JPH05242882A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH05242882A
JPH05242882A JP4041121A JP4112192A JPH05242882A JP H05242882 A JPH05242882 A JP H05242882A JP 4041121 A JP4041121 A JP 4041121A JP 4112192 A JP4112192 A JP 4112192A JP H05242882 A JPH05242882 A JP H05242882A
Authority
JP
Japan
Prior art keywords
active material
material layer
positive electrode
electrode plate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4041121A
Other languages
Japanese (ja)
Other versions
JP2720689B2 (en
Inventor
Arihiko Takemasa
有彦 武政
Katsura Mitani
桂 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4041121A priority Critical patent/JP2720689B2/en
Publication of JPH05242882A publication Critical patent/JPH05242882A/en
Application granted granted Critical
Publication of JP2720689B2 publication Critical patent/JP2720689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lead-acid battery having structure capable of improving an overcharging characteristic. CONSTITUTION:A primary particle active material layer 3 consisting of primary particles 2 of an active material is formed in the periphery in contact with a current collector 1 of a positive electrode plate. A secondary particle active material layer 5 consisting of secondary particles 4 where the primary particles 2 of active materials are collected in high density is formed around the primary particle active material layer 3. Between the active materials constituting the primary particle active material layer 3 and the secondary particle active material layer 5, fine pores each having a diameter of 0.1mum or less exist in 0.03ml/g or more and fine pores each having a diameter of 0.5mum or more exist in 0.06ml/g or more as a whole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛蓄電池の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池の用途として、停電等の非常時
の機器のバックアップ用電源としての使われ方がある。
通常、鉛蓄電池は定電圧で常に充電状態にあるが、充電
器の故障で定電流が流れ続けることも考えられ、長時間
過充電状態に置かれることになる。このような過充電が
起こる状態で充放電が繰り返されると、該鉛蓄電池は早
期に寿命となってしまう。一方、定電圧で充電している
ときの電流値が大きい場合、該鉛蓄電池は電流値が小さ
いときに比べて寿命が短くなり、また熱逸走の危険性も
高くなる。
2. Description of the Related Art Lead batteries are used as a backup power source for equipment in an emergency such as a power failure.
Normally, a lead storage battery is always in a charged state at a constant voltage, but a constant current may continue to flow due to a failure of a charger, and the lead storage battery is left in an overcharged state for a long time. If charge and discharge are repeated in a state where such overcharge occurs, the lead storage battery will reach the end of its life at an early stage. On the other hand, when the current value during charging with a constant voltage is large, the lead-acid battery has a shorter life than that when the current value is small, and the risk of heat runaway increases.

【0003】[0003]

【発明が解決しようとする課題】ところで過充電の繰り
返しによる電池寿命の低下は、主として正極板に起因す
る。正極板では、過充電中に集電体表面が徐々にPbO
2 に変化し、体積膨脹が起きる。また、過充電中に正極
板で発生する酸素ガスの移動で、活物質が集電体から剥
がれ易くなる。そして、この活物質が剥がれたところの
集電体に電解液である硫酸が侵入するため、放電のとき
に集電体表面にPbO2 が生成し、放電性能が低下す
る。過充電を繰り返すと、このようにして電池寿命が短
くなってしまう。
The decrease in battery life due to repeated overcharging is mainly due to the positive electrode plate. In the positive electrode plate, the surface of the current collector gradually becomes PbO during overcharge.
Change to 2 and volume expansion occurs. In addition, the active material is easily separated from the current collector due to the movement of oxygen gas generated in the positive electrode plate during overcharge. Then, sulfuric acid, which is an electrolytic solution, enters the current collector where the active material is peeled off, so that PbO 2 is generated on the surface of the current collector at the time of discharge, and the discharge performance is deteriorated. Repeated overcharging thus shortens battery life.

【0004】一方、定電圧充電中の寿命低下も正極板に
起因するので、過充電したときと同じ過程で集電体の体
積膨脹が生じ、活物質が剥離し、電池容量が低下する。
On the other hand, the decrease in life during constant voltage charging is also caused by the positive electrode plate, so that the volume expansion of the current collector occurs in the same process as when overcharging, the active material peels off, and the battery capacity decreases.

【0005】この問題を解決するために、活物質粒子間
に細孔の小さいものを多く存在させ、集電体側への硫酸
の拡散を抑制させることが考えられるが、硫酸の拡散が
良くないため放電容量が低下する。
In order to solve this problem, it is considered that many active material particles having small pores are present to suppress the diffusion of sulfuric acid toward the current collector side, but the diffusion of sulfuric acid is not good. The discharge capacity decreases.

【0006】本発明の目的は、過充電特性を改善できる
構造の鉛蓄電池を提供することにある。
An object of the present invention is to provide a lead storage battery having a structure capable of improving overcharge characteristics.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の手段を説明すると、次の通りである。
The means of the present invention for achieving the above object will be described below.

【0008】請求項1に記載の発明は、鉛合金を集電体
とする正極板を有する鉛蓄電池において、前記正極板の
前記集電体に接する周辺に活物質の1次粒子よりなる1
次粒子活物質層が設けられ、前記1次粒子活物質層の外
側に活物質の1次粒子が密に集合した2次粒子よりなる
2次粒子活物質層が設けられていることを特徴とする。
According to a first aspect of the present invention, in a lead acid battery having a positive electrode plate using a lead alloy as a current collector, primary particles of an active material are formed in the periphery of the positive electrode plate in contact with the current collector.
A secondary particle active material layer is provided, and a secondary particle active material layer composed of secondary particles in which primary particles of the active material are densely aggregated is provided outside the primary particle active material layer. To do.

【0009】請求項2に記載の発明は、請求項1におい
て、前記1次粒子活物質層と前記2次粒子活物質層を構
成する活物質粒子間には、全体として0.1 μm以下の径
の細孔が0.03ml/g以上存在し、且つ0.5 μm以上の径の
細孔が0.06ml/g以上存在することを特徴とする。
According to a second aspect of the invention, in the first aspect, between the active material particles constituting the primary particle active material layer and the secondary particle active material layer, a diameter of 0.1 μm or less is provided as a whole. It is characterized in that pores are present in an amount of 0.03 ml / g or more, and pores having a diameter of 0.5 μm or more are present in an amount of 0.06 ml / g or more.

【0010】[0010]

【作用】請求項1のように、極板表面側に2次粒子活物
質層を存在させると、該極板表面側に大きな径の細孔が
でき、電解液である硫酸が極板内部まで拡散し易くな
り、放電性能が向上する。そして1次粒子が単独に存在
するよりも、1次粒子が集合してできた2次粒子で活物
質層を形成した方が、活物質の比表面積が低下するた
め、これを一定電流で充電したときは過電圧が上がり、
定電圧で充電した場合は電流値は小さくなる。そして2
次粒子は、集電体に接する部分に存在すると、集電体と
活物質の接触面積が小さくなって活物質が集電体から剥
がれ易くなり、また細孔径が大きいと硫酸の拡散が良く
なって硫酸が集電体と接触し易くなり、容量低下をきた
すため、該2次粒子は極板表面側に存在させた方が良
い。
When the secondary particle active material layer is present on the surface of the electrode plate as described in claim 1, pores having a large diameter are formed on the surface of the electrode plate, and sulfuric acid as an electrolytic solution reaches the inside of the electrode plate. Diffusion is facilitated and discharge performance is improved. Since the specific surface area of the active material is reduced when the active material layer is formed by the secondary particles formed by aggregating the primary particles, the primary particles are charged with a constant current, rather than being present alone. Over voltage rises,
When charged at a constant voltage, the current value becomes small. And 2
When the secondary particles are present in the portion in contact with the current collector, the contact area between the current collector and the active material is reduced, the active material is easily separated from the current collector, and the large pore diameter facilitates the diffusion of sulfuric acid. Since the sulfuric acid is likely to come into contact with the current collector and the capacity is reduced, it is better to allow the secondary particles to exist on the electrode plate surface side.

【0011】また、集電体の表面側に活物質の1次粒子
よりなる1次粒子活物質層を設けると、集電体と活物質
の接触面積が大きくなって活物質が集電体から剥がれ難
くなる。更に、1次粒子活物質層によれば、活物質粒子
間の細孔径が小さくなり、硫酸が拡散し難くなり、放電
のときに集電体表面にPbO2 が生成され難くなり、放
電性能の低下を防止できる。
Further, when a primary particle active material layer composed of primary particles of the active material is provided on the surface side of the current collector, the contact area between the current collector and the active material is increased, and the active material is removed from the current collector. Hard to peel off. Further, according to the primary particle active material layer, the pore diameter between the active material particles becomes small, the sulfuric acid becomes difficult to diffuse, and PbO 2 becomes difficult to be generated on the surface of the current collector at the time of discharge, which results in a decrease in discharge performance. It can prevent the deterioration.

【0012】請求項2のように、集電体に接する1次粒
子活物質層において活物質粒子間の細孔のうち、0.1 μ
m以下の小さな細孔を増やすと、充電中に発生するガス
の拡散が悪くなり、極板内にガス溜まりができ易くなっ
て反応面積が減少し、この状態で充電すると過電圧が高
くなり、定電圧充電中の電流値が小さくなる。
According to a second aspect, in the primary particle active material layer in contact with the current collector, 0.1 μ of the pores between the active material particles is used.
If the number of small pores of m or less is increased, the diffusion of gas generated during charging becomes worse, the gas is likely to accumulate in the electrode plate, and the reaction area decreases. The current value during voltage charging becomes smaller.

【0013】[0013]

【実施例】以下、本発明の実施例を従来例及び比較例と
比較しながら詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below in comparison with conventional examples and comparative examples.

【0014】正極板の作製は、次のようにして行った。
まず、Pb−Ca合金からなる集電体に、PbOとPb
4 からなるペーストを充填し、次いで熟成を行う。次
に、活物質粒径と化成条件を変えて7種類の正極板を作
製した。
The positive electrode plate was manufactured as follows.
First, PbO and Pb were added to the current collector made of Pb-Ca alloy.
A paste consisting of O 4 is filled and then aged. Next, seven kinds of positive electrode plates were produced by changing the particle size of the active material and the chemical conversion conditions.

【0015】作製した正極板の種類をA,B,C,D,
E,F,Gとし、A,Gが従来品、B,Cが本発明品、
D,E,Fが比較品である。
The types of the positive electrode plates produced are A, B, C, D,
E, F, and G, A and G are conventional products, B and C are products of the present invention,
D, E and F are comparative products.

【0016】これら正極板のモデル図を図1(a)
(b),図2(a)(b),図3(a)(b)に示す。
図1(a),図2(a),図3(a)は、本発明品の正
極板B,Cと、従来品の正極板A,Gと、比較品の正極
板D,E,Fとの集電体1の周囲のモデル図を示したも
のである。図1(a)に示す本発明品の正極板では、集
電体1に接する周辺に活物質の1次粒子2よりなる1次
粒子活物質層3が設けられている。図2(a)に示す従
来品の正極板でも、集電体1に接する周辺に活物質の1
次粒子2よりなる1次粒子活物質層3が設けられてい
る。但し、この場合の1次粒子2の粒径は、図1(a)
の場合の1次粒子2の粒径より大きい。図3(a)に示
す比較品の正極板Fでは、集電体1に接する周辺に1次
粒子2が集合してできた2次粒子4よりなる2次粒子活
物質層5が設けられている。
A model diagram of these positive electrode plates is shown in FIG.
(B), FIG.2 (a) (b), and FIG.3 (a) (b) are shown.
1 (a), 2 (a) and 3 (a) show positive electrode plates B and C of the present invention, positive electrode plates A and G of conventional products, and positive electrode plates D, E and F of comparative products. 3 is a model diagram of the current collector 1 and its surroundings. In the positive electrode plate of the present invention shown in FIG. 1 (a), a primary particle active material layer 3 composed of primary particles 2 of the active material is provided in the periphery in contact with the current collector 1. Even in the conventional positive electrode plate shown in FIG. 2A, the active material
A primary particle active material layer 3 composed of secondary particles 2 is provided. However, the particle size of the primary particles 2 in this case is as shown in FIG.
In the case of, it is larger than the particle size of the primary particles 2. In the positive electrode plate F of the comparative product shown in FIG. 3A, the secondary particle active material layer 5 including the secondary particles 4 formed by the aggregation of the primary particles 2 is provided around the contact with the current collector 1. There is.

【0017】図1(b),図2(b),図3(b)は、
本発明品の正極板B,Cと、従来品の正極板A,Gと、
比較品の正極板D,E,Fとの極板表面側のモデル図を
示したものである。図1(b)に示す本発明品の正極板
B,Cでは、1次粒子活物質層3に重ねて外側に1次粒
子2が集合してできた2次粒子4よりなる2次粒子活物
質層5が設けられている。図2(b)に示す従来品の正
極板A,Gでは、1次粒子活物質層3に重ねて外側に活
物質の1次粒子2よりなる1次粒子活物質層3が再び設
けられている。◎図3(b)に示す比較品の正極板D,
E,Fでは、2次粒子活物質層5に重ねて外側に1次粒
子2が集合してできた2次粒子4よりなる2次粒子活物
質層5が再び設けられている。即ち、図2(b)に示す
従来品の正極板A,Gでは2次粒子活物質層5が不定形
をしているのに対し、図1(b)と図3(b)に示す本
発明品の正極板B,Cと比較品の正極板D,E,Fの2
次粒子活物質層5では従来品より小さな1次粒子2が密
に集合した大きな2次粒子4で形成されている。この場
合、各正極板の各活物質の平均粒径を示すと、次の通り
である。
1 (b), 2 (b) and 3 (b),
The positive electrode plates B and C of the present invention, the positive electrode plates A and G of the conventional product,
It is a model view of the positive electrode plates D, E, and F of the comparative product on the surface side of the electrode plate. In the positive electrode plates B and C of the product of the present invention shown in FIG. 1B, the secondary particle activity consisting of the secondary particles 4 formed by stacking the primary particle active material layer 3 and gathering the primary particles 2 on the outer side. A material layer 5 is provided. In the conventional positive electrode plates A and G shown in FIG. 2 (b), the primary particle active material layer 3 composed of the primary particles 2 of the active material is again provided outside the primary particle active material layer 3. There is. ◎ Comparative positive electrode plate D shown in FIG.
In E and F, the secondary particle active material layer 5 composed of the secondary particles 4 formed by accumulating the primary particles 2 on the outer side of the secondary particle active material layer 5 is provided again. That is, in the conventional positive electrode plates A and G shown in FIG. 2B, the secondary particle active material layer 5 has an amorphous shape, while in the positive electrode plates A and G shown in FIGS. Two of positive electrode plates B, C of the invention product and positive electrode plates D, E, F of the comparative product
In the secondary particle active material layer 5, primary particles 2 smaller than the conventional product are formed of large secondary particles 4 densely aggregated. In this case, the average particle size of each active material of each positive electrode plate is as follows.

【0018】従来品の正極板A,Gにおける活物質1次
粒子の平均粒径は 0.2 μm〜0.3 μm 本発明品の正極板B,Cにおける活物質1次粒子の平均
粒径は 0.1 μm〜0.2 μm 比較品の正極板D,E,Fにおける活物質1次粒子の平
均粒径は 0.1 μm〜0.2 μm 本発明品の正極板B,Cにおける活物質2次粒子の平均
粒径は 2μm〜3μm 比較品の正極板D,E,Fにおける活物質2次粒子の平
均粒径は 2.5 μm〜3.5 μm である。
The average particle size of the active material primary particles in the conventional positive electrode plates A and G is 0.2 μm to 0.3 μm. The average particle size of the active material primary particles in the positive electrode plates B and C of the present invention is 0.1 μm to 0.1 μm. 0.2 μm The average particle diameter of the active material primary particles in the positive electrode plates D, E, and F of the comparative product is 0.1 μm to 0.2 μm, and the average particle diameter of the active material secondary particles in the positive electrode plates B and C of the present invention is 2 μm to The average particle diameter of the secondary particles of the active material in the positive electrode plates D, E, and F of the comparative product is 2.5 μm to 3.5 μm.

【0019】これら正極板A,B,C,D,E,F,G
の化成時の液比重の大きさを比較すると、C>(B,
D)>(A,E,F,G)となり、通電電流の大きさは
(D,G)>A>Fの順となり、B,C,Eについては
課電量が正極板の理論電気量の60%になるまでD,Gと
同じ大きさの電流を流し、その後Fと同じ大きさの電流
にした。化成終了時の課電量は、全て300 %である。そ
して、液温の大きさはF>D>A>Gの順となり、B,
C,Eについては、課電量が60%になるまでAと同じ温
度を保ち、その後徐々に温度を上げ、Fと同じ温度とし
た。
These positive electrode plates A, B, C, D, E, F, G
Comparing the magnitudes of the liquid gravities at the time of formation of C, C> (B,
D)> (A, E, F, G), and the magnitude of the energizing current is in the order of (D, G)>A> F. For B, C, E, the applied amount is the theoretical amount of electricity of the positive electrode plate. A current of the same magnitude as D and G was passed until it reached 60%, and then a current of the same magnitude as F. The amount of electricity applied at the end of formation is all 300%. The magnitude of the liquid temperature is in the order of F>D>A> G, and B,
Regarding C and E, the same temperature as A was maintained until the amount of applied electricity reached 60%, and then the temperature was gradually raised to the same temperature as F.

【0020】以上のようにして作製した正極板A,B,
C,D,E,F,Gを用い、30Ah−2Vタイプの密閉形
鉛蓄電池を作製し、試験に供した。
The positive electrode plates A, B, produced as described above,
Using C, D, E, F and G, a sealed lead acid battery of 30Ah-2V type was produced and provided for the test.

【0021】まず、従来品A,本発明品B,比較品Fの
正極板をもつ密閉形鉛蓄電池を過充電サイクルにより試
験した結果を図4に示す。試験条件としては、25℃中で
0.1CAの定電流により過充電を行い、10日に1度0.17
CAの定電流で容量確認を行うこととした。その結果、
図4に示すように、本発明品Bは従来品Aに比べ寿命が
向上したが、集電体1の周囲に2次粒子4が存在する比
較品Fは寿命が短くなっている。
First, FIG. 4 shows the results of testing the sealed lead-acid batteries having the positive electrode plates of the conventional product A, the invention product B and the comparative product F by the overcharge cycle. The test conditions are at 25 ℃
Overcharged with a constant current of 0.1 CA, and once every 10 days 0.17
It was decided to confirm the capacity with a constant current of CA. as a result,
As shown in FIG. 4, the product B of the present invention has a longer life than the conventional product A, but the life of the comparative product F in which the secondary particles 4 are present around the current collector 1 is shorter.

【0022】次に、浮動充電中の電流値を図5に示す。
試験条件としては、25℃中で2.275V/セルで定電圧充
電を行ったときの電流値を測定した。その結果、0.5 μ
m以上の径の細孔が0.06ml/g以上、0.1 μm以下の径の
細孔が0.03ml/g以上存在することにより電流値が従来の
1/5 までに低下している。
Next, the current value during floating charging is shown in FIG.
As a test condition, a current value was measured when constant voltage charging was performed at 2.275 V / cell at 25 ° C. As a result, 0.5 μ
Since the pores with a diameter of m or more are 0.06 ml / g or more and the pores with a diameter of 0.1 μm or less are 0.03 ml / g or more, the current value is
It has decreased to 1/5.

【0023】次に、25℃中で0.17CAの定電流で放電し
たときの初期容量を、従来品Aの容量を100 %として表
したものを図6に示す。この中で細孔径0.5 μm以上の
ものを0.06ml/g以上含む正極板B,Gのうち、正極板B
の活物質は図1(b)に示すように2次粒子4を形成し
ており、極板Gの活物質は図1(a)に示すような不定
形をしている。ここで図6をみると、細孔径0.5 μm以
上のものを0.05ml/g以上含むことにより、放電容量はほ
ぼ一定となるが、細孔径0.5 μm以上のものを0.06ml/g
以上含むものでも、2次粒子4を形成していない極板G
は、放電性能が劣る。
Next, FIG. 6 shows the initial capacity when discharged at a constant current of 0.17 CA at 25 ° C., where the capacity of the conventional product A is 100%. Among the positive electrode plates B and G containing 0.06 ml / g or more having a pore size of 0.5 μm or more, the positive electrode plate B
1B, the secondary particles 4 are formed as shown in FIG. 1B, and the active material of the electrode plate G has an irregular shape as shown in FIG. Looking at FIG. 6, the discharge capacity becomes almost constant by including 0.05 ml / g or more of the pore size of 0.5 μm or more, but 0.06 ml / g of the pore size of 0.5 μm or more.
Even if it includes the above, the electrode plate G on which the secondary particles 4 are not formed
Have inferior discharge performance.

【0024】なお、本発明の正極板の作製方法は、本実
施例に示したものに限定されるものではない。
The method for producing the positive electrode plate of the present invention is not limited to that shown in this embodiment.

【0025】[0025]

【発明の効果】以上説明したように本発明に係る鉛蓄電
池によれば、下記のような効果を得ることができる。
As described above, according to the lead storage battery of the present invention, the following effects can be obtained.

【0026】請求項1に記載の発明では、正極板の表面
側に2次粒子活物質層を設けたので、該正極板の表面側
に大きな径の細孔ができ、電解液である硫酸が極板内部
まで拡散し易くなり、放電性能を向上させることができ
る。また、1次粒子が単独に存在するよりも、1次粒子
が集合してできた2次粒子で活物質層を形成すると、該
活物質の比表面積が低下するため、これを一定電流で充
電したときは過電圧が上がり、定電圧で充電した場合は
電流値は小さくなる。
In the invention described in claim 1, since the secondary particle active material layer is provided on the surface side of the positive electrode plate, pores having a large diameter are formed on the surface side of the positive electrode plate, and sulfuric acid as an electrolytic solution is added. It is easy to diffuse into the electrode plate, and the discharge performance can be improved. Further, when the active material layer is formed by the secondary particles formed by aggregating the primary particles, rather than the existence of the primary particles alone, the specific surface area of the active material decreases, so that the active material layer is charged with a constant current. When it does, the overvoltage increases, and when it is charged with a constant voltage, the current value decreases.

【0027】また、集電体の表面側に活物質の1次粒子
よりなる1次粒子活物質層を設けたので、集電体と活物
質の接触面積が大きくなって活物質が集電体から剥がれ
難くなる。更に、1次粒子活物質層によれば、活物質粒
子間の細孔径が小さくなり、硫酸が拡散し難くなり、放
電のときに集電体表面にPbO2 が生成され難くなり、
放電性能の低下を防止できる。
Further, since the primary particle active material layer made of the primary particles of the active material is provided on the surface side of the current collector, the contact area between the current collector and the active material is increased and the active material is collected. It becomes difficult to peel it off. Further, according to the primary particle active material layer, the pore diameter between the active material particles becomes small, sulfuric acid becomes difficult to diffuse, and PbO 2 is hard to be generated on the surface of the current collector during discharge,
It is possible to prevent deterioration of discharge performance.

【0028】請求項2に記載の発明では、集電体に接す
る1次粒子活物質層において活物質粒子間の細孔のう
ち、0.1 μm以下の小さな細孔を増やしているので、充
電中に発生するガスの拡散が悪くなり、極板内にガス溜
まりができ易くなって反応面積が減少し、この状態で充
電すると過電圧が高くなり、定電圧充電中の電流値が小
さくなる。
According to the second aspect of the invention, in the primary particle active material layer in contact with the current collector, the number of small pores of 0.1 μm or less among the pores between the active material particles is increased. Diffusion of the generated gas becomes worse, gas is likely to accumulate in the electrode plate, and the reaction area is reduced. If the battery is charged in this state, the overvoltage becomes high and the current value during constant voltage charging becomes small.

【0029】従って、本発明に係る鉛蓄電池によれば、
過充電や浮動充電での特性を向上させることができ、浮
動充電中の電流値を低減することで熱逸走の危険性を少
なくすることができ、かつ放電容量を損わない電池を提
供することができる。
Therefore, according to the lead acid battery of the present invention,
To provide a battery that can improve the characteristics in overcharging and floating charging, reduce the risk of heat escape by reducing the current value during floating charging, and that does not impair the discharge capacity. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明で用いる正極板の集電体周辺に
おける活物質形状を示したモデル図、(b)は本発明で
用いる正極板の表面側における活物質形状を示したモデ
ル図である。
1A is a model diagram showing the shape of an active material around a current collector of a positive electrode plate used in the present invention, and FIG. 1B is a model showing an active material shape on the surface side of a positive electrode plate used in the present invention. It is a figure.

【図2】(a)は従来品で用いる正極板の集電体周辺に
おける活物質形状を示したモデル図、(b)は従来品で
用いる正極板の表面側における活物質形状を示したモデ
ル図である。
FIG. 2A is a model diagram showing an active material shape around a current collector of a positive electrode plate used in a conventional product, and FIG. 2B is a model showing an active material shape on a surface side of a positive electrode plate used in a conventional product. It is a figure.

【図3】(a)は比較品で用いる正極板の集電体周辺に
おける活物質形状を示したモデル図、(b)は比較品で
用いる正極板の表面側における活物質形状を示したモデ
ル図である。
3A is a model diagram showing the shape of an active material around the current collector of the positive electrode plate used in the comparative product, and FIG. 3B is a model showing the active material shape on the surface side of the positive electrode plate used in the comparative product. It is a figure.

【図4】本発明品,従来品,比較品の鉛蓄電池における
過充電サイクルの試験結果を示す線図である。
FIG. 4 is a diagram showing test results of overcharge cycles in lead-acid batteries of the present invention product, conventional product, and comparative product.

【図5】本発明品,従来品,比較品の鉛蓄電池における
浮動充電中の電流値を示した線図である。
FIG. 5 is a diagram showing current values during floating charging in the lead-acid batteries of the present invention product, the conventional product, and the comparative product.

【図6】本発明品,従来品,比較品の鉛蓄電池において
定電流で放電したときの初期容量を、従来品の容量を10
0 %として表したときの放電容量を示す線図である。
FIG. 6 shows the initial capacity of a lead-acid battery of the present invention, the conventional product, and the comparative product when discharged at a constant current, and the initial capacity of the conventional product is 10
It is a diagram showing discharge capacity when expressed as 0%.

【符号の説明】[Explanation of symbols]

1…集電体、2…1次粒子、3…1次粒子活物質層、4
…2次粒子、5…2次粒子活物質層。
1 ... Current collector, 2 ... Primary particle, 3 ... Primary particle active material layer, 4
... secondary particles, 5 ... secondary particle active material layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉛合金を集電体とする正極板を有する鉛
蓄電池において、 前記正極板の前記集電体に接する周辺に活物質の1次粒
子よりなる1次粒子活物質層が設けられ、前記1次粒子
活物質層の外側に活物質の1次粒子が密に集合した2次
粒子よりなる2次粒子活物質層が設けられていることを
特徴とする鉛蓄電池。
1. A lead storage battery having a positive electrode plate using a lead alloy as a current collector, wherein a primary particle active material layer made of primary particles of an active material is provided around the positive electrode plate in contact with the current collector. A lead storage battery, wherein a secondary particle active material layer composed of secondary particles in which primary particles of an active material are densely aggregated is provided outside the primary particle active material layer.
【請求項2】 前記1次粒子活物質層と前記2次粒子活
物質層を構成する活物質粒子間には、全体として0.1 μ
m以下の径の細孔が0.03ml/g以上存在し、且つ0.5 μm
以上の径の細孔が0.06ml/g以上存在することを特徴とす
る請求項1に記載の鉛蓄電池。
2. A total of 0.1 μm is provided between the active material particles forming the primary particle active material layer and the secondary particle active material layer.
Pore with a diameter of m or less is 0.03 ml / g or more, and 0.5 μm
The lead acid battery according to claim 1, wherein pores having the above diameter are present in an amount of 0.06 ml / g or more.
JP4041121A 1992-02-27 1992-02-27 Lead storage battery Expired - Lifetime JP2720689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4041121A JP2720689B2 (en) 1992-02-27 1992-02-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4041121A JP2720689B2 (en) 1992-02-27 1992-02-27 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH05242882A true JPH05242882A (en) 1993-09-21
JP2720689B2 JP2720689B2 (en) 1998-03-04

Family

ID=12599622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4041121A Expired - Lifetime JP2720689B2 (en) 1992-02-27 1992-02-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2720689B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2020140772A (en) * 2019-02-26 2020-09-03 古河電池株式会社 Positive electrode plate for lead acid battery and liquid lead acid battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126161A (en) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd Enclosed type lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126161A (en) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd Enclosed type lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2020140772A (en) * 2019-02-26 2020-09-03 古河電池株式会社 Positive electrode plate for lead acid battery and liquid lead acid battery including the same

Also Published As

Publication number Publication date
JP2720689B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US5547783A (en) Valve-regulated lead-acid battery
JP2720689B2 (en) Lead storage battery
JP2003338310A (en) Lead storage battery
JPS62103976A (en) Cathode plate for enclosed lead storage battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP3185300B2 (en) Sealed lead-acid battery
JP2929902B2 (en) Sealed lead-acid battery
JPS61165956A (en) Sealed type lead acid battery
JPH02109263A (en) Lead-acid battery
JP3648752B2 (en) Lead storage battery charge control method
JP4742424B2 (en) Control valve type lead acid battery
JPH0689738A (en) Sealed type lead-acid battery
JP2001160422A (en) Charging control method of lead storage battery
JP3671402B2 (en) Lead storage battery charge control method
JP3040718B2 (en) Lead storage battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPS63152871A (en) Sealed lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP3577709B2 (en) Sealed lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JPS58158874A (en) Lead storage battery
JP4802903B2 (en) Lead acid battery
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JPH01298654A (en) Manufacture of sealed lead storage battery
JPH06267582A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021