JPS63126161A - Enclosed type lead storage battery - Google Patents

Enclosed type lead storage battery

Info

Publication number
JPS63126161A
JPS63126161A JP61273255A JP27325586A JPS63126161A JP S63126161 A JPS63126161 A JP S63126161A JP 61273255 A JP61273255 A JP 61273255A JP 27325586 A JP27325586 A JP 27325586A JP S63126161 A JPS63126161 A JP S63126161A
Authority
JP
Japan
Prior art keywords
negative electrode
pore diameter
larger
negative
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273255A
Other languages
Japanese (ja)
Inventor
Koichi Yamasaka
山坂 孝一
Eiichi Waki
脇 栄一
Miyuki Nishimura
西村 美由紀
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61273255A priority Critical patent/JPS63126161A/en
Publication of JPS63126161A publication Critical patent/JPS63126161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charging in a high charging rate and liquid-keeping force of an electrolytic solution in an over charge, and to prolong a battery life by making a mean pore diameter of a surface part to be larger than that of the inner part of plates in a pore distribution in active materials of negative plates. CONSTITUTION:A negative plate 1 is provided which having a distribution in which a mean pore diameter of the surface part is made to be larger than that of the inner part of plates in the pore distribution of active materials constituting negative plates 1. Using such the negative plate 1, an oxygen gas diffused from through a separator 2 or passed from a space in a battery inner part is not only absorbed in the negative electrode surface but also easily diffuses in the plate inner part as the mean pore diameter is larger, and thereby an absorbing power of oxygen is improved. This allows not only a decreased liquid quantity in an overcharge is decreased and a longer life can be realized but also the life can be prolonged in a constant current charge by a high charging rate. And a liquid-keeping force of an electrolytic solution is improved as the pore diameter on the negative electrode surface part becomes larger, and discharging properties in the high charging rate is also improved as the diffusion of sulfuric acid is made easier than ever.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池に関するものであり、充電末期
、あるいは過充電時に発生する酸素ガスの吸収能を向上
せしめるだめの、特に負極の細孔分布の改良に関するも
のである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a sealed lead-acid battery, and relates to a pore distribution particularly in the negative electrode, which improves the ability to absorb oxygen gas generated at the end of charging or during overcharging. This is related to the improvement of.

従来の技術 近年、ボータプルVTR、小型電気掃除機等に代表され
るように比較的消費重力の大きいコードレス機器が普及
しているが、これらのコードレス機器の4源として、繰
り返し使用が可能で、大きい負荷電流に対しても安定し
た性能の得らする2次電池が求められるようになり、漏
液がなく補水の必要がない密閉形鉛蓄電池が開発されて
きた。
Conventional technology In recent years, cordless devices with relatively large power consumption, such as VTRs and small vacuum cleaners, have become popular. There has been a demand for secondary batteries that provide stable performance even under load currents, and sealed lead-acid batteries that do not leak and do not require water replenishment have been developed.

これは、セパレータに細いガラス繊維から成るガラスマ
ットを採用し、これに電解液、すなわち硫酸を含浸させ
て非流動化しているので漏液によるさまざまな障害を回
避することが可能となったためである。一方、密閉化を
可能とするためには、磁池内部で充電末期、過充電時に
水の電気分解によって発生する酸素ガス、水素ガスによ
る圧力上昇を防がねばならない。そこで、次式に示すよ
うな酸素サイクル反応によって圧力上昇を防いでいる。
This is because a glass mat made of thin glass fibers is used as the separator, and this is impregnated with an electrolyte, that is, sulfuric acid, to make it non-fluid, making it possible to avoid various problems caused by leakage. . On the other hand, in order to achieve hermetic sealing, it is necessary to prevent a pressure increase inside the magnetic battery due to oxygen gas and hydrogen gas generated by electrolysis of water during the final stage of charging and during overcharging. Therefore, the pressure increase is prevented by an oxygen cycle reaction as shown in the following equation.

H2o→2H++1/2o2+2e・・・・・・・・・
・・・(1)Pb+1//202+H2SO4→Pb5
o4+H20・・・・・・(2)PbSo4+2H++
2e→Pb+H2So4・・・・・・・・・・・・(3
)すなわち、充電末期、あるいは過充電時には、式(1
)で示すところの水の電気分解が起こり、正極上で酸素
ガスが発生する。この酸素ガスは拡散により負極に達し
、負極上で式(2)に示す反応によって水に還元される
。それと同時に硫酸鉛が生成されるが、式(3)の充電
反応によって硫酸鉛は鉛に還元される。この式(3)の
反応によって式(1)の反応により生じる水素イオンが
消費されるため負極上での水素ガスの発生が防止され、
鉛蓄電池の密閉化が可能となる。この密閉形鉛蓄電池の
信頼性を高めるには上記(1)〜(3)式の反応が効率
よく起こるようにしなければならない。そのためには式
(2)で示されるところの負極の鉛によって酸素ガスが
吸収される反応過程は特に重要である。酸素ガスの拡散
は、セパレータの内部と、蓄電池内部の空間部分を通し
て行なわれ、正極から負極表面に達し、負極上で酸素吸
収反応が起こる。一方、負極活物質は、適当な粒径に調
製されだ鉛粉を練合、格子中に塗布後、化成して得られ
るため、極板中では外部から内部にかけて均一な細孔分
布を有している。
H2o→2H++1/2o2+2e・・・・・・・・・
...(1) Pb+1//202+H2SO4→Pb5
o4+H20...(2) PbSo4+2H++
2e→Pb+H2So4・・・・・・・・・・・・(3
) In other words, at the end of charging or overcharging, the formula (1
) electrolysis of water occurs, and oxygen gas is generated on the positive electrode. This oxygen gas reaches the negative electrode by diffusion, and is reduced to water on the negative electrode by the reaction shown in equation (2). At the same time, lead sulfate is generated, but the lead sulfate is reduced to lead by the charging reaction of equation (3). This reaction of formula (3) consumes the hydrogen ions produced by the reaction of formula (1), thereby preventing the generation of hydrogen gas on the negative electrode.
It becomes possible to seal lead-acid batteries. In order to improve the reliability of this sealed lead-acid battery, it is necessary to ensure that the reactions of formulas (1) to (3) above occur efficiently. To this end, the reaction process in which oxygen gas is absorbed by the lead of the negative electrode, as shown in equation (2), is particularly important. Oxygen gas diffuses through the interior of the separator and the space inside the storage battery, reaches the surface of the negative electrode from the positive electrode, and an oxygen absorption reaction occurs on the negative electrode. On the other hand, the negative electrode active material has a uniform pore distribution from the outside to the inside of the electrode plate because it is obtained by kneading lead powder prepared to an appropriate particle size, coating it on the lattice, and chemically forming it. ing.

一般にこれらの平均細孔径は0.1〜1μmであり、こ
の孔の内部に電解液も保持されており、0.1〜1μm
の平均細孔径では、酸素ガスの負極内部への拡散は充分
でなく、酸素ガス吸収反応は負極上の表面で行なわれて
いる。そのため負極のガス吸収能が制約を受けることに
なり、ある充電電流を越えると充電末期、過充電時に発
生する酸素ガスをすべて吸収しきれなくなり、成池内圧
が上昇する。密閉形鉛蓄電池には、内圧上昇を防ぐため
、安全弁が設けられており、この弁を通じて酸素ガスが
散逸して、その請果、法肩液中の水分が減少し、電池寿
命の低下をまねいていた。
Generally, the average pore diameter of these pores is 0.1 to 1 μm, and the electrolyte is also held inside these pores, and the average diameter of these pores is 0.1 to 1 μm.
With an average pore diameter of , the diffusion of oxygen gas into the inside of the negative electrode is insufficient, and the oxygen gas absorption reaction takes place on the surface of the negative electrode. Therefore, the gas absorption ability of the negative electrode is restricted, and when the charging current exceeds a certain level, it becomes impossible to absorb all the oxygen gas generated during overcharging at the end of charging, and the internal pressure of the battery rises. Sealed lead-acid batteries are equipped with a safety valve to prevent internal pressure from rising. Oxygen gas dissipates through this valve, resulting in a decrease in water content in the shoulder fluid, which can shorten battery life. was.

発明が解決しようとする問題点 このような従来の構成においては、負極の表面上で酸素
ガス吸収反応が起こり、酸素吸収能が制約を受け、その
結果、高充電率での充鑞、過充電における電解液の減少
、それに伴なう電池寿命の低下という問題がある。
Problems to be Solved by the Invention In such a conventional configuration, an oxygen gas absorption reaction occurs on the surface of the negative electrode, which limits the oxygen absorption ability, resulting in problems such as charging at high charging rates and overcharging. There is a problem in that the amount of electrolyte in the battery decreases and the life of the battery decreases accordingly.

本発明は、負極の酸素ガス吸収能を向上させ、これらの
問題点を解決することを目的とするものである。
The present invention aims to solve these problems by improving the oxygen gas absorption ability of the negative electrode.

問題点を解決するための手段 上記問題点を解決するため本発明は、負極板の活物質の
有する細孔分布を極板の内部よりも表面部分の平均細孔
径が大となるような分布させたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention distributes the pores of the active material of the negative electrode plate so that the average pore diameter on the surface portion of the electrode plate is larger than that inside the electrode plate. It is something that

作  用 このように構成された負極板を用いると、セパレータ中
を拡散してきた酸素ガス、あるいは電池内部の空間を通
過してきた酸素ガスは負極表面で吸収されるだけでなく
、平均細孔径が犬きくなっているため極板の内部への拡
散が容易になり、酸素の吸収能が向上する。従って、前
記式(1)〜(3)のサイクルが効率よく起こり、電解
液の減少が押えられることになる。
Function When using a negative electrode plate configured in this way, oxygen gas that has diffused in the separator or passed through the space inside the battery is not only absorbed on the negative electrode surface, but also has an average pore diameter of This makes it easier to diffuse into the inside of the electrode plate, improving its ability to absorb oxygen. Therefore, the cycle of the above formulas (1) to (3) occurs efficiently, and the decrease in electrolyte solution is suppressed.

実施例 以下、本発明の一実施例を添付図面にもとすいて説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施列における密閉形鉛蓄電池のセル
の縦断略図を示す。第1図において1−a。
FIG. 1 shows a schematic longitudinal sectional view of a cell of a sealed lead-acid battery in an embodiment of the present invention. 1-a in FIG.

および1−bは本発明による鉛を主成分とする負、4活
物質であり、1−aは大きい平均細孔径を有しており、
本実施例の場合、5〜1ol1mの平均細孔径である。
and 1-b are lead-based negative 4 active materials according to the present invention, and 1-a has a large average pore diameter,
In the case of this example, the average pore diameter is 5 to 1 ol 1 m.

一方1−bは1−aLに比べて小さい平均細孔径を有し
た部分であり、本実施例の場合、0.1〜1μmの平均
細孔径を有している。この1−aと1−bとで負極板1
を構成している。この様に平均細孔径の異なる部分を形
成するには、負極格子に負極活物質を充填する際、2回
の工程に分け、1回目の充填の際に、活物質にかける圧
力を太きくし、2回目充填の際に、活物質にかける圧力
を小さくすることによって可能である。2はセパレータ
であり、細径ガラス繊維より成っている。これは硫酸電
解液を保持する性質とともに、正極より発生した酸素ガ
スの透過性をも有している。3は正極であり、PbO2
を主成分としている。4は電槽であり、耐硫酸性を有す
るABS樹脂より成っている。5は安全弁で、電槽4の
上部に設けた突起部にゴムキャップをかぶせである。こ
れは電池内部の圧力が上昇した時に作動し、内部のガス
を抜く役割を果している。通常、電槽4の内部は減圧に
保たれており、密閉構造となっている。
On the other hand, 1-b is a portion having a smaller average pore diameter than 1-aL, and in the case of this example, has an average pore diameter of 0.1 to 1 μm. With these 1-a and 1-b, the negative electrode plate 1
It consists of In order to form portions with different average pore diameters in this way, when filling the negative electrode active material into the negative electrode lattice, the process is divided into two steps, and during the first filling, the pressure applied to the active material is increased. This is possible by reducing the pressure applied to the active material during the second filling. 2 is a separator made of thin glass fiber. This has the property of retaining the sulfuric acid electrolyte and also has permeability to oxygen gas generated from the positive electrode. 3 is a positive electrode, PbO2
is the main component. 4 is a battery case, which is made of ABS resin having sulfuric acid resistance. Reference numeral 5 denotes a safety valve, and a protrusion provided at the top of the battery case 4 is covered with a rubber cap. This operates when the pressure inside the battery rises, and its role is to remove gas from inside the battery. Normally, the inside of the battery case 4 is kept at a reduced pressure and has a sealed structure.

第2図は、10時間放電率での容量が2Ahの′電池に
対して完全充電状態から、400 mA 。
Figure 2 shows 400 mA from a fully charged state for a battery with a capacity of 2 Ah at a 10 hour discharge rate.

100mAで過充電を行なった時の減液量〔%〕を、過
充電時間に対してプロットしたものを、本発明品と従来
品とで比較したものである。低准流では、過充電時の酸
素ガス発生も少ないため、負極の吸収能は本発明品と従
来品とでは減液量に差はないが、高電流になると、本発
明品のガス吸収能が大きいために減液量を少なくするこ
とができる。
The amount of liquid loss [%] when overcharging was performed at 100 mA was plotted against the overcharging time, and the product of the present invention and the conventional product were compared. At low currents, there is little oxygen gas generated during overcharging, so there is no difference in the amount of liquid loss between the inventive product and the conventional product in terms of the absorption capacity of the negative electrode.However, at high currents, the gas absorption capacity of the inventive product decreases. Since this is large, the amount of liquid loss can be reduced.

発明の効果 以上のように本発明によれば、酸素ガス吸収能を高める
ために、極板の内部よりも表面部分の平均細孔径が犬と
なる分布を有するような負極板を用いるために、過充電
時における減液量が減り長寿命化が実現できるだけでな
く、第2図からも明らかなように高充電率による定電流
充電においても長命が延びるという効果が得られる。ま
た負極の表面部分の細孔径が大きくなるため、電解液の
保液力が高まり、従来よりも硫酸の拡散が容易になるた
め、高充電率での放電特性も向上するという効果も得ら
れた。
Effects of the Invention As described above, according to the present invention, in order to increase the oxygen gas absorption ability, a negative electrode plate is used in which the average pore diameter of the surface portion of the electrode plate has a narrower distribution than that of the inside of the plate. Not only can the amount of fluid lost during overcharging be reduced and the battery life be extended, but also, as is clear from FIG. 2, the battery life can be extended even in constant current charging at a high charging rate. In addition, the pore size on the surface of the negative electrode increases, which increases the electrolyte's ability to hold the electrolyte, making it easier for sulfuric acid to diffuse than before, resulting in improved discharge characteristics at high charging rates. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における密閉形鉛蓄電池の概要
を示す断面略図、第2図は400mAと100 mAの
充電において過充電時間に対して減液量をプロットした
比較図である。 1・・・・・・負極板、1−a ・・・・・・大きい平
均細孔を有する負極活物質、1−b・・・・・・小さい
平均細孔を有する負極活物質、2・・・・・・セパレー
タ、3・・・・・正極板、4・・・・・・電槽、6・・
・・・・安全弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名沼 
、 一           φ   暢 味 味    イAむ ス
FIG. 1 is a schematic cross-sectional view showing an outline of a sealed lead-acid battery according to an embodiment of the present invention, and FIG. 2 is a comparison diagram plotting the amount of liquid loss against overcharge time when charging at 400 mA and 100 mA. 1...Negative electrode plate, 1-a...Negative electrode active material having large average pores, 1-b...Negative electrode active material having small average pores, 2. ... Separator, 3 ... Positive electrode plate, 4 ... Battery case, 6 ...
····safety valve. Name of agent: Patent attorney Toshio Nakao and one other person
, One φ Nobumi taste IAmusu

Claims (1)

【特許請求の範囲】[Claims] 負極板を構成する活物質の細孔分布において、極板の内
部よりも表面部分の平均細孔径が大となるような分布を
有する負極板を備えたことを特徴とする密閉形鉛蓄電池
1. A sealed lead-acid battery comprising a negative electrode plate having a pore distribution of an active material constituting the negative electrode plate such that the average pore diameter on the surface portion is larger than that inside the electrode plate.
JP61273255A 1986-11-17 1986-11-17 Enclosed type lead storage battery Pending JPS63126161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273255A JPS63126161A (en) 1986-11-17 1986-11-17 Enclosed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273255A JPS63126161A (en) 1986-11-17 1986-11-17 Enclosed type lead storage battery

Publications (1)

Publication Number Publication Date
JPS63126161A true JPS63126161A (en) 1988-05-30

Family

ID=17525281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273255A Pending JPS63126161A (en) 1986-11-17 1986-11-17 Enclosed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS63126161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242882A (en) * 1992-02-27 1993-09-21 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2013089478A (en) * 2011-10-19 2013-05-13 Gs Yuasa Corp Lead acid battery and manufacturing method therefor
US11367906B2 (en) 2018-05-23 2022-06-21 Gs Yuasa International Ltd. Lead-acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242882A (en) * 1992-02-27 1993-09-21 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2013089478A (en) * 2011-10-19 2013-05-13 Gs Yuasa Corp Lead acid battery and manufacturing method therefor
US11367906B2 (en) 2018-05-23 2022-06-21 Gs Yuasa International Ltd. Lead-acid battery

Similar Documents

Publication Publication Date Title
JPH0756810B2 (en) Sealed lead acid gas recombined storage battery
JPH0584033B2 (en)
JPS5835877A (en) Closed type lead battery and its production method
JPS63126161A (en) Enclosed type lead storage battery
JPH0756811B2 (en) Sealed lead acid battery
JPS6327826B2 (en)
JPS6030063A (en) Sealed type lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPS63221565A (en) Sealed lead-acid battery
JPS63138644A (en) Enclosed lead storage battery
JPS63146348A (en) Separator for enclosed lead storage battery
JPH0624139B2 (en) Manufacturing method of sealed lead battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPS63143742A (en) Separator for closed type lead battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JP2002110125A (en) Lead-acid battery and its manufacturing method
JP2958791B2 (en) Sealed lead-acid battery
KR200208680Y1 (en) valve regulated lead acid battery using gell electrocyte
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JPS63138649A (en) Enclosed lead storage battery
JPS61198573A (en) Enclosed lead storage battery
JPH012253A (en) Negative electrode plate for sealed lead-acid batteries
JPH0128624Y2 (en)
CN117352862A (en) Valve-control flat-pressure type single battery, valve-control flat-pressure type lead-acid storage battery and equipment