KR0174849B1 - Improvement of high rate charge / discharge characteristics of sealed battery - Google Patents

Improvement of high rate charge / discharge characteristics of sealed battery Download PDF

Info

Publication number
KR0174849B1
KR0174849B1 KR1019950066510A KR19950066510A KR0174849B1 KR 0174849 B1 KR0174849 B1 KR 0174849B1 KR 1019950066510 A KR1019950066510 A KR 1019950066510A KR 19950066510 A KR19950066510 A KR 19950066510A KR 0174849 B1 KR0174849 B1 KR 0174849B1
Authority
KR
South Korea
Prior art keywords
separator
sealed battery
oxygen gas
high rate
rate charge
Prior art date
Application number
KR1019950066510A
Other languages
Korean (ko)
Other versions
KR970054795A (en
Inventor
김정한
Original Assignee
김주용
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업주식회사 filed Critical 김주용
Priority to KR1019950066510A priority Critical patent/KR0174849B1/en
Publication of KR970054795A publication Critical patent/KR970054795A/en
Application granted granted Critical
Publication of KR0174849B1 publication Critical patent/KR0174849B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/126Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 휴대용 전원으로 많이 사용되고 있는 밀폐형 축전지의 고율 충방전 특성을 향상시키는 방법에 관한 것으로, 밀폐형 축전지에서 이온 전도도와 가스 재결합 정도를 조금씩 양보하는 선에서 격리판의 전해액 함침 정도를 결정했던 것을, 밀폐형 축전지 내의 양극판 후면과 음극판 후면 사이에 산소 가스 이동용의 새로운 격리판을 두어, 기존의 격리판이 담당하던 기능을 새로운 격리판과 분담하게 함으로써, 이온 전도도를 높여주면서(용액 저항을 감소시키면서) 산소 가스 이동도 원활하게 될 수 있도록 하여 밀페형 축전지에서의 고율 충방전 특성을 향상시켰다.The present invention relates to a method of improving the high rate charge / discharge characteristics of a sealed battery, which is widely used as a portable power source, wherein the degree of electrolyte impregnation of the separator is determined in a manner of yielding ionic conductivity and gas recombination degree little by little in the sealed battery. A new separator for the transfer of oxygen gas is placed between the positive and negative electrode plates in a sealed battery, allowing the function of the existing separator to be shared with the new separator, thereby increasing ionic conductivity (reducing solution resistance). The high rate charge / discharge characteristics of the sealed battery were improved by making the movement smooth.

Description

밀폐형 축전지의 고율 충반전 특성 향상법Improvement of High Rate Charge and Discharge Characteristics of Sealed Storage Batteries

제1도는 종래의 밀폐형 축전지 구조도.1 is a structure diagram of a conventional sealed battery.

제2도는 본 발명의 밀폐형 축전지 구조도.2 is a structural diagram of a sealed battery of the present invention.

제3도는 제2도에서 산소 가스 이동용 격리판의 상세 사시도이다.3 is a detailed perspective view of the separator for oxygen gas movement in FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 양극판 2 : 음극판1: positive electrode plate 2: negative electrode plate

3 : 기존의 격리판 4 : 새로운 격리판(산소 가스 이동용 격리판)3: existing separator 4: new separator (oxygen gas transfer separator)

5 : 기공5: pore

본 발명은 휴대용 전원으로 많이 사용되고 있는 밀폐형 축전지의 고율 충방전 특성을 향상시키는 방법에 관한 것으로, 밀폐형 축전지 내부의 음극판 후면에 새로운 격리판을 추가하여, 밀폐형 축전지내의 용액 저항 감소(이온 전도도 증가) 및 충전시의 산소 가스 재결합 반응 촉진을 이룸으로써 전체적인 밀폐형 축전지 고율 충방전 특성을 향상시키는 방법에 관한 것이다.The present invention relates to a method for improving the high rate charge / discharge characteristics of a sealed battery, which is widely used as a portable power source, and adds a new separator on the back of the negative electrode plate inside the sealed battery, thereby reducing solution resistance (increasing ion conductivity) in the sealed battery and The present invention relates to a method for improving the overall sealed type battery high rate charge / discharge characteristics by promoting oxygen gas recombination reaction during charging.

일반적으로 축전지는 충방전 과정을 거치면서 축전지 내부에서 화학반응을 일으키며, 상기 축전지 내부에서 일어나는 화학 반응은 활물질이 전해액내의 이온으로 인해 산화, 환원하는 화학 반응이다.In general, a battery generates a chemical reaction inside the battery while charging and discharging, and the chemical reaction occurring inside the battery is a chemical reaction in which the active material is oxidized and reduced due to ions in the electrolyte.

축전지는 충전 말기 또는 과충전 상태에서 산소 가스가 발생되는데, 밀폐형 축전지는 상기에서 발생하는 산소 가스를 그대로 활용하여, 전해액의 고갈 없이 밀폐형 축전지의 수명이 끝날때 까지 사용할 수 있는 장점을 가지고 있다.Oxygen gas is generated at the end of the charge or overcharge state, the sealed battery has the advantage that can be used until the end of the life of the sealed battery without exhausting the electrolyte by utilizing the oxygen gas generated as it is.

즉, 충전 말기 또는 과충전 상태에서 발생하는 산소 가스를 밀폐형 축전지 자체에서 재결합시켜 전해액으로 복구하여 전해액을 보충함으로써, 전핼액의 고갈 없이 밀폐형 축전지의 수명이 다할 때까지 사용할 수 있다.That is, by recombining the oxygen gas generated at the end of charge or in an overcharged state in the sealed battery itself to recover the electrolyte, the electrolyte can be replenished, and the battery can be used until the life of the sealed battery without exhaustion of the electrolyte.

상기에서 충전 말기 또는 과충전 상태에서 발생하는 산소 가스는 양극쪽에서 발생하며, 상기 산소 가스는 격리판의 기공을 통해 음극쪽으로 이동한 후, 음극판 표면에서 여러 단계의 반응을 통해 전해액으로 복구된다.Oxygen gas generated at the end of the charge or in the state of overcharge is generated on the anode side, the oxygen gas is moved to the cathode side through the pores of the separator, and then recovered to the electrolyte through the reaction of the various stages on the surface of the cathode plate.

상기 현상을 가스 재결합 반응이라고 하며, 양극에서 가스 발생으로 인해 일어난 전해액 손실을 다시 음극에서 보상해 주어, 밀폐형 축전지를 내부 전해액의 고갈 없이 밀폐형 축전지의 수명이 다할 때까지 사용할 수 있도록 해주는 매우 중요한 반응이다.This phenomenon is called a gas recombination reaction, and it is a very important reaction to compensate the loss of electrolyte caused by gas generation at the anode, so that the sealed battery can be used until the life of the sealed battery is exhausted without exhausting the internal electrolyte. .

밀폐형 축전지를 충방전 시킬때 내부에서 일어나는 화학 반응이 활발할수록 향상된 고율 충반전 특성을 가지게 되며, 산소 가스들의 재결합이 원활하게 이루어지고 전해액내의 이온 전도도가 높을수록(용액 저항이 감소할수록) 활발한 화학 반응이 일어난다.When charging and discharging a sealed battery, the more active the chemical reaction is, the higher the rate of charge and discharge characteristics are, and the better the recombination of oxygen gases and the higher the ion conductivity in the electrolyte (the lower the resistance of the solution), the more active the chemical reaction. This happens.

현재까지 주로 사용되고 있는 밀폐형 축전지는 제1도에 도시된 바와 같이 양극판(1)과 음극판(2)을 번갈아 배치하고 그 사이사이에 전해액을 함침한 다공성 격리판(3)을 두는 구조로 되어 있으며, 상기에서 격리판(3)은 과충전시에 발생하는 산소 가스들의 재결합을 원활히 하기 위하여, 전해액을 완전히 함침시키지 않고 산소 가스 이동통로로써 약 20% 정도의 기공을 남겨둔다.The sealed storage battery mainly used up to now has a structure in which the positive electrode plate 1 and the negative electrode plate 2 are alternately arranged as shown in FIG. 1 and a porous separator 3 impregnated with an electrolyte solution is disposed therebetween. In order to facilitate the recombination of the oxygen gas generated during overcharging, the separator 3 leaves about 20% of pores as the oxygen gas flow passage without completely impregnating the electrolyte.

그러나 상기와 같이 격리판(3)에 전해액을 완전히 충진시키지 않으면, 상대적으로 전해액 내 이온의 이동 경로가 제한되어 이온 전도도가 떨어지기 때문에(용액 저항이 증가하기 때문에), 대개의 경우 이온 전도도와 가스 재결합 정도를 조금씩 양보하는 선에서 전해액 함침 정도를 결정한다.However, if the electrolyte is not completely filled in the separator 3 as described above, the ionic conductivity is relatively limited due to relatively limited movement path of ions in the electrolyte (since the solution resistance is increased), so that in most cases, the ion conductivity and gas Determine the degree of electrolyte impregnation by yielding the degree of recombination little by little.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 양극판 후면과 음극판 후면 사이에 산소 가스 이동만을 전담하는 새로운 산소 가스 이동용 격리판을 추가하여, 기존의 격리판이 담당하던 기능을 새로운 격리판과 분담하게 함으로써, 이온 전도도를 높이고(용액 저항을 감소하고) 산소 가스 이동을 원활하게 하여 가스 재결합을 촉진함을 특징으로 한다.The present invention is to solve the above problems, by adding a new oxygen gas transfer separator dedicated to the oxygen gas transfer between the anode plate back and the cathode plate back, so as to share the function of the existing separator with the new separator. Thereby increasing ionic conductivity (reducing solution resistance) and facilitating oxygen gas migration to promote gas recombination.

즉, 양극판과 음극판 후면에 추가한 새로운 산소 가스 이동용 격리판이 산소 가스의 이동만을 전담하여 산소 가스의 이동을 원활하게 하고, 기존의 격리판에는 전해액을 완전히 함침시켜 이온 전도도를 최대화시켰다(용액 저항을 최소로 하였다). 상기에서 새로 추가한 산소 가스 이동용 격리판은 전해액을 전혀 함침시키지 않는다.In other words, the new oxygen gas transfer separator added to the back of the anode and cathode plates is dedicated to the movement of oxygen gas to facilitate the movement of oxygen gas, and the existing separator is completely impregnated with the electrolyte to maximize ion conductivity (solution resistance Minimum). The newly added separator for oxygen gas transfer does not impregnate the electrolyte solution at all.

이하 도면을 참조하여 상세히 설명하면 아래와 같다.When described in detail with reference to the drawings as follows.

제2도는 본 발명의 밀폐형 축전지의 구조도로, 양극판(1)과 음극판(2)사이에 기존의 격리판(3)이 있고, 양극판(1) 후면과 음극판(2) 후면 사이에 산소 가스 이동용의 새로운 격리판(4)을 두는 구조로 되어 있으며, 상기에서 새로운 산소 가스 이동용 격리판(4)은 활물질의 산화, 환원 반응이 일어나는 곳이 아닌 양 극판(1,2)의 후면을 통하여 산소 가스 이동이 이루어지도록 하기 위하여 양 극판(1,2)의 후면 사이에 둔다.2 is a structural diagram of a sealed storage battery according to the present invention, in which an existing separator 3 is disposed between the positive electrode plate 1 and the negative electrode plate 2, and is used for oxygen gas movement between the positive electrode plate 1 and the negative electrode plate 2 back. The new separator 4 has a structure in which the new oxygen gas transfer separator 4 moves oxygen gas through the rear surface of the anode plates 1 and 2 instead of where the oxidation and reduction reaction of the active material occurs. In order to achieve this, it is placed between the rear surfaces of the positive plates (1, 2).

제3도에 도시된 바와 같이 새로운 산소 가스 이동용 격리판(4)은 산소 가스 이동 통로를 가능한 짧게 하기 위하여 기공(5)의 방향이 양 극판(1,2)에 수직인 방향으로 일방향성인 것으로 하고, 격리판(4)의 두께는 부피 축소를 위하여 전기적 단락을 막을 수 있는 한도내에서 가급적 얇은 것을 사용하며, 격리판(4)의 기공(5) 크기는 가스 재결합 반응에 의해 생성되는 물 또는 이온이 산소 가스 이동용의 새로운 격리판(4)에 함침되지 않도록 기존 격리판(3)의 기공(5)보다 크기가 큰 것을 사용한다.As shown in FIG. 3, the new oxygen gas moving separator 4 is assumed to be unidirectional in the direction perpendicular to the anode plates 1 and 2 in order to make the oxygen gas moving path as short as possible. The thickness of the separator 4 should be as thin as possible to prevent electrical shorts for volume reduction, and the pore 5 size of the separator 4 is water or ions produced by the gas recombination reaction. A larger size than the pores 5 of the existing separator 3 is used so as not to be impregnated with the new separator 4 for oxygen gas movement.

상기에서 기공(5)의 크기는 기공(5)의 크기가 작을수록 용면 계면에서의 압력이 커져서 내부 용액을 더 잘 흡수하기 때문에, 새로운 격리판(4)을 기존의 격리판(3)보다 기공(5)의 크기가 큰 것으로 사용하여, 산소 가스 재결합 반응에 의해 생성되는 물질(물 또는 이온)이 새로운 격리판(4)에 함침되지 않고 기존의 격리판(3)에 함침되도록 한다.Since the size of the pores 5 is smaller as the size of the pores 5 increases the pressure at the surface interface to absorb the internal solution better, the new separator 4 is more porous than the existing separator 3. The larger size of (5) is used so that the material (water or ions) produced by the oxygen gas recombination reaction is not impregnated into the new separator 4 but into the existing separator 3.

상기 사실은 아래의 라플라스 식에 의해 유도된다.This fact is derived from the Laplace equation below.

라플라스 식:ΔP=2γcosθ/rLaplace equation: ΔP = 2γcosθ / r

상기에서 ΔP, γ, θ, r은 각각ΔP, γ, θ, r are respectively

ΔP:용액 계면(interface)에서의 압력차ΔP: pressure difference at solution interface

γ:표면 에너지(surface energy)γ: surface energy

θ:Wetting angle r:Pore radius를 나타낸다.θ: Wetting angle r: Pore radius.

상기와 같이 이루어지는 밀폐형 축전지에서 기존의 격리판(3)은 전해액을 완전히 함침하여 이온의 전도도를 높여주고(용액 저항을 감소하고), 새로운 격리판(4)은 전해액을 전혀 함침시키지 않고 산소 가스 이동의 통로로만 사용하여 산소 가스 이동이 원활히 이루어지도록 한다.In the sealed battery as described above, the existing separator 3 impregnates the electrolyte completely to increase the conductivity of the ions (reduces the resistance of the solution), and the new separator 4 moves oxygen gas without impregnating the electrolyte at all. Use only as a passage of the oxygen gas to ensure a smooth movement.

본 발명은 상기와 같이 양극판 후면과 음극판 후면 사이에 산소 가스 이동용의 새로운 격리판을 두어, 기존의 격리판이 담당하던 기능을 새로운 격리판과 분담하게 함으로써, 이온 전도도를 높여주면서(용액 저항을 감소시키면서) 산소 가스 이동도 원활하게 하여 가스 재결합이 촉진될 수 있도록 하여 밀폐형 축전지에서의 고율 충방전 특성을 향상시켰다.The present invention provides a new separator for oxygen gas movement between the anode plate rear and the cathode plate rear as described above, thereby sharing the function of the existing separator with the new separator, thereby increasing the ion conductivity (while reducing the solution resistance). The high rate charge / discharge characteristics of the sealed battery are improved by allowing oxygen gas to move smoothly to promote gas recombination.

Claims (2)

밀폐형 축전지에 있어서, 양극판(1) 후면과 음극판(2) 후면 사이에 산소 가스 이동만을 전담하는 새로운 격리판(4)을 추가하여, 산소 가스 이동을 원활하게 하고 이온 전도도를 높여줌을(용액 저항을 감소시킴을) 특징으로 하는 밀폐형 축전지의 고율 충방전 특성 향상법.In a sealed battery, a new separator (4) dedicated to oxygen gas movement only is added between the rear of the positive electrode plate (1) and the negative electrode plate (2) to facilitate oxygen gas movement and increase ion conductivity (solution resistance Method for improving high rate charge and discharge characteristics of a sealed battery, characterized in that for reducing. 제1항에 있어서, 새로운 격리판(4)은 기공(5)의 방향이 양 극판(1,2)에 수직인 방향으로 일방향성이고, 기공(5)의 크기가 크며, 두께가 얇은 것을 사용함을 특징으로 하는 밀폐형 축전지의 고율 충방전 특성 향상법.The new separator (4) according to claim 1, wherein the direction of the pores (5) is unidirectional in a direction perpendicular to the anode plates (1, 2), and the pores (5) are large in size and thin in thickness. A high rate charge and discharge characteristic improvement method of a sealed storage battery, characterized in that.
KR1019950066510A 1995-12-29 1995-12-29 Improvement of high rate charge / discharge characteristics of sealed battery KR0174849B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950066510A KR0174849B1 (en) 1995-12-29 1995-12-29 Improvement of high rate charge / discharge characteristics of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950066510A KR0174849B1 (en) 1995-12-29 1995-12-29 Improvement of high rate charge / discharge characteristics of sealed battery

Publications (2)

Publication Number Publication Date
KR970054795A KR970054795A (en) 1997-07-31
KR0174849B1 true KR0174849B1 (en) 1999-04-01

Family

ID=19447387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950066510A KR0174849B1 (en) 1995-12-29 1995-12-29 Improvement of high rate charge / discharge characteristics of sealed battery

Country Status (1)

Country Link
KR (1) KR0174849B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170134037A (en) * 2016-05-27 2017-12-06 삼성전자주식회사 Electrolyte for lithium metal battery, lithium metal battery including the electrolyte, and method for preparing the lithium metal battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170134037A (en) * 2016-05-27 2017-12-06 삼성전자주식회사 Electrolyte for lithium metal battery, lithium metal battery including the electrolyte, and method for preparing the lithium metal battery

Also Published As

Publication number Publication date
KR970054795A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US3669744A (en) Hermetically sealed nickel-hydrogen storage cell
US3650837A (en) Secondary metal/air cell
EP0517217A1 (en) Redox battery
KR102598534B1 (en) Lithium air battery and manufacturing methoh thereof
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
US3972727A (en) Rechargeable battery which combats shape change of the zinc anode
US3759748A (en) Electrically recharged metal air cell
US3300343A (en) Fuel cell including electrodes having two dissimilar surfaces
JP2002008730A (en) Lithium secondary battery
JP2003317791A (en) Liquid fuel cell
KR0174849B1 (en) Improvement of high rate charge / discharge characteristics of sealed battery
KR20240000462U (en) lithium ion battery
JP2001035471A (en) Non-aqueous electrolyte secondary battery
US3560261A (en) Method of treating electrode of electrochemical generator during charging
JPH04206468A (en) Sealed alkali-zinc storage battery
US3589945A (en) Stacked metal gas-cells
CN215266393U (en) Flow battery device
KR20180089809A (en) Metal-air battery based solid electrolyte possible quick charging
CN112864437B (en) Iron-lead single flow battery and preparation method thereof
JPH0677449B2 (en) Lead acid battery
KR200154318Y1 (en) Lithium cell
JPH0530291Y2 (en)
JPS5820109B2 (en) Kuuki Dench
KR200302559Y1 (en) Lithium ion polymer battery
CN113410500A (en) Flow battery device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021018

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee