JPH03129678A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03129678A
JPH03129678A JP1265177A JP26517789A JPH03129678A JP H03129678 A JPH03129678 A JP H03129678A JP 1265177 A JP1265177 A JP 1265177A JP 26517789 A JP26517789 A JP 26517789A JP H03129678 A JPH03129678 A JP H03129678A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
lithium
electrode
lithium negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1265177A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
日野 義久
Yoshiro Harada
吉郎 原田
Hideaki Nagura
名倉 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1265177A priority Critical patent/JPH03129678A/en
Publication of JPH03129678A publication Critical patent/JPH03129678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase the distance of the edge of a lithium negative electrode to a positive electrode to increase resistance and to retard the generation of a dendrite (lithium crystal) by widening the width of the positive electrode than that of the lithium negative electrode, and by covering the edge of the positive electrode with an insulating member. CONSTITUTION:A positive electrode 10 and a lithium negative electrode 12 are spirally wound through a polypropylene separator 14. An insulating plate 16 is arranged in the lower part of the wound electrode group, then the electrode group is inserted into a case 18, and a nonaqueous electrolyte is poured into the case 18, then the opening of the case 18 is sealed with a terminal plate 22 through a sealing gasket 20. The width of the separator is widest, and the positive electrode 10 and the lithium negative electrode 12 are sequentially narrowed. The edges of a current collector 24 are exposed from the both edges in the width direction of the positive electrode 10, and fitted with insulating members 28 with U-shaped cross section. Both edges of the negative electrode 12 are faced to the insulating members 28 through the separator 14 and do directly not participate charge reaction. Generation of a dendrite can be retarded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、リチウムを負極活物質として用いた非水電
解液二次電池において、特にリチウム負極から脱離する
リチウムのデンドライト発生を抑制し、内部短絡を防止
するとともに、充放電サイクル特性の向上を図った非水
電解液二次電池に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention suppresses the generation of dendrites of lithium desorbed from the lithium negative electrode in a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material. The present invention relates to a nonaqueous electrolyte secondary battery that prevents internal short circuits and improves charge/discharge cycle characteristics.

(従来の技術) 負極活物質としてリチウムを使用した非水電解液電池は
、自己放電の少ない保存性に勝れた電池として知られて
おり、使用期間の長い電子腕”j41や、種々の電子機
器のメモリバックアップ用電源としてもちいられている
(Prior art) Non-aqueous electrolyte batteries that use lithium as a negative electrode active material are known as batteries that have excellent storage stability with little self-discharge. It is used as a memory backup power source for devices.

ところで、この種の非水電解液電池は通常−次電池とし
て用いられているが、長時間経済的に使用できる電源と
して使用可能な二次電池の開発が望まれている。とりわ
けリチウムを負極とする非水電解液電池は電池電圧が高
く、高エネルギー密度の二次電池として期待されている
By the way, although this type of non-aqueous electrolyte battery is normally used as a secondary battery, there is a desire to develop a secondary battery that can be used as a power source that can be used economically for a long time. In particular, non-aqueous electrolyte batteries with lithium as the negative electrode have high battery voltage and are expected to be used as secondary batteries with high energy density.

しかしながら、この非水電解液二次電池は、充電時に、
負部表面にリチウムが樹枝状に析出し、この樹枝状結晶
がセパレータを貫通し、内部短絡を引き起こし、放電性
能の低下、あるいは電池の破裂1発火等の事故を誘発す
る恨れがあった。この現象は、特にリチウム負極の縁部
においてエツジ効果により顕著に現れていた。
However, when charging this non-aqueous electrolyte secondary battery,
Lithium precipitates in the form of dendrites on the surface of the negative part, and these dendrites penetrate the separator and cause internal short circuits, leading to decreased discharge performance or accidents such as battery rupture or fire. This phenomenon was particularly noticeable at the edge of the lithium negative electrode due to the edge effect.

すなわち、リチウム負極と正極とが対向している一般部
位では、充放電■、rにおるリチウムイオンの析出・溶
解が理想的に行われるが、−膜内な積層状態は、第3図
(a)に示すように、正極2とリチウム負極3の幅が一
定で、セパレータ1を挟んで正極2と負極3の縁部が揃
った状態、あるいは第3図(b)に示すように、正極2
の幅が負極3よりも幅広であるため、充電時においてよ
り抵抗の少ない部分に電流が集中する結果、負極3の縁
部にデンドライトが発生しやすくなる。
In other words, in a general region where a lithium negative electrode and a positive electrode face each other, deposition and dissolution of lithium ions during charging and discharging (2) and (r) occur ideally, but the stacked state within the film is as shown in Figure 3 (a). ), the width of the positive electrode 2 and the lithium negative electrode 3 are constant, and the edges of the positive electrode 2 and negative electrode 3 are aligned with the separator 1 in between, or as shown in FIG.
Since the width of the negative electrode 3 is wider than that of the negative electrode 3, current concentrates in a portion with lower resistance during charging, and as a result, dendrites are likely to occur at the edge of the negative electrode 3.

このために、例えば特開平1−128371号公報に示
すように、リチウムの幅を正極より大きく拡げることで
、エツジ効果によるデンドライト発生を抑制する構造が
開発されている。
For this purpose, a structure has been developed in which the width of lithium is made larger than that of the positive electrode to suppress the generation of dendrites due to the edge effect, as shown in, for example, Japanese Unexamined Patent Publication No. 1-128371.

(発明が解決しようとする課題) しかしながら、この構造ではデンドライトは抑制される
ものの、特にスパイラル形二次電池に適用した場合には
以下の不都合を生じていた。
(Problems to be Solved by the Invention) However, although dendrites are suppressed in this structure, the following disadvantages occur particularly when applied to a spiral type secondary battery.

つまり、正極−セパレーターリチウム負極を積層し、ス
パイラル状に巻回し、これを電池ケースに収装したスパ
イラル形電池では、金属リチウムは薄く形成され、また
柔らかい金属であるため、その下縁部がケースの内底面
に着底すると、荷重によって正極部分よりも幅の広い負
極部分が潰れ、この部分が正極と接触し、内部短絡が発
生しやすいものとなる。
In other words, in a spiral battery in which a positive electrode and a separator lithium negative electrode are laminated, wound spirally, and then housed in a battery case, the metal lithium is formed thin and is a soft metal, so the lower edge of the lithium is attached to the case. When the battery lands on the inner bottom surface of the battery, the negative electrode part, which is wider than the positive electrode part, is crushed by the load, and this part comes into contact with the positive electrode, making it easy for an internal short circuit to occur.

この発明は以上の欠点を解決するもので、その目的は、
正極の縁部に絶縁性の部分を設けることでリチウム負極
の縁部に対する極間距離を大きくして抵抗を増し、これ
によりデンドライトの発生を抑制できるようにした非水
電解液二次電池を提供す、るものである。
This invention solves the above-mentioned drawbacks, and its purpose is to:
Provides a non-aqueous electrolyte secondary battery in which an insulating part is provided at the edge of the positive electrode to increase the distance between the electrodes and the edge of the lithium negative electrode, increasing resistance, thereby suppressing the formation of dendrites. It's something like that.

(課題を解決するための手段) 前記目的を達成するため、この発明は、正極の幅をリチ
ウム負極の幅よりも広く形成するとともに、前記リチウ
ム負極の縁部に対局する前記正極の縁部を、その厚みと
同じ厚みの絶縁性の部材で彼覆したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention forms the width of the positive electrode wider than the width of the lithium negative electrode, and the edge of the positive electrode opposite to the edge of the lithium negative electrode. , it is characterized by being covered with an insulating member of the same thickness as that.

(作 用) 以上の構成によれば、リチウム負極の縁部には実質的に
正極が存7E Lないのと同様の状態となり、この結果
、この部分は充電特における反応に利用されず、これに
よってデンドライトの発生が抑制される。
(Function) According to the above configuration, a state similar to that in which there is substantially no positive electrode at the edge of the lithium negative electrode occurs, and as a result, this part is not used for the reaction in the charging process and is This suppresses the formation of dendrites.

リチウム負極の縁部が着底する前に、リチウムより硬質
な絶縁性の部材がこの荷重を支えることになり、リチウ
ム負極の変形が防止される。
Before the edge of the lithium negative electrode touches the bottom, an insulating member harder than lithium supports this load, preventing the lithium negative electrode from deforming.

(実 施 例〉 以下、この発明の一実施例を図面を用いて詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図、第2図はこの発明をス4くイラル形非水電解液
二次電池に適用した第一実施例を示すものである。
FIGS. 1 and 2 show a first embodiment in which the present invention is applied to a square type non-aqueous electrolyte secondary battery.

図における電池は、正極10とリチウム負極12をポリ
プロピレン製のセパレータ14を介して積層し、これを
スパイラル状に巻回し、下方に絶縁板16を配した状態
で、筒形のケース18内に収装し、非水電解液を注入し
た後にケース18の上部開口を封口ガスケット20を介
して端子板22で封口したものである。
The battery shown in the figure has a positive electrode 10 and a lithium negative electrode 12 stacked together with a polypropylene separator 14 in between, which is wound in a spiral shape, and is housed in a cylindrical case 18 with an insulating plate 16 disposed below. After the non-aqueous electrolyte is injected, the upper opening of the case 18 is sealed with a terminal plate 22 via a sealing gasket 20.

前記リチウム負極12はケース18に電気的に接続され
、また正極10はその内部に設けた多孔板からなる集電
体24から導出されたリード板26を介して端子板22
に電気的に接続され、端子板22を正極端子部とし、ケ
ース18の底面を負極端子部とした非水電解液電池が形
成される。
The lithium negative electrode 12 is electrically connected to a case 18, and the positive electrode 10 is connected to a terminal plate 22 through a lead plate 26 led out from a current collector 24 made of a porous plate provided inside the lithium negative electrode 12.
A non-aqueous electrolyte battery is formed in which the terminal plate 22 serves as a positive terminal and the bottom surface of the case 18 serves as a negative terminal.

以上の構成において、第2図に示すように、セパレータ
14の幅Wlは最も幅広であり、正極10、リチウム負
極12の幅W2.W3は順次狭い幅に設定されている。
In the above configuration, as shown in FIG. 2, the width Wl of the separator 14 is the widest, and the width W2 of the positive electrode 10, the lithium negative electrode 12. W3 is set to successively narrower widths.

また、正極10の幅方向両縁部(図では一側部を示、す
)には、集電体24の端部が露出し、この露出部分に断
面凹形の絶縁部材28が嵌着され、絶縁部材28の厚み
は正極10の一般部と同じ厚みになっている。
Furthermore, the ends of the current collector 24 are exposed at both edges in the width direction of the positive electrode 10 (one side is shown in the figure), and an insulating member 28 having a concave cross section is fitted into this exposed portion. The thickness of the insulating member 28 is the same as that of the general portion of the positive electrode 10.

この構造の正極10は、以下のようにして作られる。The positive electrode 10 having this structure is manufactured as follows.

すなわち、前記集電体24の両面にリチウム含有の二酸
化マンガンとテフロンなどのバインダおよび溶剤を加え
た正極活物質が2gされ、この状態で乾燥工程などを経
てローラで圧延した後、正極活物質を部分的に除去する
ことによって、その両縁部に集電体24を露出させる。
That is, 2 g of a positive electrode active material containing lithium-containing manganese dioxide, a binder such as Teflon, and a solvent are placed on both sides of the current collector 24, and in this state, after undergoing a drying process and rolling with a roller, the positive electrode active material is By partially removing the current collector 24, the current collector 24 is exposed at both edges thereof.

他方、合成樹脂材料によって断面凹形の絶縁部材28を
形成しておき、これを集電体24の露出部分に接着剤を
介して嵌合することによって得られる。
On the other hand, it is obtained by forming an insulating member 28 having a concave cross section from a synthetic resin material and fitting this into the exposed portion of the current collector 24 via an adhesive.

上記構造では、リチウム負極12の両縁部は前記絶縁部
材28にセパレータ14を介して対面することになり、
直接には充電に関与しない部分となり、これにより両縁
部におけるデンドライトの発生を抑制するのである。
In the above structure, both edges of the lithium negative electrode 12 face the insulating member 28 with the separator 14 in between,
This is a portion that is not directly involved in charging, and thereby suppresses the formation of dendrites at both edges.

また、このようにした場合には、ケース18に収装した
状態で着座部分の荷重は、比較的硬質の端部である絶縁
部材28によって支えられることになり、リチウム負極
12が薄く、柔らかくても変形を来すことがなく、変形
による内部短絡も未然に防止される。
In addition, in this case, the load on the seated portion when housed in the case 18 is supported by the insulating member 28, which is a relatively hard end, and the lithium negative electrode 12 is thin and soft. Also, no deformation occurs, and internal short circuits due to deformation are also prevented.

次に、本発明の構造を採用したCR6・H形電泊と従来
の簗3図(a)に示す構造の電池とのサイクル特性の比
較を行った。
Next, a comparison was made in the cycle characteristics between the CR6/H type battery employing the structure of the present invention and the conventional battery having the structure shown in Figure 3(a).

電池の発電要素は、いずれも37X25C)+m。The power generation elements of the batteries are all 37×25C)+m.

厚さ○、3■のシート状正極と、35X250mm。Sheet-like positive electrode with thickness ○, 3cm and 35x250mm.

厚さ0.15mmのリチウム負極をポリプロピレン多孔
質セパレータを挟んで積層し、スパイラルに春目し、第
1図に示す構造にしたもので、本発明では正極10の両
縁部に前述の絶縁部材28を設け、従来構造のものは絶
縁部材を設けていないのがその相違点である。
A lithium negative electrode with a thickness of 0.15 mm is laminated with a porous polypropylene separator in between, and the structure is spirally formed as shown in FIG. 28, and the difference is that the conventional structure does not have an insulating member.

また、試験方法としては、200mAの定電流による終
始電圧2.OVまでの放電を行った後、3.8V終始電
圧で100mAの充電を行い、これを1サイクルとして
サイクル試験を行った。
In addition, as a test method, a constant current of 200 mA was used for a constant voltage of 2. After discharging to OV, charging was performed at 100 mA at a starting voltage of 3.8 V, and a cycle test was performed with this as one cycle.

この結果、本発明の電池が50サイクル以上初期容量を
保つのに対し、従来形のものでは14〜18サイクル程
度で充電不能になることを確認した。
As a result, it was confirmed that the battery of the present invention maintains its initial capacity for more than 50 cycles, whereas the conventional battery becomes unchargeable after about 14 to 18 cycles.

また、試験後内部を分解したところ、本発明の電池では
デンドライトの発生がないのに対し、従来構造では多く
発生しているのが観察され、絶縁部材28が効果的に作
用していることが確認された。
Furthermore, when the internal structure was disassembled after the test, it was observed that dendrites were not generated in the battery of the present invention, whereas many dendrites were generated in the conventional structure, indicating that the insulating member 28 was working effectively. confirmed.

(発明の効果) 以上実施例によって詳細に説明したように、この発明に
よる非水電解液二次電池にあっては、正極の縁部が絶縁
されることにより、この部分は充電時における反応に利
用されず、これによってリチウム負極縁部のデンドライ
トの発生を抑制出来る。
(Effects of the Invention) As explained in detail through the examples above, in the non-aqueous electrolyte secondary battery according to the present invention, the edge of the positive electrode is insulated, so that this part is not susceptible to reactions during charging. This prevents the formation of dendrites at the edge of the lithium negative electrode.

また、この発明では正極全体の幅がリチウム負極の福よ
り肱いので、縁部を着座させた状態で硬質の絶縁部材が
この荷重を支えることになるため、リチウム負極の変形
もなく、変形による内部短絡も未然に防1にできる。
In addition, in this invention, since the width of the entire positive electrode is wider than that of the lithium negative electrode, the hard insulating member supports this load while the edge is seated, so there is no deformation of the lithium negative electrode, and there is no deformation due to deformation. Internal short circuits can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるスパイラル形非水電解戚二次電
池の半断面説明図、第2図は同電池におけるリチウム負
極とセパレータおよび正極の縁部の部分拡大断面図、第
3図(a)、(b)は従来の電池におけるリチウム負極
とセパレータおよび正極の端部の寸法関係を示す説明用
断面図である。 10・・・正極 12・・・リチウム負極 14・・・セパレータ 28・・・絶縁部材
FIG. 1 is a half-sectional explanatory diagram of a spiral type nonaqueous electrolytic secondary battery according to the present invention, FIG. 2 is a partially enlarged sectional view of the lithium negative electrode, separator, and edge of the positive electrode in the same battery, and FIG. 3(a) , (b) is an explanatory cross-sectional view showing the dimensional relationship between the lithium negative electrode, the separator, and the end of the positive electrode in a conventional battery. 10... Positive electrode 12... Lithium negative electrode 14... Separator 28... Insulating member

Claims (1)

【特許請求の範囲】[Claims] (1)セパレータを挟んで正極とリチウム負極とを積層
した非水電解液二次電池において: 前記正極の幅を前記リチウム負極の幅よりも広く形成す
るとともに、前記リチウム負極の縁部に対面する前記正
極の縁部を、その厚みと同じ厚みの絶縁性の部材で被覆
したことを特徴とする非水電解液二次電池。
(1) In a non-aqueous electrolyte secondary battery in which a positive electrode and a lithium negative electrode are stacked with a separator in between: The width of the positive electrode is formed to be wider than the width of the lithium negative electrode, and the positive electrode faces the edge of the lithium negative electrode. A non-aqueous electrolyte secondary battery characterized in that the edge of the positive electrode is covered with an insulating member having the same thickness as the positive electrode.
JP1265177A 1989-10-13 1989-10-13 Nonaqueous electrolyte secondary battery Pending JPH03129678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1265177A JPH03129678A (en) 1989-10-13 1989-10-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265177A JPH03129678A (en) 1989-10-13 1989-10-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH03129678A true JPH03129678A (en) 1991-06-03

Family

ID=17413649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265177A Pending JPH03129678A (en) 1989-10-13 1989-10-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH03129678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597659A (en) * 1993-10-07 1997-01-28 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2007134149A (en) * 2005-11-10 2007-05-31 Sony Corp Nonaqueous electrolyte battery
CN108336286A (en) * 2018-03-26 2018-07-27 珠海格力电器股份有限公司 A kind of big soft bag lithium ionic cell and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597659A (en) * 1993-10-07 1997-01-28 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US5691005A (en) * 1993-10-07 1997-11-25 Matsushita Electric Industrial Co., Ltd. Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP2007134149A (en) * 2005-11-10 2007-05-31 Sony Corp Nonaqueous electrolyte battery
CN108336286A (en) * 2018-03-26 2018-07-27 珠海格力电器股份有限公司 A kind of big soft bag lithium ionic cell and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4205209B2 (en) Nonaqueous electrolyte secondary battery
JP4603108B2 (en) Secondary battery electrode roll
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
US6180285B1 (en) Exposed conductive core battery
JPH03129678A (en) Nonaqueous electrolyte secondary battery
KR100307452B1 (en) Electrode of secondary battery
CN110534799B (en) Battery and battery cover plate assembly
JPH06188030A (en) Nonaqueous electrolyte battery
JPH11307128A (en) Lithium ion secondary battery
JP2001216997A (en) Spiral electrode group for battery and battery using the same
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH10326629A (en) Lithium ion secondary battery
KR200222472Y1 (en) A mandrel for winding the jelly-roll of prismatic secondary battery
JP2801934B2 (en) Non-aqueous electrolyte secondary battery
JPH03156861A (en) Nonaqueous electrolyte secondary battery
JPH11307085A (en) Secondary battery electrode
JPH08339817A (en) Non-circular spiral electrode body battery
JPS63308867A (en) Nonaqueous secondary cell
KR100601563B1 (en) Cylindrical lithium ion secondary battery
JPH11195410A (en) Lithium secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP2697565B2 (en) Prismatic battery