JPS63138649A - Enclosed lead storage battery - Google Patents
Enclosed lead storage batteryInfo
- Publication number
- JPS63138649A JPS63138649A JP61284710A JP28471086A JPS63138649A JP S63138649 A JPS63138649 A JP S63138649A JP 61284710 A JP61284710 A JP 61284710A JP 28471086 A JP28471086 A JP 28471086A JP S63138649 A JPS63138649 A JP S63138649A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- active material
- sulfuric acid
- battery
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 24
- 239000010439 graphite Substances 0.000 claims abstract description 24
- 239000002253 acid Substances 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 33
- 239000011149 active material Substances 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 5
- 238000009830 intercalation Methods 0.000 abstract description 4
- 230000002687 intercalation Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000008961 swelling Effects 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
- H01M4/20—Processes of manufacture of pasted electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は密閉形鉛蓄電池に関するものであり、活物質の
利用率を向上せしめるための、特に正。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to sealed lead-acid batteries, and is particularly suitable for improving the utilization rate of active materials.
負極の表面の改良に関するものである。This invention relates to improving the surface of negative electrodes.
従来の技術
近年、ポータプルVTR、小型電気掃除機等に代表され
るように、消費電力の大きいコードレス機器が普及して
いるが、これらコードレス機器の電源として、くり返し
使用が可能で、大きい負荷電流に対しても安定した性能
が得られる2次電池が求められるようになり、その普及
に伴ない安全性、信頼性の高い密閉形鉛蓄電池が開発さ
れてきた。従来の鉛蓄電池を密閉化するにあたって最大
の技術課題は、充電時に発生するガス全いかにおさえる
かにあり、μ下に述べるような方法がとられている。Conventional technology In recent years, cordless devices with high power consumption, such as portable VTRs and small vacuum cleaners, have become popular.As a power source for these cordless devices, they can be used repeatedly and can handle large load currents. There has been a demand for secondary batteries that can provide stable performance in response to the demand for batteries, and with the spread of secondary batteries, highly safe and reliable sealed lead-acid batteries have been developed. The biggest technical challenge in sealing conventional lead-acid batteries is how to suppress all the gases generated during charging, and the methods described below are being used.
H2O−+ 2H”+MO2+2e −
−−−=(1)Pb+3AO2+H2Sod →PbS
O4+H20−−−−・・(2)PbSOd+2H”+
2s−*Pb+H2So4−、、(3)充電末期、ある
いは過充電時には式(1)で示すような水の電気分解反
応が正極上で起こる。ここで発生した酸素ガスはセパレ
ータ、または電池内部の空間を拡散して負極に達し、式
(2)K示されるような反応により、水に還元される。H2O−+ 2H”+MO2+2e −
−−−=(1) Pb+3AO2+H2Sod →PbS
O4+H20−−−−・(2)PbSOd+2H”+
2s-*Pb+H2So4-, (3) At the end of charging or during overcharging, an electrolysis reaction of water as shown in equation (1) occurs on the positive electrode. The oxygen gas generated here diffuses through the separator or the space inside the battery, reaches the negative electrode, and is reduced to water by the reaction shown in equation (2)K.
それと同時に硫酸鉛が生じるが、式(3)の充電反応に
よって、負極の硫酸鉛は鉛に還元される。この反応で水
素イオンが消費されるため負極上での水素ガスの発生が
防止され密閉化が可能となるのである。At the same time, lead sulfate is produced, but the lead sulfate at the negative electrode is reduced to lead by the charging reaction of equation (3). Since hydrogen ions are consumed in this reaction, generation of hydrogen gas on the negative electrode is prevented and sealing becomes possible.
この密閉化を完成させる上で重要な構成要素の一つはセ
パレータである。このセパレータの役割は犬きく分けて
二つある。その第1は電解液を保持し、非流動化し漏液
をなくすということ、第2に、正極で発生する酸素ガス
を負極まで拡散しやすくする、ということである。この
ような電池系では、電解液は漏液、ガス拡散の点から最
少量にとどめられる。一方、鉛蓄電池の充放電反応は(
正極) (電解液) (負極)
として表わすことができるが、この式からもわかるよう
に、放電時には電解液中の硫酸が消費されていく。従っ
て、耐漏液性、酸素ガス拡散性を向上させるために、液
量を最少にとどめることは、鉛蓄電池の放電容量を大き
く制限することになる。One of the important components in completing this sealing is the separator. This separator has two distinct roles. The first is to hold the electrolyte and make it non-fluidized to eliminate leakage, and the second is to make it easier for oxygen gas generated at the positive electrode to diffuse to the negative electrode. In such a battery system, the amount of electrolyte is kept to a minimum in terms of leakage and gas diffusion. On the other hand, the charge/discharge reaction of a lead-acid battery is (
Positive electrode) (Electrolyte) (Negative electrode) As can be seen from this equation, sulfuric acid in the electrolyte is consumed during discharge. Therefore, minimizing the amount of liquid in order to improve leakage resistance and oxygen gas diffusivity greatly limits the discharge capacity of the lead-acid battery.
また、硫酸の濃度を高くし、硫酸量を増やしても、高濃
度では格子の腐蝕が激しくなり、実用上、硫酸比重1.
40が限界であり、あまり高濃度にすることはできない
。従って、密閉形鉛蓄電池においては、従来の電解液の
豊富な鉛蓄電池と比較した場合、同一サイズであれば、
硫酸イオンが少ないため、活物質の利用率が低くなると
いう問題があった。しかしこのような問題を解決するた
めに、これまで、グラフフイトヲ正極活物質中に混入さ
せ、充電時、すなわち硫酸濃度の高い時にグラフ1イト
−硫酸の層間化合物を形成して硫酸をグラファイト層間
に取り込み電解液中の硫酸濃度を抑制し、一方、放電時
に、電解液中の硫酸濃度が低くなると、グラフフィト層
間より硫酸を放出し放電容量を大きくするという手段が
とられてきたが、硫酸がグラフ1イトの層間を出入りす
る際、層間距離は、3.35人から7.98人へ、ある
いは7.98人から3.35人への変化をくり返すこと
になる。この膨張、収縮が原因となり正極活物質粒子間
の結合力低下、ひいては活物質の脱落をひき起こし、サ
イクル寿命の低下となっていた。In addition, even if the concentration of sulfuric acid is increased and the amount of sulfuric acid is increased, the corrosion of the lattice becomes severe at high concentrations, and in practice, the sulfuric acid specific gravity is 1.
40 is the limit, and the concentration cannot be made too high. Therefore, when compared to conventional lead-acid batteries with a rich electrolyte, sealed lead-acid batteries have the same size.
Since there were few sulfate ions, there was a problem that the utilization rate of the active material was low. However, in order to solve this problem, it has been attempted to mix graphite into the positive electrode active material, and when charging, that is, when the sulfuric acid concentration is high, an interlayer compound of graphite and sulfuric acid is formed and sulfuric acid is incorporated between the graphite layers. Measures have been taken to suppress the sulfuric acid concentration in the electrolytic solution, and on the other hand, when the sulfuric acid concentration in the electrolytic solution becomes low during discharge, sulfuric acid is released from between the graphite layers to increase the discharge capacity. When moving in and out between 1-item layers, the inter-layer distance repeatedly changes from 3.35 people to 7.98 people, or from 7.98 people to 3.35 people. This expansion and contraction causes a decrease in the bonding strength between particles of the positive electrode active material, which in turn causes the active material to fall off, resulting in a decrease in cycle life.
発明が解決しようとする問題点
上記のように密閉形鉛蓄電池には、密閉化に伴ない、液
量の制限、すなわち活物質利用率の低下という問題点が
あり、これに対して、正極活物質中へのグラフフィトの
混入という改善がなされてきた。しかしこれにもいくつ
かの問題点があり、グラファイトの収縮によって活物質
粒子の結合が低下し、さらに活物質が脱落し、サイクル
寿命が短いという欠点があった。Problems to be Solved by the Invention As mentioned above, sealed lead-acid batteries have the problem of limited liquid volume due to sealing, that is, a decrease in the active material utilization rate. Improvements have been made by incorporating graphite into the material. However, this method also has some problems, such as shrinkage of graphite, which reduces the bonding of active material particles, and also causes the active material to fall off, resulting in a short cycle life.
本発明は、この問題を解決するもので、活物質利用率向
上をはかるためにグラフ1イ)1用いるが、しかし、そ
れによって、活物質が脱落することなく、サイクル寿命
を向上させることを目的とするものである。The present invention solves this problem by using graph 1a)1 in order to improve the active material utilization rate. However, the present invention aims to improve the cycle life without causing the active material to fall off. That is.
問題点を解決するための手段 上記問題点を解決するために本発明では、正。Means to solve problems In order to solve the above-mentioned problems, the present invention solves the above problems.
負両極板のうち少なくとも一方の極板の両方、片方の表
面に層状構造を有する黒鉛(グラファイト)を塗布した
ものである。Graphite having a layered structure is coated on both surfaces of at least one of the negative polar plates.
作 用
グラファイトには上記のように、電解液濃度が高くなる
充電時、あるいは過充電時に、グラフフィトが有する層
状構造内に硫酸を取り込みグラファイト−硫酸層状化合
物を形成し、逆に、硫酸が電池反応によって消費さn電
解液濃度が低くなる放電時に硫酸を放出しグラファイト
にもどるという性質を有しているが、本発明のように、
極板表面にグラファイトを塗布しておけば、硫酸がグラ
ファイト層間へ出入りする、いわゆるインターカレーシ
ョン反応は極板表面でおこるため、従来のように活物質
の内部でグラフ1イトの収縮がおこ力
らず、活物質粒子間の結合の低下、ひいては活物質の脱
落を防ぐことができ、電池の長寿命化を実現できる。ま
た、このインターカレーション反応により、電池の高容
量化も可能となる。Function As mentioned above, graphite incorporates sulfuric acid into its layered structure to form a graphite-sulfuric acid layered compound during charging when the electrolyte concentration is high or during overcharging, and conversely, sulfuric acid It has the property of releasing sulfuric acid and returning to graphite during discharge when the concentration of the electrolyte consumed by the reaction decreases, but as in the present invention,
If graphite is coated on the surface of the electrode plate, the so-called intercalation reaction, in which sulfuric acid moves in and out between the graphite layers, will occur on the surface of the electrode plate, so that shrinkage of the graphite will not occur inside the active material as in the conventional case. Therefore, it is possible to prevent a decrease in the bond between active material particles and to prevent the active material from falling off, thereby making it possible to extend the life of the battery. Furthermore, this intercalation reaction also enables higher capacity batteries.
実施例
以下、本発明の一実施例を添付図面にもとづいて説明す
る。Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.
第1図は本発明における密閉形蓄電池のセルの縦断面の
略図を示す。第1図において1は層状構造を有する黒鉛
、すなわちグラファイトである。FIG. 1 shows a schematic longitudinal section of a cell of a sealed storage battery according to the present invention. In FIG. 1, 1 is graphite having a layered structure, that is, graphite.
図中は、正、負極のそれぞれ両面に塗布した図を示しで
ある。グラフフイ)k塗布するにあたり、本実施例では
ポリビニルアルコールを純水中に膨潤させ、さらにブラ
フアイトラ分散させた液中に、極を浸漬し、乾燥したも
のを用いた。本実施例の場合、0.02 (J /cr
lのグラフフイ)f塗布することができた。2は正極で
あり、鉛格子合金にPbo2を主成分とする活物質が充
填されている。The figure shows the coating on both sides of the positive and negative electrodes. Graphite) In this example, polyvinyl alcohol was swollen in pure water, and then bluffing liquid was dispersed therein, and the electrode was immersed in the liquid and then dried. In the case of this example, 0.02 (J/cr
I was able to apply f. 2 is a positive electrode, in which a lead lattice alloy is filled with an active material whose main component is Pbo2.
3はセパレータであり、ガラス繊維を主成分とするガラ
スマットであわ、電解液を保持、非流動化させるととも
に、正極から発生する酸素ガスの拡散を阻止しないよう
例多孔質となっている。4は負極であり、鉛格子合金に
鉛を主成分とする活物質が充填されている。6は電槽で
あシ、耐硫酸性にすぐれているABS樹脂よシ構成され
ている。3 is a separator, which is made of a glass mat mainly composed of glass fibers, holds the electrolyte and makes it non-fluid, and is porous so as not to prevent the diffusion of oxygen gas generated from the positive electrode. 4 is a negative electrode, in which a lead lattice alloy is filled with an active material whose main component is lead. 6 is a battery case and is made of ABS resin, which has excellent sulfuric acid resistance.
6は安全弁であシ、電池の内圧が弁の動作圧以上に上昇
した時に働き、内部のガスを放出し、圧力の上昇を防ぐ
。また、外部からの空気の混入を防いでいる。6 is a safety valve that operates when the internal pressure of the battery rises above the operating pressure of the valve, releasing the internal gas and preventing the pressure from rising. It also prevents air from entering from outside.
以上、本実施例に示された密閉形鉛蓄電池は、従来の同
形の電池に比較して、放電容量が10%、サイクル特性
が20%増加し、高容量化と長寿命化を実現できた。As described above, the sealed lead-acid battery shown in this example has a 10% increase in discharge capacity and a 20% increase in cycle characteristics compared to conventional batteries of the same type, achieving higher capacity and longer life. .
発明の効果
以上のように、本発明によって密閉形鉛蓄電池の高容量
化、サイクル寿命の長寿命化が実現できるだけでなく、
グラファイトが導電性粉体で、セパレータと極板の界面
に存在するために、従来に比べて内部抵抗を小さくする
ことができ、放電特性も向上するという効果が得られた
。Effects of the Invention As described above, the present invention not only makes it possible to increase the capacity and extend the cycle life of sealed lead-acid batteries, but also
Because graphite is a conductive powder and is present at the interface between the separator and the electrode plate, the internal resistance can be lowered compared to conventional products, and the discharge characteristics have also been improved.
図は本発明の実施例における密閉形鉛蓄電池の概要を示
す断面略図である。
1・・・・・・層状構造を有する黒鉛、2・・・・・・
正極板、3・・・・・・セパレータ、4・・・・・・負
極板、6・・・・・・電槽、6・・・・・・安全弁。The figure is a schematic cross-sectional view showing an outline of a sealed lead-acid battery according to an embodiment of the present invention. 1...Graphite having a layered structure, 2...
Positive electrode plate, 3... Separator, 4... Negative electrode plate, 6... Battery container, 6... Safety valve.
Claims (1)
構造を有する黒鉛を塗布したことを特徴とする密閉形鉛
蓄電池。A sealed lead-acid battery characterized in that graphite having a layered structure is coated on one surface of at least one of the positive and negative polar plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61284710A JPS63138649A (en) | 1986-11-28 | 1986-11-28 | Enclosed lead storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61284710A JPS63138649A (en) | 1986-11-28 | 1986-11-28 | Enclosed lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63138649A true JPS63138649A (en) | 1988-06-10 |
Family
ID=17681977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61284710A Pending JPS63138649A (en) | 1986-11-28 | 1986-11-28 | Enclosed lead storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63138649A (en) |
-
1986
- 1986-11-28 JP JP61284710A patent/JPS63138649A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080113268A1 (en) | Recombinant Hybrid Energy Storage Device | |
JPS60198055A (en) | Manufacture of plate for lead storage battery | |
WO2011077640A1 (en) | Valve-regulated lead acid battery | |
JPS63138649A (en) | Enclosed lead storage battery | |
JPH0756811B2 (en) | Sealed lead acid battery | |
GB2084790A (en) | Lead-acid batteries | |
JPS6030063A (en) | Sealed type lead-acid battery | |
JPS63126161A (en) | Enclosed type lead storage battery | |
JP2949839B2 (en) | Negative gas absorption sealed lead-acid battery | |
JPS63138644A (en) | Enclosed lead storage battery | |
KR0174849B1 (en) | Improvement of high rate charge / discharge characteristics of sealed battery | |
JPS61198573A (en) | Enclosed lead storage battery | |
JPH01124958A (en) | Sealed lead-acid battery | |
JPH01149376A (en) | Sealed lead-acid battery | |
JPS6293857A (en) | Manufacture of enclosed lead storage battery | |
JPH053709B2 (en) | ||
JPH01122564A (en) | Sealed type lead-acid battery | |
JP2001126752A (en) | Paste-type sealed lead-acid battery and manufacturing method therefor | |
KR200208680Y1 (en) | valve regulated lead acid battery using gell electrocyte | |
JPH0530291Y2 (en) | ||
JPS63143757A (en) | Closed type lead storage battery | |
JPH04149968A (en) | Sealed-type lead secondary battery | |
JPS59157966A (en) | Sealed type lead storage battery | |
JPS59157968A (en) | Manufacture of sealed type lead storage battery | |
JPH0479111B2 (en) |