JPS63126161A - Enclosed type lead storage battery - Google Patents
Enclosed type lead storage batteryInfo
- Publication number
- JPS63126161A JPS63126161A JP61273255A JP27325586A JPS63126161A JP S63126161 A JPS63126161 A JP S63126161A JP 61273255 A JP61273255 A JP 61273255A JP 27325586 A JP27325586 A JP 27325586A JP S63126161 A JPS63126161 A JP S63126161A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- pore diameter
- larger
- negative
- plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011148 porous material Substances 0.000 claims abstract description 27
- 239000011149 active material Substances 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 17
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 17
- 238000007600 charging Methods 0.000 abstract description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 239000008151 electrolyte solution Substances 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 238000007599 discharging Methods 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 2
- -1 that is Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は密閉形鉛蓄電池に関するものであり、充電末期
、あるいは過充電時に発生する酸素ガスの吸収能を向上
せしめるだめの、特に負極の細孔分布の改良に関するも
のである。[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a sealed lead-acid battery, and relates to a pore distribution particularly in the negative electrode, which improves the ability to absorb oxygen gas generated at the end of charging or during overcharging. This is related to the improvement of.
従来の技術
近年、ボータプルVTR、小型電気掃除機等に代表され
るように比較的消費重力の大きいコードレス機器が普及
しているが、これらのコードレス機器の4源として、繰
り返し使用が可能で、大きい負荷電流に対しても安定し
た性能の得らする2次電池が求められるようになり、漏
液がなく補水の必要がない密閉形鉛蓄電池が開発されて
きた。Conventional technology In recent years, cordless devices with relatively large power consumption, such as VTRs and small vacuum cleaners, have become popular. There has been a demand for secondary batteries that provide stable performance even under load currents, and sealed lead-acid batteries that do not leak and do not require water replenishment have been developed.
これは、セパレータに細いガラス繊維から成るガラスマ
ットを採用し、これに電解液、すなわち硫酸を含浸させ
て非流動化しているので漏液によるさまざまな障害を回
避することが可能となったためである。一方、密閉化を
可能とするためには、磁池内部で充電末期、過充電時に
水の電気分解によって発生する酸素ガス、水素ガスによ
る圧力上昇を防がねばならない。そこで、次式に示すよ
うな酸素サイクル反応によって圧力上昇を防いでいる。This is because a glass mat made of thin glass fibers is used as the separator, and this is impregnated with an electrolyte, that is, sulfuric acid, to make it non-fluid, making it possible to avoid various problems caused by leakage. . On the other hand, in order to achieve hermetic sealing, it is necessary to prevent a pressure increase inside the magnetic battery due to oxygen gas and hydrogen gas generated by electrolysis of water during the final stage of charging and during overcharging. Therefore, the pressure increase is prevented by an oxygen cycle reaction as shown in the following equation.
H2o→2H++1/2o2+2e・・・・・・・・・
・・・(1)Pb+1//202+H2SO4→Pb5
o4+H20・・・・・・(2)PbSo4+2H++
2e→Pb+H2So4・・・・・・・・・・・・(3
)すなわち、充電末期、あるいは過充電時には、式(1
)で示すところの水の電気分解が起こり、正極上で酸素
ガスが発生する。この酸素ガスは拡散により負極に達し
、負極上で式(2)に示す反応によって水に還元される
。それと同時に硫酸鉛が生成されるが、式(3)の充電
反応によって硫酸鉛は鉛に還元される。この式(3)の
反応によって式(1)の反応により生じる水素イオンが
消費されるため負極上での水素ガスの発生が防止され、
鉛蓄電池の密閉化が可能となる。この密閉形鉛蓄電池の
信頼性を高めるには上記(1)〜(3)式の反応が効率
よく起こるようにしなければならない。そのためには式
(2)で示されるところの負極の鉛によって酸素ガスが
吸収される反応過程は特に重要である。酸素ガスの拡散
は、セパレータの内部と、蓄電池内部の空間部分を通し
て行なわれ、正極から負極表面に達し、負極上で酸素吸
収反応が起こる。一方、負極活物質は、適当な粒径に調
製されだ鉛粉を練合、格子中に塗布後、化成して得られ
るため、極板中では外部から内部にかけて均一な細孔分
布を有している。H2o→2H++1/2o2+2e・・・・・・・・・
...(1) Pb+1//202+H2SO4→Pb5
o4+H20...(2) PbSo4+2H++
2e→Pb+H2So4・・・・・・・・・・・・(3
) In other words, at the end of charging or overcharging, the formula (1
) electrolysis of water occurs, and oxygen gas is generated on the positive electrode. This oxygen gas reaches the negative electrode by diffusion, and is reduced to water on the negative electrode by the reaction shown in equation (2). At the same time, lead sulfate is generated, but the lead sulfate is reduced to lead by the charging reaction of equation (3). This reaction of formula (3) consumes the hydrogen ions produced by the reaction of formula (1), thereby preventing the generation of hydrogen gas on the negative electrode.
It becomes possible to seal lead-acid batteries. In order to improve the reliability of this sealed lead-acid battery, it is necessary to ensure that the reactions of formulas (1) to (3) above occur efficiently. To this end, the reaction process in which oxygen gas is absorbed by the lead of the negative electrode, as shown in equation (2), is particularly important. Oxygen gas diffuses through the interior of the separator and the space inside the storage battery, reaches the surface of the negative electrode from the positive electrode, and an oxygen absorption reaction occurs on the negative electrode. On the other hand, the negative electrode active material has a uniform pore distribution from the outside to the inside of the electrode plate because it is obtained by kneading lead powder prepared to an appropriate particle size, coating it on the lattice, and chemically forming it. ing.
一般にこれらの平均細孔径は0.1〜1μmであり、こ
の孔の内部に電解液も保持されており、0.1〜1μm
の平均細孔径では、酸素ガスの負極内部への拡散は充分
でなく、酸素ガス吸収反応は負極上の表面で行なわれて
いる。そのため負極のガス吸収能が制約を受けることに
なり、ある充電電流を越えると充電末期、過充電時に発
生する酸素ガスをすべて吸収しきれなくなり、成池内圧
が上昇する。密閉形鉛蓄電池には、内圧上昇を防ぐため
、安全弁が設けられており、この弁を通じて酸素ガスが
散逸して、その請果、法肩液中の水分が減少し、電池寿
命の低下をまねいていた。Generally, the average pore diameter of these pores is 0.1 to 1 μm, and the electrolyte is also held inside these pores, and the average diameter of these pores is 0.1 to 1 μm.
With an average pore diameter of , the diffusion of oxygen gas into the inside of the negative electrode is insufficient, and the oxygen gas absorption reaction takes place on the surface of the negative electrode. Therefore, the gas absorption ability of the negative electrode is restricted, and when the charging current exceeds a certain level, it becomes impossible to absorb all the oxygen gas generated during overcharging at the end of charging, and the internal pressure of the battery rises. Sealed lead-acid batteries are equipped with a safety valve to prevent internal pressure from rising. Oxygen gas dissipates through this valve, resulting in a decrease in water content in the shoulder fluid, which can shorten battery life. was.
発明が解決しようとする問題点
このような従来の構成においては、負極の表面上で酸素
ガス吸収反応が起こり、酸素吸収能が制約を受け、その
結果、高充電率での充鑞、過充電における電解液の減少
、それに伴なう電池寿命の低下という問題がある。Problems to be Solved by the Invention In such a conventional configuration, an oxygen gas absorption reaction occurs on the surface of the negative electrode, which limits the oxygen absorption ability, resulting in problems such as charging at high charging rates and overcharging. There is a problem in that the amount of electrolyte in the battery decreases and the life of the battery decreases accordingly.
本発明は、負極の酸素ガス吸収能を向上させ、これらの
問題点を解決することを目的とするものである。The present invention aims to solve these problems by improving the oxygen gas absorption ability of the negative electrode.
問題点を解決するための手段
上記問題点を解決するため本発明は、負極板の活物質の
有する細孔分布を極板の内部よりも表面部分の平均細孔
径が大となるような分布させたものである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention distributes the pores of the active material of the negative electrode plate so that the average pore diameter on the surface portion of the electrode plate is larger than that inside the electrode plate. It is something that
作 用
このように構成された負極板を用いると、セパレータ中
を拡散してきた酸素ガス、あるいは電池内部の空間を通
過してきた酸素ガスは負極表面で吸収されるだけでなく
、平均細孔径が犬きくなっているため極板の内部への拡
散が容易になり、酸素の吸収能が向上する。従って、前
記式(1)〜(3)のサイクルが効率よく起こり、電解
液の減少が押えられることになる。Function When using a negative electrode plate configured in this way, oxygen gas that has diffused in the separator or passed through the space inside the battery is not only absorbed on the negative electrode surface, but also has an average pore diameter of This makes it easier to diffuse into the inside of the electrode plate, improving its ability to absorb oxygen. Therefore, the cycle of the above formulas (1) to (3) occurs efficiently, and the decrease in electrolyte solution is suppressed.
実施例
以下、本発明の一実施例を添付図面にもとすいて説明す
る。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.
第1図は本発明の実施列における密閉形鉛蓄電池のセル
の縦断略図を示す。第1図において1−a。FIG. 1 shows a schematic longitudinal sectional view of a cell of a sealed lead-acid battery in an embodiment of the present invention. 1-a in FIG.
および1−bは本発明による鉛を主成分とする負、4活
物質であり、1−aは大きい平均細孔径を有しており、
本実施例の場合、5〜1ol1mの平均細孔径である。and 1-b are lead-based negative 4 active materials according to the present invention, and 1-a has a large average pore diameter,
In the case of this example, the average pore diameter is 5 to 1 ol 1 m.
一方1−bは1−aLに比べて小さい平均細孔径を有し
た部分であり、本実施例の場合、0.1〜1μmの平均
細孔径を有している。この1−aと1−bとで負極板1
を構成している。この様に平均細孔径の異なる部分を形
成するには、負極格子に負極活物質を充填する際、2回
の工程に分け、1回目の充填の際に、活物質にかける圧
力を太きくし、2回目充填の際に、活物質にかける圧力
を小さくすることによって可能である。2はセパレータ
であり、細径ガラス繊維より成っている。これは硫酸電
解液を保持する性質とともに、正極より発生した酸素ガ
スの透過性をも有している。3は正極であり、PbO2
を主成分としている。4は電槽であり、耐硫酸性を有す
るABS樹脂より成っている。5は安全弁で、電槽4の
上部に設けた突起部にゴムキャップをかぶせである。こ
れは電池内部の圧力が上昇した時に作動し、内部のガス
を抜く役割を果している。通常、電槽4の内部は減圧に
保たれており、密閉構造となっている。On the other hand, 1-b is a portion having a smaller average pore diameter than 1-aL, and in the case of this example, has an average pore diameter of 0.1 to 1 μm. With these 1-a and 1-b, the negative electrode plate 1
It consists of In order to form portions with different average pore diameters in this way, when filling the negative electrode active material into the negative electrode lattice, the process is divided into two steps, and during the first filling, the pressure applied to the active material is increased. This is possible by reducing the pressure applied to the active material during the second filling. 2 is a separator made of thin glass fiber. This has the property of retaining the sulfuric acid electrolyte and also has permeability to oxygen gas generated from the positive electrode. 3 is a positive electrode, PbO2
is the main component. 4 is a battery case, which is made of ABS resin having sulfuric acid resistance. Reference numeral 5 denotes a safety valve, and a protrusion provided at the top of the battery case 4 is covered with a rubber cap. This operates when the pressure inside the battery rises, and its role is to remove gas from inside the battery. Normally, the inside of the battery case 4 is kept at a reduced pressure and has a sealed structure.
第2図は、10時間放電率での容量が2Ahの′電池に
対して完全充電状態から、400 mA 。Figure 2 shows 400 mA from a fully charged state for a battery with a capacity of 2 Ah at a 10 hour discharge rate.
100mAで過充電を行なった時の減液量〔%〕を、過
充電時間に対してプロットしたものを、本発明品と従来
品とで比較したものである。低准流では、過充電時の酸
素ガス発生も少ないため、負極の吸収能は本発明品と従
来品とでは減液量に差はないが、高電流になると、本発
明品のガス吸収能が大きいために減液量を少なくするこ
とができる。The amount of liquid loss [%] when overcharging was performed at 100 mA was plotted against the overcharging time, and the product of the present invention and the conventional product were compared. At low currents, there is little oxygen gas generated during overcharging, so there is no difference in the amount of liquid loss between the inventive product and the conventional product in terms of the absorption capacity of the negative electrode.However, at high currents, the gas absorption capacity of the inventive product decreases. Since this is large, the amount of liquid loss can be reduced.
発明の効果
以上のように本発明によれば、酸素ガス吸収能を高める
ために、極板の内部よりも表面部分の平均細孔径が犬と
なる分布を有するような負極板を用いるために、過充電
時における減液量が減り長寿命化が実現できるだけでな
く、第2図からも明らかなように高充電率による定電流
充電においても長命が延びるという効果が得られる。ま
た負極の表面部分の細孔径が大きくなるため、電解液の
保液力が高まり、従来よりも硫酸の拡散が容易になるた
め、高充電率での放電特性も向上するという効果も得ら
れた。Effects of the Invention As described above, according to the present invention, in order to increase the oxygen gas absorption ability, a negative electrode plate is used in which the average pore diameter of the surface portion of the electrode plate has a narrower distribution than that of the inside of the plate. Not only can the amount of fluid lost during overcharging be reduced and the battery life be extended, but also, as is clear from FIG. 2, the battery life can be extended even in constant current charging at a high charging rate. In addition, the pore size on the surface of the negative electrode increases, which increases the electrolyte's ability to hold the electrolyte, making it easier for sulfuric acid to diffuse than before, resulting in improved discharge characteristics at high charging rates. .
第1図は本発明の実施例における密閉形鉛蓄電池の概要
を示す断面略図、第2図は400mAと100 mAの
充電において過充電時間に対して減液量をプロットした
比較図である。
1・・・・・・負極板、1−a ・・・・・・大きい平
均細孔を有する負極活物質、1−b・・・・・・小さい
平均細孔を有する負極活物質、2・・・・・・セパレー
タ、3・・・・・正極板、4・・・・・・電槽、6・・
・・・・安全弁。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名沼
、
一 φ 暢
味
味 イAむ スFIG. 1 is a schematic cross-sectional view showing an outline of a sealed lead-acid battery according to an embodiment of the present invention, and FIG. 2 is a comparison diagram plotting the amount of liquid loss against overcharge time when charging at 400 mA and 100 mA. 1...Negative electrode plate, 1-a...Negative electrode active material having large average pores, 1-b...Negative electrode active material having small average pores, 2. ... Separator, 3 ... Positive electrode plate, 4 ... Battery case, 6 ...
····safety valve. Name of agent: Patent attorney Toshio Nakao and one other person
, One φ Nobumi taste IAmusu
Claims (1)
部よりも表面部分の平均細孔径が大となるような分布を
有する負極板を備えたことを特徴とする密閉形鉛蓄電池
。1. A sealed lead-acid battery comprising a negative electrode plate having a pore distribution of an active material constituting the negative electrode plate such that the average pore diameter on the surface portion is larger than that inside the electrode plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61273255A JPS63126161A (en) | 1986-11-17 | 1986-11-17 | Enclosed type lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61273255A JPS63126161A (en) | 1986-11-17 | 1986-11-17 | Enclosed type lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63126161A true JPS63126161A (en) | 1988-05-30 |
Family
ID=17525281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61273255A Pending JPS63126161A (en) | 1986-11-17 | 1986-11-17 | Enclosed type lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63126161A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05242882A (en) * | 1992-02-27 | 1993-09-21 | Shin Kobe Electric Mach Co Ltd | Lead-acid battery |
JP2013089478A (en) * | 2011-10-19 | 2013-05-13 | Gs Yuasa Corp | Lead acid battery and manufacturing method therefor |
US11367906B2 (en) | 2018-05-23 | 2022-06-21 | Gs Yuasa International Ltd. | Lead-acid battery |
-
1986
- 1986-11-17 JP JP61273255A patent/JPS63126161A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05242882A (en) * | 1992-02-27 | 1993-09-21 | Shin Kobe Electric Mach Co Ltd | Lead-acid battery |
JP2013089478A (en) * | 2011-10-19 | 2013-05-13 | Gs Yuasa Corp | Lead acid battery and manufacturing method therefor |
US11367906B2 (en) | 2018-05-23 | 2022-06-21 | Gs Yuasa International Ltd. | Lead-acid battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0756810B2 (en) | Sealed lead acid gas recombined storage battery | |
JPH0584033B2 (en) | ||
JPS5835877A (en) | Closed type lead battery and its production method | |
JPS63126161A (en) | Enclosed type lead storage battery | |
JPH0756811B2 (en) | Sealed lead acid battery | |
JPS6327826B2 (en) | ||
JPS6030063A (en) | Sealed type lead-acid battery | |
JP2949839B2 (en) | Negative gas absorption sealed lead-acid battery | |
JPS63221565A (en) | Sealed lead-acid battery | |
JPS63138644A (en) | Enclosed lead storage battery | |
JPS63146348A (en) | Separator for enclosed lead storage battery | |
JPH0624139B2 (en) | Manufacturing method of sealed lead battery | |
JP2001126752A (en) | Paste-type sealed lead-acid battery and manufacturing method therefor | |
JPS63143742A (en) | Separator for closed type lead battery | |
JPS6040672B2 (en) | Manufacturing method of sealed lead-acid battery | |
JP2002110125A (en) | Lead-acid battery and its manufacturing method | |
JP2958791B2 (en) | Sealed lead-acid battery | |
KR200208680Y1 (en) | valve regulated lead acid battery using gell electrocyte | |
JP3099527B2 (en) | Manufacturing method of sealed lead-acid battery | |
JP2586249B2 (en) | Sealed lead-acid battery | |
JPS63138649A (en) | Enclosed lead storage battery | |
JPS61198573A (en) | Enclosed lead storage battery | |
JPH012253A (en) | Negative electrode plate for sealed lead-acid batteries | |
JPH0128624Y2 (en) | ||
CN117352862A (en) | Valve-control flat-pressure type single battery, valve-control flat-pressure type lead-acid storage battery and equipment |