattern of charging with a large current changes the charging current from a large state to a trickle current after reaching the charging control voltage to a small supplementary charging state.

第4図に示した従来例の電流パターンによる充
電では過放電後の回復充電を6時間行なつても、
その後の放電可能時間は過放電前の63%であつた
のに対し、第1図に示し挙動を示す本発明の充電
例では容量回復率は98%、第2図に示す例では95
%と優れた容量回復を示した。
In charging using the conventional current pattern shown in Fig. 4, even after 6 hours of recovery charging after over-discharging,
The subsequent dischargeable time was 63% of that before overdischarge, whereas in the charging example of the present invention whose behavior is shown in Figure 1, the capacity recovery rate was 98%, and in the example shown in Figure 2, it was 95%.
% and showed excellent capacity recovery.

以上、本発明を説明したが第1図、第2図に示
したイ,ロとして区別した充電電流は必ずしも分
かる必要はない。
Although the present invention has been described above, it is not necessary to understand the charging currents classified as A and B shown in FIGS. 1 and 2.

(発明の効果) 以上、説明して明らかなように本発明は、充電
電流を特別なパターンとして、正極格子体と正極
活物質との間に不働態皮膜が残存しないように流
し、過放電後の充電電流を流れやすくし、容量回
復性を高めたものであり、したがつて、優れた充
電方法としてポータブル機器電源の密閉形鉛蓄電
池の充電に尽くすものがある。
(Effects of the Invention) As is clear from the above description, the present invention allows charging current to flow in a special pattern so that no passive film remains between the positive electrode grid body and the positive electrode active material, and after overdischarge. Therefore, it is an excellent charging method for charging sealed lead-acid batteries used as power sources for portable devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の充電方法による充電
挙動を示す図、第3図は本発明方法の実施対象と
なる密閉形鉛蓄電池の断面を示す図、第4図は従
来の充電挙動を示した図である。 1……正極板、2……負極板、3……セパレー
タ、4……排気弁、5……正極端子、6……負極
端子、7……電槽、8……蓋。
Figures 1 and 2 are diagrams showing the charging behavior according to the charging method of the present invention, Figure 3 is a diagram showing a cross section of a sealed lead-acid battery to which the method of the present invention is applied, and Figure 4 is a diagram showing the charging behavior of the conventional charging method. FIG. 1... Positive electrode plate, 2... Negative electrode plate, 3... Separator, 4... Exhaust valve, 5... Positive electrode terminal, 6... Negative electrode terminal, 7... Battery container, 8... Lid.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化鉛を活物質とした正極と、海綿状鉛を
活物質とし、その重量比を正極活物質に対して
1.0以下とした負極と、微細なガラス繊維からな
るセパレータに希硫酸電解液を遊離することのな
い量で含浸させ、負極において充電時に正極から
発生する酸素ガスを吸収するようにしてなる密閉
形鉛蓄電池を充電する方法において、充電開始
後、一定の時間を経過するまで電圧制御すること
なく定電流または準定電流で充電し、その後、電
圧制御により充電電流を大きい状態から補足充電
のために小さな状態に切り換えることを特徴とす
る密閉形鉛蓄電池の充電方法。
1 A positive electrode using lead dioxide as an active material and a positive electrode using spongy lead as an active material, and the weight ratio of the positive electrode to the positive electrode active material.
A sealed lead battery made of a negative electrode with a value of 1.0 or less and a separator made of fine glass fibers impregnated with dilute sulfuric acid electrolyte in an amount that will not be liberated, so that the negative electrode absorbs oxygen gas generated from the positive electrode during charging. In the method of charging a storage battery, after charging starts, the battery is charged at a constant current or quasi-constant current without voltage control until a certain period of time has elapsed, and then the charging current is changed from a large state to a small state for supplementary charging by voltage control. A method of charging a sealed lead-acid battery characterized by switching between states.
JP61004104A 1986-01-14 1986-01-14 Method for charging enclosed lead storage battery Granted JPS62163272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004104A JPS62163272A (en) 1986-01-14 1986-01-14 Method for charging enclosed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004104A JPS62163272A (en) 1986-01-14 1986-01-14 Method for charging enclosed lead storage battery

Publications (2)

Publication Number Publication Date
JPS62163272A JPS62163272A (en) 1987-07-20
JPH0559553B2 true JPH0559553B2 (en) 1993-08-31

Family

ID=11575481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004104A Granted JPS62163272A (en) 1986-01-14 1986-01-14 Method for charging enclosed lead storage battery

Country Status (1)

Country Link
JP (1) JPS62163272A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603874A (en) * 1983-06-21 1985-01-10 Shin Kobe Electric Mach Co Ltd Charging method of sealed lead-acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603874A (en) * 1983-06-21 1985-01-10 Shin Kobe Electric Mach Co Ltd Charging method of sealed lead-acid battery

Also Published As

Publication number Publication date
JPS62163272A (en) 1987-07-20

Similar Documents

Publication Publication Date Title
US2883443A (en) Lead-acid storage battery
JP3109559B2 (en) Chemical formation of sealed alkaline storage batteries.
JPH06188030A (en) Nonaqueous electrolyte battery
JP4081698B2 (en) Lead-acid battery charging method
JPH0559553B2 (en)
JPS62119875A (en) Lead storage battery
JP3572831B2 (en) Battery pack
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JPS603874A (en) Charging method of sealed lead-acid battery
JP2002203589A (en) Cylindrical secondary battery
JPS63152871A (en) Sealed lead-acid battery
JP2808685B2 (en) Lead storage battery
JPH0468749B2 (en)
JPS58147957A (en) Small sealed lead storage battery
Bialacki et al. The Electrochemical Cycling of Pasted Sb and Ca/Sn Lead Electrodes (Positives)
JPH0896834A (en) Alkaline silver oxide-mh storage battery
JPS61198574A (en) Lead storage battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JPH05159797A (en) Sealed lead-acid battery
JPH0544141B2 (en)
JPS62188169A (en) Sealed lead-acid battery
JPS59151780A (en) Discharge control device of lead-acid battery
JPS58131671A (en) Charging method of lead-acid battery
JPS63187576A (en) Enclosed type lead storage cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term