JPH0464576B2 - - Google Patents

Info

Publication number
JPH0464576B2
JPH0464576B2 JP23687886A JP23687886A JPH0464576B2 JP H0464576 B2 JPH0464576 B2 JP H0464576B2 JP 23687886 A JP23687886 A JP 23687886A JP 23687886 A JP23687886 A JP 23687886A JP H0464576 B2 JPH0464576 B2 JP H0464576B2
Authority
JP
Japan
Prior art keywords
composition
component
refractive index
specific gravity
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23687886A
Other languages
Japanese (ja)
Other versions
JPS6390741A (en
Inventor
Shusaku Matsumoto
Yoshio Hatakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atago Co Ltd
Original Assignee
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atago Co Ltd filed Critical Atago Co Ltd
Priority to JP23687886A priority Critical patent/JPS6390741A/en
Priority to DE19873733200 priority patent/DE3733200C2/en
Priority to FR8713582A priority patent/FR2604786B1/en
Publication of JPS6390741A publication Critical patent/JPS6390741A/en
Publication of JPH0464576B2 publication Critical patent/JPH0464576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • G05D11/137Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture by sensing the density of the mixture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、三成分系溶液の反応時などに適用で
きる溶液組成の測定方法に関する。 従来技術 三成分系溶液の組成は、混合系又は反応系に該
三成分系溶液を供給する場合などでは、迅速な組
成管理が必要であるが、例えばガスクロマトグラ
フイー分析などによつて組成分析をすると、その
算出に数時間を要し、その間に混合や反応が進行
してしまい、組成や濃度の管理に役立てることは
できなかつた。 従来からの混合系や反応系においては、バツチ
式の場合には、各成分の仕込量から計算値にて組
成を求めるのが普通であり、連続式の場合には、
各成分原料の供給量を計算して組成を求める方法
を実施しているが、流量計の誤差又は人間の誤操
作を避けることはできず、組成や濃度の管理は困
難で、設定値よりはずれた原料調合を行つてしま
つても、規定の溶液組成からのずれに気が付かず
に、そのまま混合や反応を続けてしまうことがよ
くあつた。 発明が解決しようとする問題点 そこで、本発明は、このような三成分系の溶液
の組成の迅速かつ正確な測定方法を提供すること
を目的とする。 問題点を解決するための手段 本発明は、三成分系混合溶液の屈折率に一般に
加成性が成立し、また、よい近似で比重も加成性
が成立する場合には(1)(2)式が得られることに着眼
し、達成されたものである。 nD=a1・X1+b1・X2+c1・X3 …(1)式 d=a2・X1+b2・X2+c2・X3 …(2)式 1=X1+X2+X3 …(3)式 ここで、 nDは屈折率、 dは比重、 a1、b1、c1は各組成の屈折率のパラメータ a2、b2、c2は各組成の比重のパラメータ X1は第一成分の組成分率 X2は第二成分の組成分率 X3は第三成分の組成分率 を表し、(3)式は物質収支より成立するものであ
る。 上記(1)(2)(3)式は、線形の代数方程式であるから
容易に解くことができ、次の(4)(5)(6)式にて表すこ
とができる。 従つて、(4)(5)(6)式中のa1b1c1及びa2b2c2の値
を、予め実験結果から最小自乗法などで求めてお
けば、nD及びdの値を、屈折率計や比重計にて
計測し、それを(4)(5)(6)式中に代入すると、コンピ
ユータ処理によつて、極めて容易に瞬時に三成分
系組成(X1、X2、X3)が求められることとな
る。 このように、本発明では瞬時にして測定可能
な、溶液の屈折率及び比重を測定し、コンピユー
タ等で、前記(4)(5)(6)式から各成分の組成分率を算
出することにより、三成分系溶液の迅速な組成管
理を可能としたものである。 その結果、組成管理の困難な三成分系の連続的
溶液混合や連続的反応系への供給に際して、供給
装置系に屈折計、比重計及びコンピユータを、そ
して温度補正を要する場合には更に温度計を、組
み込み、測定された溶液の屈折率及び比重をコン
ピユータによつて、各成分の組成分率に換算し、
原料供給装置に電気信号を送り、測定時に必要と
される割合の原料が自動的に混合装置や反応装置
に供給されるように各原料の供給を自動制御する
ことが可能となる。 パラメータa1b1c1は一定の温度下で、三成分の
化合物の種類及びその組み合わせが決まれはば、
一義的に決まる固有値である。当然ながら、三成
分の化合物の種類、それらの組み合わせ及び測定
温度(屈折率及び比重の測定温度)が変化すれ
ば、パラメータの固有値も変化する。 このパラメータ値は、ある温度下で、ある三成
分組成の溶液について、その屈折率及び比重を測
定し、その測定値を最小自乗法などで算出すれば
得られる常数である。 溶液の成分の種類並びに屈折率及び比重の測定
温度によつて(1)(2)式のパラメータa1、b1、c1及び
a2、b2、c2が異なるのは勿論であるが、各パラメ
ータは実験により予め容易に特定でき、本発明の
方法が種々の三成分系溶液に適用できることがわ
かつている。例えば、アニオン又はノニオン系凝
集剤の代表的な重合液(アクリル酸ソーダ、アク
リルアミド及び水からなる三成分系)及びカチオ
ン系凝集剤の代表的な重合液(メタクロイルオキ
シエチルトリメチルアンモニウムクロライド、ア
クリルアミド及び水からなる三成分系)いずれに
おいても、本発明による測定法で、誤差の標準偏
差が濃度%の表示で1.4%以下の誤差で精度よく
各組成分率が測定できることが確認されている。 ここで、誤差の標準偏差(濃度%)は次式で定
義される。 (ただし、Nはサンプル数を表す。) 次いで、三成分系溶液組成の測定に必要な装置
の具体例を第4図に示す。 この装置は、屈折計、比重又は密度計、インタ
ーフエース、コンピユータより構成され、連続的
に屈折率、比重又は密度を測定し、予めプログラ
ムされた演算式(4)(5)(6)により三成分系溶液組成
X1、X2、X3を求めるものである。 屈折率検出器1と比重又は密度検出器2は、そ
れぞれ直列にサンプリングパイプにて接続されて
おり、屈折率検出器1を通つた三成分系混合溶液
は、比重又は密度検出器2の中を通る。この時の
屈折率検出器1の出力は、直流4〜20mAで、屈
折率リニア信号として出力され、インターフエー
ス4に接続される。 また、比重又は密度検出器2の信号も変換器3
によつて、直流4〜20mAに変換され、インター
フエース4に接続される。インターフエース44
はGP−IB(general purpose interface bus)の
信号に変換するように構成されていて、屈折率検
出器1と変換器3からの電流信号をコンピユータ
との接続がスムーズに行なえるようにGP−IBに
変換する。コンピユータシステム5は、記憶装置
及びプリンター、デイスプレイ等を含めたシステ
ムを使用する。コンピユータにおいては、三成分
系混合溶液の屈折率と比重から組成を求める式(4)
(5)(6)を入力しておき、連続的にサンプリングパイ
プ中を通過しつつある三成分系混合溶液の屈折率
信号と比重又は密度信号を計算処理し、三成分系
混合溶液の組成をリアルタイムで求めることがで
きる。更にまた、a〜dのようにインターフエー
スから外部コントロール信号を出して外部のバル
ブ等をリアルタイムにコントロールすることがで
きる。 実施例 メタクリロイルオキシエチルトリメチルアンモ
ニウムクロライド(DMC)、アクリルアミド
(AAm)及び水の三成分系溶液の屈折率(nD)
及び比重(d)の20℃における測定値を第1表に示す
(屈折率はアツベの屈折計で測定し、比重はJIS標
準浮秤で測定した)。 第1表のデータを、前記の(1)式及び(2)式にX1
X2、X3、nD、dを代入して、最初自乗法にて
a1、b1、c1及びa2、b2、c2のパラメータを求め
た。その結果を第2表に示す。 第2表の結果より、推算式は、次の通り表すこ
とができる。 nD=1.5085・X1+1.4967・X2+1.3325・X3
…(7)式 d=1.1384・X1+1.0888・X2+1.0004・X3 …(8)式 ここで、屈折率(nD)を表す(7)式と比重(d)を
表す(8)式の精度を調べるために、(7)式及び(8)式の
右辺に実際の組成分率X1、X2、X3を代入し、nD
及びdを求めた値(推算値)と、nD及びdの実
測値を比較したものを第3表に示す。第1図は第
3表をヒストグラフ化した図である。これらの結
果より、(7)式及び(8)式共に精度よくnD及びdを
表現しているといえる。 次に、推算値X1、X2、X3の精度を調べるため
に、組成の実測値X1、X2、X3と、前記の(4)式、
(5)式及び(6)式に実測値nD及びdと各パラメータ
値を代入して求めた組成分率の計算値(推算値)
X1、X2、X3を比較してグラフ化したのが第2図
であり、その結果をヒストグラフ化したのが第3
図である。組成の実測値と推算値はよく一致して
いることがわかる。 前記のDMC、AAm及び水の三成分系の重合装
置の連続式混合プロセスにおいて、各成分の混合
後の供給液中に屈折率計、比重計(温度計)を設
置し、測定された屈折率及び比重がコンピユータ
への信号変換器を経てコンピユータに入力され、
前記(3)式、(7)式及び(8)式と、(4)〜(6)式により組成
の演算を行い各組成の表示を行うようにし、その
表示に従つて、原料供給をコントロールしたとこ
ろ、常に品質のよい一定した組成の重合体の合成
が可能となつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for measuring solution composition that can be applied to reactions of ternary solutions. Prior Art The composition of a ternary solution requires rapid composition control when supplying the ternary solution to a mixing system or a reaction system. However, it took several hours to calculate this, and during that time mixing and reactions proceeded, making it impossible to use it to control composition and concentration. In conventional mixing systems and reaction systems, in the case of a batch system, the composition is usually calculated from the amount of each component charged, and in the case of a continuous system,
Although we use a method to determine the composition by calculating the supply amount of each component raw material, it is impossible to avoid errors in flow meters or human errors, and it is difficult to control the composition and concentration. Even after preparing the raw materials, mixing and reaction often continued without noticing deviations from the specified solution composition. Problems to be Solved by the Invention Therefore, an object of the present invention is to provide a method for quickly and accurately measuring the composition of such a ternary solution. Means for Solving the Problems The present invention provides (1)(2) when the refractive index of a three-component mixed solution generally has additivity, and the specific gravity also has additivity with good approximation. This was achieved by focusing on the fact that the formula ) can be obtained. nD=a 1・X 1 +b 1・X 2 +c 1・X 3 …(1) Formula d=a 2・X 1 +b 2・X 2 +c 2・X 3 …(2) Formula 1=X 1 +X 2 +X 3 ...Equation (3) Here, nD is the refractive index, d is the specific gravity, a 1 , b 1 , c 1 are the refractive index parameters of each composition, a 2 , b 2 , c 2 are the specific gravity parameters of each composition X 1 is the composition fraction of the first component, X 2 is the composition fraction of the second component, and X 3 is the composition fraction of the third component, and equation (3) is established from the material balance. Equations (1), (2), and (3) above can be easily solved because they are linear algebraic equations, and can be expressed by the following equations (4), (5), and (6). Therefore, if the values of a 1 b 1 c 1 and a 2 b 2 c 2 in equations (4), (5), and (6) are calculated in advance from experimental results using the least squares method, nD and d can be easily calculated. By measuring the value with a refractometer or hydrometer and substituting it into equations (4), (5), and (6), the ternary composition (X 1 , X 2 , X 3 ) are required. In this way, the present invention measures the refractive index and specific gravity of the solution, which can be measured instantaneously, and calculates the composition fraction of each component from the above formulas (4), (5), and (6) using a computer or the like. This makes it possible to quickly control the composition of three-component solutions. As a result, when continuously mixing solutions of three-component systems whose composition is difficult to control or supplying them to continuous reaction systems, a refractometer, hydrometer, and computer are installed in the supply system, and if temperature correction is required, an additional thermometer is installed. is incorporated, and the measured refractive index and specific gravity of the solution are converted into the composition fraction of each component by a computer,
By sending an electrical signal to the raw material supply device, it is possible to automatically control the supply of each raw material so that the raw materials in the proportion required at the time of measurement are automatically supplied to the mixing device or reaction device. The parameters a 1 b 1 c 1 are determined by determining the types of three-component compounds and their combinations at a certain temperature.
This is a uniquely determined eigenvalue. Naturally, if the types of three-component compounds, their combination, and the measurement temperature (the measurement temperature of the refractive index and specific gravity) change, the characteristic values of the parameters also change. This parameter value is a constant obtained by measuring the refractive index and specific gravity of a solution with a certain three-component composition at a certain temperature and calculating the measured values by the method of least squares or the like. The parameters a 1 , b 1 , c 1 and
Of course, a 2 , b 2 , and c 2 are different, but each parameter can be easily determined in advance through experiments, and it has been found that the method of the present invention can be applied to various ternary solutions. For example, typical polymerization solutions of anionic or nonionic flocculants (three-component system consisting of sodium acrylate, acrylamide, and water) and typical polymerization solutions of cationic flocculants (methacroyloxyethyltrimethylammonium chloride, acrylamide, and It has been confirmed that the measurement method according to the present invention can accurately measure each component fraction with a standard deviation of error of 1.4% or less when expressed as concentration % for any three-component system consisting of water). Here, the standard deviation of the error (concentration %) is defined by the following formula. (However, N represents the number of samples.) Next, a specific example of an apparatus necessary for measuring the composition of a three-component solution is shown in FIG. This device consists of a refractometer, a specific gravity or density meter, an interface, and a computer, and continuously measures the refractive index, specific gravity, or density, and calculates the three values using preprogrammed calculation formulas (4), (5), and (6). Component solution composition
This is to find X 1 , X 2 , and X 3 . The refractive index detector 1 and the specific gravity or density detector 2 are each connected in series with a sampling pipe, and the ternary mixed solution that has passed through the refractive index detector 1 passes through the specific gravity or density detector 2. Pass. At this time, the output of the refractive index detector 1 is 4 to 20 mA DC and is output as a refractive index linear signal, which is connected to the interface 4. In addition, the signal from the specific gravity or density detector 2 is also transmitted to the converter 3.
The current is converted to 4 to 20 mA DC and connected to the interface 4. interface 44
is configured to convert into a GP-IB (general purpose interface bus) signal, and the current signal from the refractive index detector 1 and converter 3 is converted to a GP-IB (general purpose interface bus) signal so that the current signal from the refractive index detector 1 and converter 3 can be smoothly connected to the computer. Convert to The computer system 5 uses a system including a storage device, a printer, a display, and the like. In a computer, formula (4) is used to calculate the composition from the refractive index and specific gravity of a ternary mixed solution.
(5) and (6) are input, the refractive index signal and specific gravity or density signal of the ternary mixed solution that is continuously passing through the sampling pipe are calculated and processed, and the composition of the ternary mixed solution is calculated. can be obtained in real time. Furthermore, as shown in a to d, external control signals can be output from the interface to control external valves, etc. in real time. Example Refractive index (nD) of ternary solution of methacryloyloxyethyltrimethylammonium chloride (DMC), acrylamide (AAm) and water
Table 1 shows the measured values of and specific gravity (d) at 20°C (refractive index was measured with an Atsube refractometer, and specific gravity was measured with a JIS standard floating scale). The data in Table 1 is applied to the above equations (1) and (2) as X 1 ,
Substituting X 2 , X 3 , nD, and d, first use the square method
The parameters of a 1 , b 1 , c 1 and a 2 , b 2 , and c 2 were determined. The results are shown in Table 2. From the results in Table 2, the estimation formula can be expressed as follows. nD=1.5085・X 1 +1.4967・X 2 +1.3325・X 3
...Equation (7) d=1.1384・X 1 +1.0888・X 2 +1.0004・X 3 ...Equation (8) Here, Equation (7) representing the refractive index (nD) and ( To check the accuracy of equation 8), substitute the actual compositional fractions X 1 , X 2 , and X 3 to the right-hand sides of equations (7) and (8),
Table 3 shows a comparison of the calculated values (estimated values) of nD and d with the actual measured values of nD and d. FIG. 1 is a histographic diagram of Table 3. From these results, it can be said that both equations (7) and (8) accurately express nD and d. Next, in order to check the accuracy of the estimated values X 1 , X 2 , and X 3 , the actual composition values X 1 , X 2 , and
Calculated value (estimated value) of the composition fraction obtained by substituting the measured values nD and d and each parameter value into equations (5) and (6).
Figure 2 is a graph comparing X 1 , X 2 , and X 3 , and Figure 3 is a histogram of the results.
It is a diagram. It can be seen that the measured and estimated composition values are in good agreement. In the continuous mixing process of the above-mentioned three-component system polymerization device of DMC, AAm, and water, a refractometer and a hydrometer (thermometer) were installed in the feed liquid after mixing each component, and the refractive index was measured. and specific gravity are input to the computer via a signal converter to the computer,
The composition is calculated using the above formulas (3), (7), and (8), and formulas (4) to (6), and each composition is displayed, and the raw material supply is controlled according to the display. As a result, it became possible to synthesize polymers of consistently high quality and constant composition.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 本発明の方法では、所望時に溶液の屈折率及び
比重を測定し、コンピユータ処理するだけで瞬時
に精度よく溶液組成を知ることができ、原料の供
給コントロールを常に的確に実施できる。 従つて、例えば原料消費量の管理の困難な三成
分系重合モノマー溶液の連続重合法においても、
重合装置の重合モノマー溶液供給部に屈折計、比
重計及びコンピユータ、更に温度補正が必要な場
合には温度計、を装着し、三成分系溶液の屈折率
及び比重を連続的に測定し、コンピユータによつ
て、各成分の組成分率を迅速に推算し、原料供給
装置に電気信号を送り、必要とされる適切な割合
の原料が重合装置等に供給されるように自動制御
することが可能となる。
[Table] Effects of the Invention In the method of the present invention, the refractive index and specific gravity of the solution can be measured at desired times, and the solution composition can be instantly and precisely determined simply by processing with a computer, and the supply of raw materials can always be controlled accurately. can. Therefore, for example, even in continuous polymerization of ternary monomer solutions where it is difficult to control raw material consumption,
A refractometer, a hydrometer, a computer, and a thermometer if temperature correction is required are attached to the polymerization monomer solution supply section of the polymerization apparatus, and the refractive index and specific gravity of the three-component solution are continuously measured. It is possible to quickly estimate the composition ratio of each component, send an electric signal to the raw material supply device, and automatically control so that the appropriate proportion of raw materials required is supplied to the polymerization device, etc. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における比重及び屈折
率の実測値と推算値の整合性を示すヒストグラ
フ、第2図は本発明の実施例における重合液組成
の実測値と推算値の整合性を示すグラフ、第3図
は本発明の実施例における重合液組成の実測値と
推算値の整合性を示すヒストグラフ、第4図は本
発明で使用する組成測定装置の一例を示すブロツ
ク図である。 1……屈折率検出器、2……比重又は密度検出
器、3……変換器、4……インターフエース、5
……コンピユータシステム、a〜d……外部コン
トロール信号。
Figure 1 is a histograph showing the consistency between the actual measured values and estimated values of specific gravity and refractive index in the examples of the present invention, and Figure 2 shows the consistency between the actual values and estimated values of the polymerization liquid composition in the examples of the present invention. FIG. 3 is a histogram showing the consistency between the measured value and the estimated value of the polymerization solution composition in the example of the present invention, and FIG. 4 is a block diagram showing an example of the composition measuring device used in the present invention. 1... Refractive index detector, 2... Specific gravity or density detector, 3... Converter, 4... Interface, 5
. . . Computer system, a to d . . . External control signal.

Claims (1)

【特許請求の範囲】 1 三成分からなる溶液の屈折率nD及び比重(d)
を連続測定し、下記の(4)(5)(6)式に従つて各成分の
組成分率(X1)、(X2)、(X3)を算出し、これら
を上記溶液の各成分の割合とみなすことを特徴と
する三成分系溶液組成の迅速測定法。 (ただし、 △はa1 b1 c1 a2 b2 c2 1 1 1 nDは屈折率 dは密度 a1、b1、c1は各組成の屈折率のパラメータ a2、b2、c2は各組成の比重のパラメータ X1は第一成分の組成分率 X2は第二成分の組成分率 X3は第三成分の組成分率)。 2 溶液がアクリル酸ソーダ、アクリルアミド及
び水からなる特許請求の範囲第1項記載の方法。 3 溶液がメタクロイルオキシエチルトリメチル
アンモニウムクロライド、アクリルアミド及び水
の三成分からなる特許請求の範囲第1項記載の方
法。 4 20℃において、 a1が1.5085 b1が1.4967 c1が1.3325 a2が1.1384 b2が1.0888 c2が1.0004 である特許請求の範囲第3項記載の方法。 5 屈折率計と比重又は密度計をコンピユーター
と組み合わせて、前記(4)(5)(6)式に従つて、迅速に
三成分系溶液の組成を測定する特許請求の範囲第
1項記載の方法。
[Claims] 1. Refractive index nD and specific gravity (d) of a solution consisting of three components
Continuously measure _ A rapid method for measuring the composition of a three-component solution, which is characterized in that it is regarded as a ratio of components. (However, △ is a 1 b 1 c 1 a 2 b 2 c 2 1 1 1 nD is the refractive index d is the density a 1 , b 1 , c 1 is the refractive index parameter of each composition a 2 , b 2 , c 2 is the specific gravity parameter of each composition (X 1 is the composition fraction of the first component, X 2 is the composition fraction of the second component, X 3 is the composition fraction of the third component). 2. The method according to claim 1, wherein the solution comprises sodium acrylate, acrylamide and water. 3. The method according to claim 1, wherein the solution comprises three components: methacroyloxyethyltrimethylammonium chloride, acrylamide, and water. 4. The method according to claim 3, wherein at 20°C, a 1 is 1.5085 b 1 is 1.4967 c 1 is 1.3325 a 2 is 1.1384 b 2 is 1.0888 c 2 is 1.0004. 5. The method according to claim 1, wherein a refractometer and a specific gravity or density meter are combined with a computer to quickly measure the composition of a three-component solution according to equations (4), (5), and (6). Method.
JP23687886A 1986-10-03 1986-10-03 Rapid measurement method for ternary solution composition Granted JPS6390741A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23687886A JPS6390741A (en) 1986-10-03 1986-10-03 Rapid measurement method for ternary solution composition
DE19873733200 DE3733200C2 (en) 1986-10-03 1987-10-01 Method for the rapid determination of ternary solution compositions
FR8713582A FR2604786B1 (en) 1986-10-03 1987-10-01 METHOD FOR QUICK DETERMINATION OF THE COMPOSITION OF TERNARY SOLUTIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23687886A JPS6390741A (en) 1986-10-03 1986-10-03 Rapid measurement method for ternary solution composition

Publications (2)

Publication Number Publication Date
JPS6390741A JPS6390741A (en) 1988-04-21
JPH0464576B2 true JPH0464576B2 (en) 1992-10-15

Family

ID=17007128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23687886A Granted JPS6390741A (en) 1986-10-03 1986-10-03 Rapid measurement method for ternary solution composition

Country Status (3)

Country Link
JP (1) JPS6390741A (en)
DE (1) DE3733200C2 (en)
FR (1) FR2604786B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493639A (en) * 1990-08-03 1992-03-26 Mitsubishi Electric Corp Fuel nature detector
EP1069428A1 (en) * 1999-07-16 2001-01-17 Texaco Development Corporation Field test apparatus and method for the determination of coolant content and freezing protection
JP2015141125A (en) * 2014-01-29 2015-08-03 Jx日鉱日石エネルギー株式会社 Method and device for measuring water of cleaning agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962864C2 (en) * 1968-12-30 1982-09-09 Központi Elelmiszeripari Kutató Intézet, Budapest Method for determining the composition of mixtures of substances with regard to their constituents
DE2263906A1 (en) * 1972-12-28 1974-07-04 Gschwind Franz Xaver Dipl Ing PROCEDURE FOR THE CONTINUOUS DETERMINATION OF THE ALCOHOL, EXTRACT AND ORIGINAL ORIGINAL CONTENT OF BEER
DE2711165A1 (en) * 1977-03-15 1978-09-28 Peter Weinreich Ternary liq. mixt. analysing appts. - measures physical parameters under two different conditions
FR2590024A1 (en) * 1985-11-08 1987-05-15 Instrulab Method and apparatuses for measuring the alcoholic strength of a beverage or the original gravity of a beer

Also Published As

Publication number Publication date
DE3733200C2 (en) 1995-04-27
FR2604786B1 (en) 1992-12-11
FR2604786A1 (en) 1988-04-08
DE3733200A1 (en) 1988-04-07
JPS6390741A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
Bryant et al. Evaluating oxygen fluxes using microprofiles from both sides of the sediment‐water interface
CN103512829A (en) Method for measuring sediment concentration through density of muddy water
US4165218A (en) Monitoring surfactant in electrolyte during metal treatment
WO2015047173A1 (en) Method for preparation of liquid mixtures
US3636326A (en) Control system for polymerization reactors
JPH0464576B2 (en)
Meeks An analog computer study of polymerization rates in vinyl chloride suspensions
CN109612607B (en) Temperature sensor reaction speed testing method
DeFord et al. Automatic Coulometric Titrations with Externally Generated Reagents
US4180440A (en) Variable endpoint analyzer
US3716333A (en) Process of and apparatus for thermometric analysis
Walker A Method for determining velocities of Saponification
US4628034A (en) Control of a polymerization reaction
EP0111341A2 (en) Process for producing a vinyl polymer
JP2950534B2 (en) Method and apparatus for analyzing potassium ion content of salt
US2983145A (en) Specific heat indicator
Bonvin et al. On line procedures for supervising the operation of batch reactors
Andersen Polymerization rates by calorimetry. II
US4533517A (en) Control of a polymerization reaction
Smilde et al. Peer Reviewed: How to Choose the Right Process Analyzer
CN117270586B (en) Automatic quantitative control method and system for sodium hyaluronate gel preparation
SU814924A1 (en) Device for preparing cement raw mixture
SU978015A1 (en) Device for automatic measuring of polymer molecular mass
SU850639A1 (en) Method of acetone solution acidity control
CN1170163C (en) Method for in-line continuous detection of polymerization rate for polymerizing reaction of vinyl acetate