JP2015141125A - Method and device for measuring water of cleaning agent - Google Patents

Method and device for measuring water of cleaning agent Download PDF

Info

Publication number
JP2015141125A
JP2015141125A JP2014014637A JP2014014637A JP2015141125A JP 2015141125 A JP2015141125 A JP 2015141125A JP 2014014637 A JP2014014637 A JP 2014014637A JP 2014014637 A JP2014014637 A JP 2014014637A JP 2015141125 A JP2015141125 A JP 2015141125A
Authority
JP
Japan
Prior art keywords
cleaning agent
water
measuring
moisture
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014014637A
Other languages
Japanese (ja)
Inventor
功 青柳
Isao Aoyanagi
功 青柳
博栄 大塚
Hiroe Otsuka
博栄 大塚
幸一路 甲斐
Koichiro Kai
幸一路 甲斐
吉田 瑞穂
Mizuho Yoshida
瑞穂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2014014637A priority Critical patent/JP2015141125A/en
Publication of JP2015141125A publication Critical patent/JP2015141125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Detergent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for measuring water of a cleaning agent, capable of easily and accurately measuring a water content in the cleaning agent.SOLUTION: A method for measuring water in a cleaning agent (A) including water at a ratio of 1 mass% or more and less than 50 mass% or a cleaning agent (B) capable of mixing water derived from a contaminant therein without substantially including water comprises: the step of measuring the refractive index of the cleaning agent (A) or (B) by a refractive index measurement part 1; the step of measuring the density of the cleaning agent (A) or (B) by a density measurement part 2; and the calculation step of calculating a water content by a water calculation part 4 using a calibration curve previously formed on the basis of correlations among the water content, refractive index and density of the cleaning agent (A) or (B).

Description

本発明は、洗浄剤の水分測定方法、および洗浄剤の水分測定装置に関し、特に、自動車、機械、精密機器、電気、電子、光学等の各種工業分野において扱われる部品に付着した、極性の低い汚れと極性の高い汚れが複合した汚れを洗浄して除去することができる洗浄剤の水分測定方法、および洗浄剤の水分測定装置に関する。   TECHNICAL FIELD The present invention relates to a cleaning agent moisture measuring method and a cleaning agent moisture measuring device, and in particular, has low polarity attached to parts handled in various industrial fields such as automobiles, machines, precision equipment, electricity, electronics, and optics. The present invention relates to a cleaning agent moisture measuring method and a cleaning agent moisture measuring device capable of cleaning and removing a stain in which a stain and a highly polar stain are combined.

自動車、機械、精密機器、電気、電子、光学等の各種工業分野において扱われる部品(以下、「部品」とする)は、その加工の際に、(i)鉱物油等を主体とする油性加工油、鉱物油等に界面活性剤を加えて水に乳化させた水溶性加工油等、極性の低いものから極性の高いものまで様々な加工油、(ii)微粒子、などが使用される。特に、切削や研削加工などを中心に水溶性加工油が多く使用されており、また、複数の加工工程を経て製造される部品には、工程毎に使用される加工油も異なるため、極性の低いものから極性の高いものまで様々な汚れが複合して付着する場合が多い。また、切断、研削、研磨等の機械加工を行う際には、前記部品を冶具に固定するための仮止め用接着剤としてワックスが使用される。そして、前記部品の機械加工が終了すると、前記部品に付着したワックスは除去される。前記ワックスは用途に応じて、極性の低いものから極性の高いものまで種々のものが使用される。   Parts (hereinafter referred to as “parts”) handled in various industrial fields such as automobiles, machines, precision equipment, electricity, electronics, optics, etc. (i) oil-based processing mainly composed of mineral oil Various processing oils from low polarity to high polarity, such as a water-soluble processing oil emulsified in water by adding a surfactant to oil, mineral oil or the like, (ii) fine particles, and the like are used. In particular, a lot of water-soluble processing oil is used mainly for cutting and grinding, and parts manufactured through multiple processing steps use different processing oils for each process, so polar In many cases, various stains from low to high polarity are combined and adhered. Further, when performing machining such as cutting, grinding, and polishing, a wax is used as a temporary fixing adhesive for fixing the component to a jig. When the machining of the part is finished, the wax adhering to the part is removed. Various waxes are used depending on the application, from those having a low polarity to those having a high polarity.

このような極性の低いものから極性の高いものまで様々な汚れが複合して付着した部品を洗浄する場合には、水と溶剤、または、水と溶剤と界面活性剤から成る洗浄剤等が使用されている(例えば、特許文献1及び2)。   When cleaning parts with a mixture of various types of dirt from low polarity to high polarity, water and solvent or cleaning agent consisting of water, solvent and surfactant is used. (For example, Patent Documents 1 and 2).

特許文献1および2に記載されるような洗浄剤等において、複数の成分から構成される汚れに対して高い洗浄力を維持するためには、洗浄剤中の水分量を適正に管理することが重要である。洗浄剤中の水分管理方法としていくつか提案されている。   In the cleaning agents as described in Patent Documents 1 and 2, in order to maintain a high cleaning power against dirt composed of a plurality of components, it is necessary to appropriately manage the amount of water in the cleaning agent. is important. Several methods have been proposed for managing moisture in cleaning agents.

最も一般的でJIS等でも定められている水分測定法はカールフィッシャー法(以下、KF法)であるが、現場での測定法には適さない。KF法は滴定分析であり、作業に熟練度が必要とされるからである。   The most common moisture measurement method defined by JIS and others is the Karl Fischer method (hereinafter referred to as KF method), but is not suitable for on-site measurement. This is because the KF method is a titration analysis, and skill is required for work.

洗浄剤と平衡状態にある洗浄装置内の空気の湿度と洗浄剤の電気伝導度によって洗浄剤の水分を管理する方法や(特許文献3)、静電容量センサーを用いて油中の水分量を測定する方法が提案されているが(特許文献4及び5)、様々な汚れが持ち込まれた洗浄剤中の水分量の定量法への適用は困難である。洗浄剤に持ち込まれる可能性のある極性の低いものから極性の高いものまで多種多様な汚れの影響度を全て網羅することは困難であるためである。   A method of managing the moisture of the cleaning agent based on the humidity of the air in the cleaning device in equilibrium with the cleaning agent and the electrical conductivity of the cleaning agent (Patent Document 3), and the amount of moisture in the oil using a capacitance sensor Although a method of measuring has been proposed (Patent Documents 4 and 5), it is difficult to apply to a method of determining the amount of water in a cleaning agent in which various types of dirt are introduced. This is because it is difficult to cover all the influences of various kinds of dirt from a low polarity to a high polarity that can be brought into the cleaning agent.

また、赤外線吸光度と濁度を併用することによって、洗浄剤の水分濃度を一定範囲内に制御する方法や(特許文献6及び7)、近赤外線吸光度を測定することによって洗浄剤の水分濃度を管理する方法が提案されているが(特許文献8及び9)、赤外領域において水と吸収帯が重なる物質には適用できないために、極性の低いものから極性の高いものまで多種多様な汚れ物質が持ち込まれる可能性のある洗浄剤への適用は困難である。   Also, a method of controlling the water concentration of the cleaning agent within a certain range by using both infrared absorbance and turbidity (Patent Documents 6 and 7), and managing the water concentration of the cleaning agent by measuring near infrared absorbance. (Patent Documents 8 and 9), however, since it cannot be applied to a material in which an absorption band overlaps with water in the infrared region, a wide variety of contaminants from low polarity to high polarity are available. Application to cleaning agents that can be brought in is difficult.

さらに、洗浄剤の比重を測定することによって洗浄剤の水分濃度を適正レベルに維持する方法や(特許文献10)、洗浄剤の比抵抗を測定することによって洗浄剤の水分濃度を適正レベルに維持する方法も提案されているが(特許文献11)、いずれの方法においても洗浄剤に持ち込まれた汚れ物質による測定誤差は考慮されていない。   Furthermore, a method for maintaining the moisture concentration of the cleaning agent at an appropriate level by measuring the specific gravity of the cleaning agent (Patent Document 10), and a method for maintaining the moisture concentration of the cleaning agent at an appropriate level by measuring the specific resistance of the cleaning agent. Although a method to do this has also been proposed (Patent Document 11), any method does not take into account measurement errors due to dirt substances brought into the cleaning agent.

特開平6−346094号公報JP-A-6-346094 特開2013−117008号公報JP2013-117008A 特開2000−51577号公報JP 2000-51577 A 特開平8−136492号公報JP-A-8-136492 特開2012−145438号公報JP 2012-145438 A 特開平7−280728号公報JP-A-7-280728 特開平7−248299号公報JP 7-248299 A 特開平5−45280号公報Japanese Patent Laid-Open No. 5-45280 特開平7−151676号公報JP-A-7-151676 特開平7−147265号公報JP-A-7-147265 特開平2−53899号公報JP-A-2-53899

本発明は、上記に鑑みてなされたものであって、簡易かつ正確に洗浄剤中の水分量を測定できる洗浄剤の水分測定方法および洗浄剤の水分測定装置を提供することである。   This invention is made | formed in view of the above, Comprising: It is providing the moisture measuring method of the cleaning agent which can measure the moisture content in a cleaning agent easily and correctly, and the moisture measuring apparatus of a cleaning agent.

上記課題を解決するために、本発明者らは鋭意研究を行った結果、洗浄剤の物理的特性のうち屈折率と密度とを測定し、検量線作成の際、測定した屈折率と密度とを併用することによって、洗浄剤中に極性の低いものから極性の高いものまで多種多様な汚れ物質が持ち込まれた場合においても、洗浄剤の水分量を正確に算出しうることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research.As a result, the refractive index and the density of the physical properties of the cleaning agent are measured. In combination with the present invention, it has been found that the moisture content of the cleaning agent can be accurately calculated even when a wide variety of dirt substances from low polarity to high polarity are brought into the cleaning agent. It came to complete.

即ち、本発明の洗浄剤の水分測定方法は、水を1質量%以上50質量%未満の割合で含む洗浄剤(A)、または水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)中の水分測定方法であって、前記洗浄剤(A)または(B)の屈折率を測定する工程と、前記洗浄剤(A)または(B)の密度を測定する工程と、予め作成された前記洗浄剤(A)または(B)の水分量と屈折率および密度の相関関係に基づく検量線により水分量を算出する算出工程と、を含むことを特徴とする。   That is, the method for measuring the moisture content of the cleaning agent of the present invention is a cleaning agent (A) containing water in a proportion of 1% by mass or more and less than 50% by mass, or is substantially free of water but cleans the moisture derived from soil components. A method for measuring moisture in a cleaning agent (B) that is miscible in the cleaning agent, the step of measuring the refractive index of the cleaning agent (A) or (B), and the cleaning agent (A) or (B) A step of measuring the density, and a calculation step of calculating the water content by a calibration curve based on the correlation between the water content of the cleaning agent (A) or (B) prepared in advance and the refractive index and density. Features.

また、本発明の洗浄剤の水分測定装置は、水を50質量%未満の割合で含む洗浄剤(A)、または水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)中の水分測定装置であって、前記洗浄剤(A)または(B)の屈折率を測定する屈折率測定部と、前記洗浄剤(A)または(B)の密度を測定する密度測定部と、予め作成された前記洗浄剤(A)または(B)の水分量と屈折率および密度の相関関係に基づく検量線を記憶する記憶部と、前記屈折率測定部および前記密度測定部により測定された前記洗浄剤(A)または(B)の屈折率および密度を使用し、前記記憶部に記憶された検量線に基づき水分量を算出する水分算出部と、を備えることを特徴とする。   In addition, the cleaning agent moisture measuring apparatus of the present invention includes the cleaning agent (A) containing water in a proportion of less than 50% by mass, or water substantially not containing water but mixing moisture derived from the soil components into the cleaning agent. A device for measuring moisture in a possible cleaning agent (B), a refractive index measuring unit for measuring the refractive index of the cleaning agent (A) or (B), and the density of the cleaning agent (A) or (B) A density measuring unit that measures the amount of water, a storage unit that stores a calibration curve based on the correlation between the water content of the cleaning agent (A) or (B) prepared in advance, the refractive index, and the density, the refractive index measuring unit, A moisture calculation unit that uses the refractive index and density of the cleaning agent (A) or (B) measured by the density measurement unit and calculates a moisture content based on a calibration curve stored in the storage unit. It is characterized by that.

本発明は、前記洗浄剤中に持ち込まれる汚れ成分を考慮して、前記洗浄剤の密度、屈折率および水分量の相関関係に基づき検量線を作成するため、水分量を測定したい洗浄剤の密度と屈折率を測定するだけで、洗浄剤中の汚れ成分の有無にかかわらず正確な水分量を簡易に測定できるという効果を奏する。   Since the present invention creates a calibration curve based on the correlation between the density, refractive index and water content of the cleaning material in consideration of the dirt components brought into the cleaning material, the density of the cleaning material whose water content is to be measured. By simply measuring the refractive index, an accurate moisture amount can be easily measured regardless of the presence or absence of a soil component in the cleaning agent.

図1は、本発明の実施の形態にかかる洗浄剤の水分測定装置の概略を示すブロック図である。FIG. 1 is a block diagram showing an outline of a cleaning agent moisture measuring apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかる洗浄剤の水分測定方法によって算出した水分量とKF法で求めた水分量との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of water calculated by the method for measuring the water content of the cleaning agent according to the embodiment of the present invention and the amount of water obtained by the KF method. 図3は、屈折率のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the amount of water calculated based on a calibration curve created from only the refractive index and the amount of water obtained by the KF method. 図4は、密度のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the amount of water calculated based on a calibration curve created from only the density and the amount of water obtained by the KF method.

従来、洗浄剤の静電容量、比重、または赤外線吸光度等により洗浄剤中の水分量が測定されているが、汚れ成分の洗浄剤中への持ち込みに起因する水分量の誤差については何ら考慮されていないか、考慮されていても正確な数値を算出できるものではなかった。   Conventionally, the amount of moisture in the cleaning agent has been measured by the capacitance, specific gravity, infrared absorption, etc. of the cleaning agent, but there is no consideration for the error in the amount of moisture caused by the introduction of dirt components into the cleaning agent. Even if it was not taken into account, accurate figures could not be calculated.

本発明者らは、洗浄剤中の水分量を測定するに当たり、洗浄剤中の主成分である水と溶剤、および洗浄剤中に持ち込まれる汚れ成分の物性値であって、水、汚れ成分および溶剤の各物性値が重なり合わず、かつ、洗浄剤中の水と汚れ成分の物性値が増減により異なる挙動を示すもの、すなわち、屈折率と密度に着目した。本発明者らは、汚れ成分非存在下、および/または存在下での洗浄剤の屈折率および密度と、水分量の相関関係に基づいて検量線を作成し、洗浄剤の密度と屈折率を測定するだけで、汚れ成分の洗浄剤中への持ち込みの有無にかかわらず、洗浄剤中の正確な水分量を簡易に測定可能であることを見出したものである。   In measuring the amount of water in the cleaning agent, the present inventors are the physical properties of water and solvent, which are the main components in the cleaning agent, and the soil component brought into the cleaning agent. Attention was paid to those in which the physical property values of the solvents do not overlap and the physical property values of the water and the soil component in the cleaning agent behave differently depending on increase / decrease, that is, refractive index and density. The present inventors made a calibration curve based on the correlation between the refractive index and density of the cleaning agent in the absence and / or presence of the soil component and the moisture content, and determined the density and refractive index of the cleaning agent. The present inventors have found that an accurate amount of moisture in a cleaning agent can be easily measured regardless of whether or not a dirt component is brought into the cleaning agent simply by measuring.

洗浄剤の密度は、洗浄剤中の水分量が多くなると上昇し、また、汚れ成分が多くなっても上昇する。一方、洗浄剤の屈折率は、洗浄剤中の水分量が多くなると低下し、汚れ成分が多くなると上昇する。したがって、本発明にかかる洗浄剤の水分測定方法において、水分量および汚れ成分の増減により、洗浄剤の密度および屈折率が異なる挙動を示すため、洗浄剤の密度と屈折率、および対応する水分量から検量線を作成した場合、精度よく水分量を算出することができるものである。   The density of the cleaning agent increases as the amount of water in the cleaning agent increases, and also increases as the amount of soil components increases. On the other hand, the refractive index of the cleaning agent decreases as the amount of water in the cleaning agent increases, and increases as the amount of dirt components increases. Therefore, in the method for measuring moisture content of the cleaning agent according to the present invention, the density and refractive index of the cleaning agent and the corresponding moisture content are different because the density and refractive index of the cleaning agent behave differently depending on the increase and decrease of the moisture content and dirt components. When a calibration curve is created from the above, it is possible to calculate the water content with high accuracy.

以下に、本発明の実施の形態にかかる洗浄剤の水分測定方法および洗浄剤の水分測定装置について詳細に説明する。   Hereinafter, a cleaning agent moisture measuring method and a cleaning agent moisture measuring apparatus according to an embodiment of the present invention will be described in detail.

本発明の実施の形態にかかる洗浄剤の水分測定方法は、水を1質量%以上50質量%未満の割合で含む洗浄剤(A)、または水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)中の水分測定方法であって、前記洗浄剤(A)または(B)の屈折率を測定する工程と、前記洗浄剤(A)または(B)の密度を測定する工程と、予め作成された前記洗浄剤(A)または(B)中に持ち込まれる汚れ成分の非存在下、および/または存在下における、水分量と屈折率および密度の相関関係に基づく検量線により水分量を算出する算出工程と、を含むことを特徴とする。   The method for measuring water content of a cleaning agent according to an embodiment of the present invention includes a cleaning agent (A) containing water at a ratio of 1% by mass or more and less than 50% by mass, or substantially free of water, but derived from a soil component. A method for measuring moisture in a cleaning agent (B) in which moisture is miscible in the cleaning agent, the step of measuring the refractive index of the cleaning agent (A) or (B), and the cleaning agent (A) or ( The step of measuring the density of B), and the amount of water content, refractive index and density in the absence and / or presence of a soil component brought into the cleaning agent (A) or (B) prepared in advance. And a calculation step of calculating a moisture content using a calibration curve based on the correlation.

本発明の実施の形態において、洗浄剤(A)または(B)に使用する溶剤の密度は、水および洗浄する汚れ成分より低く、洗浄剤に使用する溶剤の屈折率は、水より大きく、洗浄する汚れ成分より小さいことが好ましい。洗浄剤(A)または(B)に使用する溶剤が混合物である場合は、混合溶剤の密度が、水および洗浄する汚れ成分より低く、混合溶剤の屈折率が水より大きく、洗浄する汚れ成分より小さければよい。   In the embodiment of the present invention, the density of the solvent used for the cleaning agent (A) or (B) is lower than that of water and the stain component to be cleaned, and the refractive index of the solvent used for the cleaning agent is higher than that of water. It is preferable that it is smaller than the soil component to be treated. When the solvent used for the cleaning agent (A) or (B) is a mixture, the density of the mixed solvent is lower than that of water and the soil component to be washed, the refractive index of the mixed solvent is greater than that of water, and the stain component to be washed Small is enough.

洗浄剤(A)または(B)に使用する溶剤の20℃における屈折率は、1.35〜1.46が好ましく、1.37〜1.44がより好ましい。前記溶剤の20℃における屈折率が1.35未満であると溶剤と水との屈折率の差が小さくなるために、洗浄液に各種の汚れ物質が混入したときの測定誤差が大きくなる。一方、前記溶剤の20℃における屈折率が1.46を超えると溶剤と汚れ物質との屈折率の差が小さくなるために、洗浄液に各種の汚れ物質が混入したときの測定誤差が大きくなる。   The refractive index at 20 ° C. of the solvent used for the cleaning agent (A) or (B) is preferably 1.35 to 1.46, more preferably 1.37 to 1.44. If the refractive index of the solvent at 20 ° C. is less than 1.35, the difference in refractive index between the solvent and water becomes small, so that the measurement error becomes large when various contaminants are mixed in the cleaning liquid. On the other hand, if the refractive index of the solvent at 20 ° C. exceeds 1.46, the difference in refractive index between the solvent and the dirt substance becomes small, so that the measurement error when various dirt substances are mixed in the cleaning liquid becomes large.

洗浄剤(A)または(B)に使用する溶剤の15℃における密度は、0.70〜0.95g/mLが好ましく、0.72〜0.93g/mLがより好ましい。前記溶剤の15℃における密度が0.70g/mL未満であると溶剤の引火点が低くなって危険となることがあり、0.95g/mLを超えると溶剤と汚れ物質との密度の差が小さくなるために、洗浄液に各種の汚れ物質が混入したときの測定誤差が大きくなる。   The density at 15 ° C. of the solvent used for the cleaning agent (A) or (B) is preferably 0.70 to 0.95 g / mL, and more preferably 0.72 to 0.93 g / mL. If the density at 15 ° C. of the solvent is less than 0.70 g / mL, the flash point of the solvent may be lowered, which may be dangerous. If the density exceeds 0.95 g / mL, there is a difference in density between the solvent and the dirt substance. Therefore, the measurement error increases when various kinds of dirt substances are mixed in the cleaning liquid.

洗浄剤(A)の水分量は、1.0質量%〜50.0質量%である限り、本発明の水分測定方法により水分量を測定可能である。洗浄剤(A)の水分量は、使用により各種汚れ成分が持ち込まれた後においても、1.0質量%〜50.0質量%の範囲であることが好ましく、本発明の水分測定方法の対象となる洗浄剤(A)の水分量は、5.0質量%〜20.0質量%であるものが好ましく適用され、5.0質量%〜15.0質量%がより好ましく、5.0質量%〜10.0質量%が特に好ましく適用される。   As long as the moisture content of the cleaning agent (A) is 1.0 mass% to 50.0 mass%, the moisture content can be measured by the moisture measurement method of the present invention. The water content of the cleaning agent (A) is preferably in the range of 1.0% by mass to 50.0% by mass even after various dirt components are brought in by use. The water content of the cleaning agent (A) is preferably 5.0% by mass to 20.0% by mass, more preferably 5.0% by mass to 15.0% by mass, and 5.0% by mass. % To 10.0% by mass is particularly preferably applied.

水を1質量%以上50質量%未満の割合で含む洗浄剤(A)は、水および水と溶解可能な極性溶剤から主としてなる洗浄剤(A1)、または水、非極性溶剤および界面活性剤から主としてなる洗浄剤(A2)であることが好ましい。   The cleaning agent (A) containing water in a proportion of 1% by mass or more and less than 50% by mass is composed of water and a cleaning agent (A1) mainly composed of a polar solvent that is soluble in water, or water, a nonpolar solvent, and a surfactant. The main cleaning agent (A2) is preferred.

洗浄剤(A1)に使用される水と溶解可能な極性溶剤としては、たとえば、アルコール、エステル、グリコールエーテル、ケトン、アミドなど工業用洗浄剤の基材として使用されている有機溶剤から目的に応じて適宜選択することができ、例えば、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、ヘキシルアルコール、オクチルアルコール、シクロヘキサノール酢酸−n−ブチル、酢酸イソアミル、酢酸−2−エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、乳酸メチル、乳酸エチル、乳酸ブチル、γ−ブチルラクトン、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、3−メチル−3−メトキシブチルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、エチレングリコールモノ−n−ヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−プロピルエーテル、ジエチレングリコールモノ−i−プロピルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−i−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノ−i−プロピルエーテル、プロピレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノ−i−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノ−n−プロピルエーテル、ジプロピレングリコールモノ−i−プロピルエーテル、ジプロピレングリコールモノ−n−ブチルエーテル、ジプロピレングリコールモノ−i−ブチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メトキシブタノール、3−メチル−3−メトキシブタノール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジプロピレングリコールジメチルエーテル、アセトン、メチルエチルケトン、N−メチル−2−ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどが挙げられる。これらを1種単独で使用してもよいし、2種以上を併用してもよい。また、上記の水と溶解可能な極性溶剤は、水と任意な割合で溶解すれば、水と溶解しない非極性溶剤と混合物であってもよい。   Examples of polar solvents that can be dissolved in water used in the cleaning agent (A1) include organic solvents used as substrates for industrial cleaning agents such as alcohols, esters, glycol ethers, ketones, and amides, depending on the purpose. For example, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, hexyl alcohol, octyl alcohol, cyclohexanol acetate-n-butyl, isoamyl acetate, 2-ethylhexyl acetate, acetoacetate Methyl, ethyl acetoacetate, methyl lactate, ethyl lactate, butyl lactate, γ-butyl lactone, dimethyl succinate, dimethyl glutarate, dimethyl adipate, 3-methyl-3-methoxybutyl acetate, diethylene glycol monobutyl ester Teracetate, dipropylene glycol monobutyl ether acetate, ethylene glycol mono-n-hexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-i-propyl ether, diethylene glycol mono-n-butyl ether , Diethylene glycol mono-i-butyl ether, propylene glycol monomethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-i-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-i-butyl ether, dipropylene glycol Monomethyl ether, dipropylene Recall mono-n-propyl ether, dipropylene glycol mono-i-propyl ether, dipropylene glycol mono-n-butyl ether, dipropylene glycol mono-i-butyl ether, tripropylene glycol monomethyl ether, 3-methoxybutanol, 3-methyl -3-methoxybutanol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-butyl ether, dipropylene glycol dimethyl ether, acetone, methyl ethyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide Etc. These may be used alone or in combination of two or more. Moreover, the polar solvent which can be dissolved with water may be a mixture with a non-polar solvent which does not dissolve with water as long as it dissolves with water at an arbitrary ratio.

水および水と溶解可能な極性溶剤から主としてなる洗浄剤(A1)の市販品としては、例えば、“ファイントップ”(登録商標)J210((株)クラレ)が例示される。   As a commercial item of the cleaning agent (A1) mainly composed of water and a polar solvent soluble with water, for example, “Fine Top” (registered trademark) J210 (Kuraray Co., Ltd.) is exemplified.

水および水と溶解可能な極性溶剤から主としてなる洗浄剤(A1)において、水分量が所定値以下となった場合には引火の危険性があり、水分量が所定値以上となった場合には洗浄力が低下する。本発明により洗浄剤(A1)中の水分量を簡易、かつ正確に測定することにより、水分量が所定値以下となった場合には、洗浄剤(A1)中に水分を添加して引火の危険性を回避できるとともに、水分量が所定値以上となった場合には、洗浄剤(A1)の交換等により洗浄不良を防止することができる。   In the cleaning agent (A1) mainly composed of water and water and a polar solvent that is soluble, there is a danger of ignition when the water content is below a predetermined value, and when the water content is above a predetermined value. Detergency is reduced. By simply and accurately measuring the amount of water in the cleaning agent (A1) according to the present invention, when the amount of water becomes a predetermined value or less, water is added to the cleaning agent (A1) to cause ignition. In addition to avoiding danger, defective cleaning can be prevented by replacing the cleaning agent (A1) when the amount of water exceeds a predetermined value.

水、非極性溶剤および界面活性剤を主として含む洗浄剤(A2)は、W/Oエマルション、またはW/Oマイクロエマルションを形成するものであることが好ましい。洗浄剤(A2)は、W/Oエマルション、またはW/Oマイクロエマルションを形成するものであれば、水の配合量は問わないが、1質量%以上50質量%未満の割合で含むものであることが好ましい。   The cleaning agent (A2) mainly containing water, a nonpolar solvent and a surfactant is preferably one that forms a W / O emulsion or a W / O microemulsion. As long as the cleaning agent (A2) forms a W / O emulsion or a W / O microemulsion, the amount of water is not limited, but may be contained in a proportion of 1% by mass or more and less than 50% by mass. preferable.

洗浄剤(A2)に使用される非極性溶剤としては、たとえば、脂肪族炭化水素、芳香族炭化水素、テルペンなど工業用洗浄剤の基材として使用されている有機溶剤から目的に応じて適宜選択することができ、例えば、ノルマルオクタン、ノルマルノナン、ノルマルデカン、ノルマルウンデカン、ノルマルドデカン、イソオクタン、イソノナン、イソデカン、イソウンデカン、イソドデカン、メチルシクロヘキサン、インデン、インダン、デカリン、テトラリン、炭素数8〜18のオレフィン、アルキルシクロペンタン、アルキルシクロヘキサン、アルキルベンゼン、炭素数10〜18のアルキルインデン、アルキルインダン、炭素数11〜18のアルキルデカリン、アルキルテトラリン、アルキルナフタレン、ミルセン、セレン、オシメン、ピネン、リモネン、カンフェン、テルピノーレン、トリシクレン、テルピネン、フェンチェン、フェランドレン、シルベストレン、サピアン、p−メンテン−1、p−メンテン−3、p−サイメン、p−メンタン、ナフサ、ケロシンなどが挙げられる。これらを1種単独で使用してもよいし、2種以上を併用してもよい。また、W/Oエマルション、またはW/Oマイクロエマルションを安定して形成できれば、非極性溶剤に極性溶剤を配合して使用してもよい。   The nonpolar solvent used in the cleaning agent (A2) is appropriately selected from organic solvents used as a base material for industrial cleaning agents such as aliphatic hydrocarbons, aromatic hydrocarbons, and terpenes, depending on the purpose. For example, normal octane, normal nonane, normal decane, normal undecane, normal dodecane, isooctane, isononane, isodecane, isoundecane, isododecane, methylcyclohexane, indene, indane, decalin, tetralin, 8-18 carbon atoms Olefin, alkylcyclopentane, alkylcyclohexane, alkylbenzene, alkylindene having 10 to 18 carbon atoms, alkylindane, alkyldecalin having 11 to 18 carbon atoms, alkyltetralin, alkylnaphthalene, myrcene, selenium, osymene, Nene, limonene, camphene, terpinolene, tricyclene, terpinene, fenchen, ferrandlene, sylvestrene, sapiane, p-menthen-1, p-menten-3, p-cymene, p-menthane, naphtha, kerosene, etc. . These may be used alone or in combination of two or more. Moreover, if a W / O emulsion or a W / O microemulsion can be formed stably, you may mix | blend and use a polar solvent in a nonpolar solvent.

洗浄剤(A2)に使用される界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤、非イオン性界面活性剤の中から目的に応じて適宜選択することができ、例えば、脂肪酸モノカルボン酸塩、N−アシロイルグルタミン酸塩、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、ナフタレンスルホン酸塩−ホルムアルデヒド縮合物、スルホこはく酸ジアルキルエステル、硫酸アルキル塩、硫酸アルキルポリオキシエチレン塩、リン酸アルキル塩、アルキルアミン塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、N,N−ジメチル−N−アルキルアミノ酢酸ベタイン、2−アルキル−1−ヒドロキシエチル−1−カルボキシメチルイミダゾリニウムベタイン、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド等の界面活性剤が挙げられる。これらを1種単独で使用してもよいし、2種以上を併用してもよい。洗浄剤(A2)中の界面活性剤の配合量は、W/Oエマルション、またはW/Oマイクロエマルションを形成するものであれば制限されるものではないが、20質量%以下であることが好ましい。   The surfactant used in the cleaning agent (A2) is appropriately selected from anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants according to the purpose. For example, fatty acid monocarboxylates, N-acyloyl glutamates, alkyl benzene sulfonates, α-olefin sulfonates, naphthalene sulfonate-formaldehyde condensates, sulfosuccinic acid dialkyl esters, alkyl sulfate salts, Alkyl polyoxyethylene sulfate salt, alkyl phosphate salt, alkylamine salt, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, N, N-dimethyl-N-alkylaminoacetic acid betaine, 2-alkyl-1 -Hydroxyethyl-1-cal Xymethylimidazolinium betaine, glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene block copolymer, polyethylene glycol fatty acid ester, polyoxyethylene Surfactants such as sorbitan fatty acid esters and fatty acid alkanolamides may be mentioned. These may be used alone or in combination of two or more. The amount of the surfactant in the cleaning agent (A2) is not limited as long as it forms a W / O emulsion or a W / O microemulsion, but is preferably 20% by mass or less. .

水、非極性溶剤および界面活性剤を主として含む洗浄剤(A2)の市販品としては、例えば、W/Oマイクロエマルション型洗浄剤の“NSクリーン”(登録商標)100M、220M(JX日鉱日石エネルギー(株))が例示される。   As a commercial product of the cleaning agent (A2) mainly containing water, a nonpolar solvent and a surfactant, for example, “NS Clean” (registered trademark) 100M, 220M (JX Nippon Oil & Gasoline Co., Ltd.), a W / O microemulsion type cleaning agent. Energy Co.) is exemplified.

水、非極性溶剤および界面活性剤を主として含む洗浄剤(A2)において、水分量が所定範囲外となった場合、洗浄力が低下する。本発明により洗浄剤(A2)中の水分量を簡易、かつ正確に測定することにより、水分量が所定値以下となった場合には、洗浄剤(A1)中に水分を添加して洗浄力を回復するとともに、水分量が所定値以上となった場合には、洗浄剤(A2)の交換、洗浄剤(A2)の静置や加熱等による水分除去により洗浄不良を防止することができる。   In the cleaning agent (A2) mainly containing water, a nonpolar solvent and a surfactant, when the water content is out of the predetermined range, the cleaning power is reduced. By simply and accurately measuring the amount of water in the cleaning agent (A2) according to the present invention, when the amount of water becomes a predetermined value or less, water is added to the cleaning agent (A1) and the cleaning power is increased. In addition, when the amount of water becomes a predetermined value or more, cleaning failure can be prevented by exchanging the cleaning agent (A2), leaving the cleaning agent (A2), or removing water by heating.

また、本発明は、水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)の水分量の測定にも適用可能である。ここで、「汚れ成分由来の水分を洗浄剤中に混和」とは、洗浄剤中に水が溶解するか、または洗浄剤中に水が安定して分散している状態を意味する。   The present invention is also applicable to the measurement of the water content of the cleaning agent (B) that contains substantially no water but is capable of mixing moisture derived from the soil component into the cleaning agent. Here, “mixing moisture derived from the soil component in the cleaning agent” means a state in which water is dissolved in the cleaning agent or water is stably dispersed in the cleaning agent.

水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)としては、たとえば、極性溶剤と非極性溶剤から主としてなる洗浄剤(B1)、非極性溶剤と界面活性剤から主としてなる洗浄剤(B2)が例示される。洗浄剤(B)で使用する極性溶剤、非極性溶剤、界面活性剤は、洗浄剤(A)で使用する極性溶剤、非極性溶剤、界面活性剤と同様のものを使用することができる。   Examples of the cleaning agent (B) that is substantially free of water but miscible with water derived from the soil component can be incorporated into the cleaning agent, for example, a cleaning agent (B1) mainly composed of a polar solvent and a nonpolar solvent, and a nonpolar solvent And a detergent (B2) mainly comprising a surfactant. The polar solvent, nonpolar solvent, and surfactant used in the cleaning agent (B) can be the same as the polar solvent, nonpolar solvent, and surfactant used in the cleaning agent (A).

洗浄剤(B)の市販品としては、例えば、“NSクリーン”(登録商標)100R、100W、220W(JX日鉱日石エネルギー(株))が例示される。   As a commercial item of a cleaning agent (B), "NS clean" (trademark) 100R, 100W, 220W (JX Nippon Mining & Energy Corporation) is illustrated, for example.

また、本発明の実施の形態にかかる洗浄剤(A)または(B)には、上記した成分から主としてなるものであれば、各種の添加剤などを含有しても良い。なお、本明細書において、「主としてなる」とは、洗浄剤中の例示した成分の割合が、90.0質量%以上であることを意味する。   In addition, the cleaning agent (A) or (B) according to the embodiment of the present invention may contain various additives as long as it is mainly composed of the above-described components. In the present specification, “mainly” means that the proportion of the exemplified components in the cleaning agent is 90.0% by mass or more.

添加剤としては、防錆剤、酸化防止剤、防腐剤、キレート剤、アルカリ剤、漂白剤、着臭剤等が挙げられる。防錆剤は、例えば、ペンタエリスリトールモノエステル、ソルビタンモノオレート等の脂肪酸エステル系防錆剤、アミン、アミン塩等のアミン系防錆剤、芳香族カルボン酸、アルケニルコハク酸、ナフテン酸塩等のカルボン酸系防錆剤、石油スルホネート等の有機スルホン酸系防錆剤、有機リン酸エステル系防錆剤、酸化パラフィン系防錆剤等が例示される。   Examples of the additive include a rust inhibitor, an antioxidant, an antiseptic, a chelating agent, an alkali agent, a bleaching agent, and an odorant. Examples of the rust preventive include fatty acid ester rust preventives such as pentaerythritol monoester and sorbitan monooleate, amine rust preventives such as amines and amine salts, aromatic carboxylic acids, alkenyl succinic acids, and naphthenates. Examples include carboxylic acid rust preventives, organic sulfonic acid rust preventives such as petroleum sulfonate, organic phosphate ester rust preventives, and oxidized paraffin rust preventives.

洗浄剤(A)または(B)の屈折率の測定は、温度補償機能を有していれば、市販のいずれの屈折計も使用可能である。
洗浄剤(A)または(B)の密度の測定は、差圧式、浮子式、振動式、放射線式等いずれの原理を利用した密度計を使用してもよいが、洗浄装置においてオンラインで測定する場合には、差圧式または振動式の密度計が好ましい。本発明で使用する密度計も、屈折計と同様に、温度補償機能を有しているものが好ましい。
For the measurement of the refractive index of the cleaning agent (A) or (B), any commercially available refractometer can be used as long as it has a temperature compensation function.
The density of the cleaning agent (A) or (B) may be measured using a density meter utilizing any principle such as a differential pressure type, a float type, a vibration type, a radiation type, etc., but is measured online in a cleaning device. In this case, a differential pressure type or a vibration type density meter is preferable. As with the refractometer, the density meter used in the present invention preferably has a temperature compensation function.

検量線は、慣用の手法を用いて作成することができる。すなわち、洗浄剤の屈折率と密度を測定するとともに、洗浄剤中への水分の配合量またはKF法による水分量との相関関係を表す、下記(1)式(回帰式)を作成すればよい。
W=A×R+B×D+C ・・・(1)
(式(1)において、Wは水分量(質量%)、Rは屈折率、Dは密度(g/mL)、A、B及びCは定数である)においてA、B及びCを決定する。式(1)の検量線(回帰式)を用いれば、水分量が未知の洗浄剤の屈折率と密度から水分量を正確かつ簡易に求めることができる。なお、屈折率の測定温度は特に限定されないが、式(1)の検量線で水分量を算出する場合、正確な水分量を算出する観点から、所定の温度(例えば、20℃)における換算値を使用することが望ましい。密度の測定温度も特に限定されないが、正確な水分量を算出する観点から、式(1)の検量線では所定の温度(例えば、15℃)における換算値を使用することが望ましい。また、式(1)の検量線には静電容量、電気伝導度、赤外線吸光度、濁度等の項を含めることもできる。
The calibration curve can be created using a conventional method. That is, the refractive index and density of the cleaning agent are measured, and the following equation (1) (regression equation) that represents the correlation with the amount of water contained in the cleaning agent or the amount of water by the KF method may be prepared. .
W = A × R + B × D + C (1)
(In Formula (1), W is a water content (mass%), R is a refractive index, D is a density (g / mL), A, B, and C are constants), A, B, and C are determined. Using the calibration curve (regression equation) of Equation (1), the amount of water can be accurately and easily determined from the refractive index and density of the cleaning agent whose amount of water is unknown. In addition, although the measurement temperature of refractive index is not specifically limited, when calculating a moisture content with the calibration curve of Formula (1), the conversion value in predetermined | prescribed temperature (for example, 20 degreeC) from a viewpoint of calculating an exact moisture content. It is desirable to use Although the density measurement temperature is not particularly limited, it is desirable to use a conversion value at a predetermined temperature (for example, 15 ° C.) in the calibration curve of the formula (1) from the viewpoint of calculating an accurate moisture amount. The calibration curve of formula (1) can also include terms such as capacitance, electrical conductivity, infrared absorbance, and turbidity.

本発明にかかる洗浄剤の水分量は、各種の屈折計、密度計等を用いてマニュアルで測定することも可能であるが、図1に示すような測定装置により測定することも可能である。図1は、本発明の実施の形態にかかる洗浄剤の水分測定装置100の概略をブロック図に示したものである。図1に示すように、水分測定装置100は、洗浄剤の屈折率を測定する屈折率測定部1と、洗浄剤の密度を測定する密度測定部2と、予め作成された洗浄剤の水分量と屈折率および密度の相関関係に基づく検量線を記憶する記憶部3と、屈折率測定部1および密度測定部2により測定された洗浄剤の屈折率および密度を使用し、記憶部3に記憶された検量線に基づき水分量を算出する水分算出部4と、水分算出部4が算出した洗浄剤の水分量を出力する出力部5と、各部を制御する制御部6とを備える。   The water content of the cleaning agent according to the present invention can be measured manually using various refractometers, density meters, etc., but can also be measured with a measuring apparatus as shown in FIG. FIG. 1 is a block diagram showing an outline of a cleaning agent moisture measuring apparatus 100 according to an embodiment of the present invention. As shown in FIG. 1, the moisture measuring device 100 includes a refractive index measuring unit 1 that measures the refractive index of the cleaning agent, a density measuring unit 2 that measures the density of the cleaning agent, and a moisture content of the cleaning agent that is created in advance. Is stored in the storage unit 3 using the storage unit 3 for storing a calibration curve based on the correlation between the refractive index and the density and the refractive index and the density of the cleaning agent measured by the refractive index measurement unit 1 and the density measurement unit 2. The apparatus includes a moisture calculation unit 4 that calculates a moisture amount based on the calibration curve, an output unit 5 that outputs the moisture content of the cleaning agent calculated by the moisture calculation unit 4, and a control unit 6 that controls each unit.

記憶部3に記憶される検量線は、クライアントの洗浄条件(洗浄する汚れ成分)に合わせて作成された検量線であることが望ましいが、汚れ成分による補正がされない検量線、すなわち、汚れ成分非存在下で作成した検量線を記憶し、その後、ランニングの際に取得した、屈折率、密度および対応する水分値により検量線を補正して使用することもできる。   The calibration curve stored in the storage unit 3 is preferably a calibration curve created in accordance with the cleaning conditions (dirt component to be cleaned) of the client, but is not corrected by the stain component, that is, the stain component non-correction. It is also possible to store the calibration curve created in the presence, and then correct the calibration curve based on the refractive index, density, and corresponding moisture value obtained during running.

また、洗浄装置のライン上に水分測定装置100を取り付けることにより、水分算出部4が算出した水分値に基づき、水分値が所定値以下と算出された場合には、洗浄装置に接続された水分供給ラインから水分を洗浄装置に供給したり、水分値が所定値以上と算出された場合には、洗浄装置内の洗浄液の入れ替えや、洗浄液からの水分除去を自動的に行うようにすることもできる。   In addition, by attaching the moisture measuring device 100 on the line of the cleaning device, if the moisture value is calculated to be equal to or less than a predetermined value based on the moisture value calculated by the moisture calculating unit 4, the moisture connected to the cleaning device When water is supplied from the supply line to the cleaning device, or when the water value is calculated to be greater than or equal to a predetermined value, the cleaning solution in the cleaning device can be replaced or the water can be automatically removed from the cleaning solution. it can.

以下に実施例により本発明の実施態様を例示するが、本発明はそれらの実施例に限定されるものではない。   Embodiments of the present invention are illustrated below by examples, but the present invention is not limited to these examples.

(実施例1)
脂肪族炭化水素に界面活性剤と水(10質量%)とを配合したW/Oマイクロエマルション型洗浄剤である“NSクリーン”(登録商標)100M(JX日鉱日石エネルギー(株)製、試料No.1)、“NSクリーン”(登録商標)100Mと界面活性剤量は同一で、水分の配合量が5質量%である試料No.2に、表1に示す各種汚れ成分を添加した試料(No.3〜No.12)を調製し、20℃における屈折率と15℃における密度とKF法による水分量を測定した。各試料(No.3〜No.12)の汚れ成分濃度および水分量は、試料No.1および/または試料No.2に、各種汚れ成分と必要に応じて水分を添加することにより調整した。
Example 1
“NS Clean” (registered trademark) 100M (manufactured by JX Nippon Mining & Energy Co., Ltd.), which is a W / O microemulsion type detergent containing a surfactant and water (10% by mass) in an aliphatic hydrocarbon No. 1), “NS Clean” (registered trademark) 100M, and the amount of the surfactant is the same, and the amount of water blended is 5% by mass. Samples (No. 3 to No. 12) to which various stain components shown in Table 1 were added were prepared, and the refractive index at 20 ° C., the density at 15 ° C., and the moisture content by the KF method were measured. The soil component concentration and water content of each sample (No. 3 to No. 12) 1 and / or sample no. 2 was adjusted by adding various soil components and moisture as required.

Figure 2015141125
*1 スーパーマルパスDX150、JX日鉱日石エネルギー(株)製
*2 ユニソルブルEM、JX日鉱日石エネルギー(株)製
*3 ユニソルブルCS、JX日鉱日石エネルギー(株)製
*4 ダフニーサーミックオイル32、出光興産(株)製
Figure 2015141125
* 1 Super Malpas DX150, manufactured by JX Nippon Oil & Energy Corporation * 2 Unisolvable EM, manufactured by JX Nippon Oil & Energy * 3 Unisolvable CS, manufactured by JX Nippon Oil & Energy * 4 Daphne Thermic Oil 32 Made by Idemitsu Kosan Co., Ltd.

実施例1で測定した屈折率、密度および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と屈折率および密度を用いて水分量を算出した。表2に“NSクリーン”(登録商標)100Mをベースとした試料の屈折率、密度および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図2は、本発明にかかる水分測定方法によって算出した洗浄剤の水分量と、KF法で求めた水分量との関係を示すグラフである。図2中の×印が“NSクリーン”(登録商標)100Mをベースとした試料である。図2に示すように、本発明にかかる水分測定方法によって算出した洗浄剤の水分量と、KF法で求めた水分量とは相関がとれていることがわかる。本発明にかかる水分測定方法から得た洗浄剤(NSクリーン100M)の水分量と、KF法により測定した水分量との重相関は、0.9742であった。   A calibration curve (regression equation) representing the correlation between the refractive index, density, and moisture content measured in Example 1 was created, and the moisture content was calculated using the created calibration curve, refractive index, and density. Table 2 shows the moisture content obtained from the calibration curve representing the correlation between the refractive index, density and moisture content of the sample based on “NS Clean” (registered trademark) 100M, and the moisture content measured by the KF method. FIG. 2 is a graph showing the relationship between the moisture content of the cleaning agent calculated by the moisture measurement method according to the present invention and the moisture content determined by the KF method. The x mark in FIG. 2 is a sample based on “NS Clean” (registered trademark) 100M. As shown in FIG. 2, it can be seen that the moisture content of the cleaning agent calculated by the moisture measurement method according to the present invention and the moisture content determined by the KF method are correlated. The multiple correlation between the moisture content of the cleaning agent (NS Clean 100M) obtained from the moisture measurement method according to the present invention and the moisture content measured by the KF method was 0.9742.

Figure 2015141125
Figure 2015141125

(実施例2)
脂肪族炭化水素に界面活性剤と水(10質量%)とを配合したW/Oマイクロエマルション型洗浄剤である“NSクリーン”(登録商標)220M(JX日鉱日石エネルギー(株)製、試料No.13)、“NSクリーン”(登録商標)220Mと界面活性剤量は同一で、水分の配合量が5質量%である試料No.14に、表3に示す各種汚れ成分を添加した試料(No.15〜No.23)を調製し、20℃における屈折率と15℃における密度とKF法による水分量を測定した。各試料(No.15〜No.23)の汚れ成分濃度および水分量は、試料No.13および/または試料No.14に、各種汚れ成分と必要に応じて水分を添加することにより調整した。
(Example 2)
"NS Clean" (registered trademark) 220M (manufactured by JX Nippon Mining & Energy Co., Ltd.), which is a W / O microemulsion type detergent containing a surfactant and water (10% by mass) in an aliphatic hydrocarbon No. 13), “NS Clean” (registered trademark) 220M and the amount of the surfactant are the same, and the blending amount of water is 5% by mass. 14 were prepared samples (No. 15 to No. 23) to which various soil components shown in Table 3 were added, and the refractive index at 20 ° C., the density at 15 ° C., and the moisture content by the KF method were measured. The soil component concentration and the water content of each sample (No. 15 to No. 23) are as follows. 13 and / or sample no. No. 14 was adjusted by adding various soil components and moisture as required.

Figure 2015141125
*1 スーパーマルパスDX150、JX日鉱日石エネルギー(株)製
*2 ユニソルブルEM、JX日鉱日石エネルギー(株)製
*3 ユニソルブルCS、JX日鉱日石エネルギー(株)製
*4 ダフニーサーミックオイル32、出光興産(株)製
Figure 2015141125
* 1 Super Malpas DX150, manufactured by JX Nippon Oil & Energy Corporation * 2 Unisolvable EM, manufactured by JX Nippon Oil & Energy * 3 Unisolvable CS, manufactured by JX Nippon Oil & Energy * 4 Daphne Thermic Oil 32 Made by Idemitsu Kosan Co., Ltd.

実施例2で測定した屈折率、密度および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と屈折率および密度を用いて水分量を算出した。表4に“NSクリーン”(登録商標)220Mをベースとした試料の屈折率、密度および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図2は、本発明にかかる水分測定方法によって算出した洗浄剤の水分量と、KF法で求めた水分量との関係を示すグラフである。図2中の○印が“NSクリーン”(登録商標)220Mをベースとした試料である。図2に示すように、本発明にかかる水分測定方法によって算出した洗浄剤の水分量と、KF法で求めた水分量とは相関がとれていることがわかる。本発明に係る水分測定方法から得た洗浄剤(NSクリーン220M)の水分量と、KF法により測定した水分量との重相関は、0.9774であった。   A calibration curve (regression equation) representing the correlation between the refractive index, density, and moisture content measured in Example 2 was created, and the moisture content was calculated using the created calibration curve, refractive index, and density. Table 4 shows the amount of water obtained from the calibration curve representing the correlation between the refractive index, density and water content of the sample based on “NS Clean” (registered trademark) 220M, and the water content measured by the KF method. FIG. 2 is a graph showing the relationship between the moisture content of the cleaning agent calculated by the moisture measurement method according to the present invention and the moisture content determined by the KF method. A circle in FIG. 2 is a sample based on “NS Clean” (registered trademark) 220M. As shown in FIG. 2, it can be seen that the moisture content of the cleaning agent calculated by the moisture measurement method according to the present invention and the moisture content determined by the KF method are correlated. The multiple correlation between the moisture content of the cleaning agent (NS Clean 220M) obtained from the moisture measurement method according to the present invention and the moisture content measured by the KF method was 0.9774.

Figure 2015141125
Figure 2015141125

(比較例1)
実施例1で測定した屈折率および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と屈折率とを用いて水分量を算出した。表5に“NSクリーン”(登録商標)100Mをベースとした試料の屈折率および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図3は、屈折率のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。図3中の×印が“NSクリーン”(登録商標)100Mをベースとした試料である。図3に示すように、屈折率のみから作成した検量線に基づき算出した水分量は、KF法で求めた水分量とは相関がとれていないことがわかる。屈折率と水分量の相関関係による検量線から得た洗浄剤(NSクリーン100M)の水分量と、KF法により測定した水分量との重相関は、0.3709であった。
(Comparative Example 1)
A calibration curve (regression equation) representing the correlation between the refractive index measured in Example 1 and the moisture content was created, and the moisture content was calculated using the created calibration curve and the refractive index. Table 5 shows the moisture content obtained from the calibration curve representing the correlation between the refractive index and the moisture content of the sample based on “NS Clean” (registered trademark) 100M, and the moisture content measured by the KF method. FIG. 3 is a graph showing the relationship between the amount of water calculated based on a calibration curve created from only the refractive index and the amount of water obtained by the KF method. The x mark in FIG. 3 is a sample based on “NS Clean” (registered trademark) 100M. As shown in FIG. 3, it can be seen that the amount of water calculated based on the calibration curve created from the refractive index alone is not correlated with the amount of water obtained by the KF method. The multiple correlation between the moisture content of the cleaning agent (NS Clean 100M) obtained from the calibration curve based on the correlation between the refractive index and the moisture content and the moisture content measured by the KF method was 0.3709.

Figure 2015141125
Figure 2015141125

(比較例2)
実施例1で測定した密度および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と密度とを用いて水分量を算出した。表6に“NSクリーン”(登録商標)100Mをベースとした試料の密度および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図4は、密度のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。図4中の×印が“NSクリーン”(登録商標)100Mをベースとした試料である。図4に示すように、密度のみから作成した検量線に基づき算出した水分量は、KF法で求めた水分量とは相関がとれていないことがわかる。密度と水分量の相関関係による検量線から得た洗浄剤(NSクリーン100M)の水分量と、KF法により測定した水分量との重相関は、0.3942であった。
(Comparative Example 2)
A calibration curve (regression equation) representing the correlation between density and moisture content measured in Example 1 was created, and the moisture content was calculated using the created calibration curve and density. Table 6 shows the moisture content obtained from the calibration curve representing the correlation between the density and moisture content of the sample based on “NS Clean” (registered trademark) 100M and the moisture content measured by the KF method. FIG. 4 is a graph showing the relationship between the amount of water calculated based on a calibration curve created only from the density and the amount of water obtained by the KF method. The x mark in FIG. 4 is a sample based on “NS Clean” (registered trademark) 100M. As shown in FIG. 4, it can be seen that the water content calculated based on the calibration curve created from the density alone is not correlated with the water content determined by the KF method. The multiple correlation between the moisture content of the cleaning agent (NS Clean 100M) obtained from the calibration curve based on the correlation between the density and the moisture content and the moisture content measured by the KF method was 0.3942.

Figure 2015141125
Figure 2015141125

(比較例3)
実施例2で測定した屈折率および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と屈折率とを用いて水分量を算出した。表7に“NSクリーン”(登録商標)220Mをベースとした試料の屈折率および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図3は、屈折率のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。図3中の○印が“NSクリーン”(登録商標)220Mをベースとした試料である。図3に示すように、屈折率のみから作成した検量線に基づき算出した水分量は、KF法で求めた水分量とは相関がとれていないことがわかる。屈折率と水分量の相関関係による検量線から得た洗浄剤(NSクリーン220M)の水分量と、KF法により測定した水分量との重相関は、0.3965であった。
(Comparative Example 3)
A calibration curve (regression equation) representing the correlation between the refractive index and water content measured in Example 2 was created, and the water content was calculated using the created calibration curve and refractive index. Table 7 shows the moisture content obtained from the calibration curve representing the correlation between the refractive index and the moisture content of the sample based on “NS Clean” (registered trademark) 220M, and the moisture content measured by the KF method. FIG. 3 is a graph showing the relationship between the amount of water calculated based on a calibration curve created from only the refractive index and the amount of water obtained by the KF method. A circle in FIG. 3 is a sample based on “NS Clean” (registered trademark) 220M. As shown in FIG. 3, it can be seen that the amount of water calculated based on the calibration curve created from the refractive index alone is not correlated with the amount of water obtained by the KF method. The multiple correlation between the moisture content of the cleaning agent (NS Clean 220M) obtained from the calibration curve based on the correlation between the refractive index and the moisture content and the moisture content measured by the KF method was 0.3965.

Figure 2015141125
Figure 2015141125

(比較例4)
実施例2で測定した密度および水分量の相関関係を表す検量線(回帰式)を作成し、作成した検量線と密度とを用いて水分量を算出した。表8に“NSクリーン”(登録商標)220Mをベースとした試料の密度および水分量の相関関係を表す検量線から得た水分量とKF法で測定した水分量を示す。また、図4は、密度のみから作成した検量線に基づき算出した水分量とKF法で求めた水分量との関係を示すグラフである。図4中の○印が“NSクリーン”(登録商標)220Mをベースとした試料である。図4に示すように、密度のみから作成した検量線に基づき算出した水分量は、KF法で求めた水分量とは相関がとれていないことがわかる。密度と水分量の相関関係による検量線から得た洗浄剤(NSクリーン220M)の水分量と、KF法により測定した水分量との重相関は、0.4519であった。
(Comparative Example 4)
A calibration curve (regression equation) representing the correlation between density and moisture content measured in Example 2 was created, and the moisture content was calculated using the created calibration curve and density. Table 8 shows the moisture content obtained from the calibration curve representing the correlation between the density and moisture content of the sample based on “NS Clean” (registered trademark) 220M and the moisture content measured by the KF method. FIG. 4 is a graph showing the relationship between the amount of water calculated based on a calibration curve created only from the density and the amount of water obtained by the KF method. A circle mark in FIG. 4 is a sample based on “NS Clean” (registered trademark) 220M. As shown in FIG. 4, it can be seen that the water content calculated based on the calibration curve created from the density alone is not correlated with the water content determined by the KF method. The multiple correlation between the moisture content of the cleaning agent (NS Clean 220M) obtained from the calibration curve based on the correlation between the density and the moisture content and the moisture content measured by the KF method was 0.4519.

Figure 2015141125
Figure 2015141125

以上のように、本発明にかかる洗浄剤の水分測定方法および洗浄剤の水分測定装置は、汚れ成分が持ち込まれる洗浄剤の水分測定に有用であり、特に、洗浄剤の水分量により洗浄性能が変動するW/Oマイクロエマルション型洗浄剤の水分測定に適している。   As described above, the cleaning agent moisture measuring method and the cleaning agent moisture measuring device according to the present invention are useful for measuring the moisture content of the cleaning agent into which the soil component is introduced, and in particular, the cleaning performance depends on the moisture content of the cleaning agent. Suitable for moisture measurement of fluctuating W / O microemulsion type detergent.

1 屈折率測定部
2 密度測定部
3 記憶部
4 水分算出部
5 出力部
6 制御部
100 水分測定装置
DESCRIPTION OF SYMBOLS 1 Refractive index measuring part 2 Density measuring part 3 Memory | storage part 4 Moisture calculating part 5 Output part 6 Control part 100 Moisture measuring apparatus

Claims (5)

水を1質量%以上50質量%未満の割合で含む洗浄剤(A)、または水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)中の水分測定方法であって、
前記洗浄剤(A)または(B)の屈折率を測定する工程と、
前記洗浄剤(A)または(B)の密度を測定する工程と、
予め作成された前記洗浄剤(A)または(B)の水分量と屈折率および密度の相関関係に基づく検量線により水分量を算出する算出工程と、
を含むことを特徴とする洗浄剤の水分測定方法。
In the cleaning agent (A) containing water in a proportion of 1% by weight or more and less than 50% by weight, or in the cleaning agent (B) substantially free of water but miscible with moisture from the soil component A method for measuring moisture,
Measuring the refractive index of the cleaning agent (A) or (B);
Measuring the density of the cleaning agent (A) or (B);
A calculation step of calculating the moisture content by a calibration curve based on the correlation between the moisture content of the cleaning agent (A) or (B) prepared in advance and the refractive index and density;
A method for measuring a moisture content of a cleaning agent, comprising:
前記洗浄剤(A)は、水および水と溶解可能な極性溶剤から主としてなる洗浄剤(A1)、または水、非極性溶剤および界面活性剤から主としてなる洗浄剤(A2)であることを特徴とする請求項1に記載の洗浄剤の水分測定方法。   The cleaning agent (A) is a cleaning agent (A1) mainly composed of water and a polar solvent soluble in water, or a cleaning agent (A2) mainly composed of water, a nonpolar solvent and a surfactant. The method for measuring moisture content of the cleaning agent according to claim 1. 前記極性溶剤および前記非極性溶剤の密度は、水および洗浄する汚れ成分より低く、前記極性溶剤および前記非極性溶剤の屈折率は、水より大きく、洗浄する汚れ成分より小さいことを特徴とする請求項1または2に記載の洗浄剤の水分測定方法。   The density of the polar solvent and the nonpolar solvent is lower than that of water and a stain component to be washed, and the refractive index of the polar solvent and the nonpolar solvent is larger than that of water and smaller than that of the stain component to be washed. Item 3. A method for measuring moisture content of a cleaning agent according to Item 1 or 2. 前記洗浄剤(A)で洗浄する汚れ成分は、油性および/または水性の加工油であることを特徴とする請求項1〜3のいずれか一つに記載の洗浄剤の水分測定方法。   The method for measuring moisture of a cleaning agent according to any one of claims 1 to 3, wherein the soil component to be cleaned with the cleaning agent (A) is an oily and / or aqueous processing oil. 水を1質量%以上50質量%未満の割合で含む洗浄剤(A)、または水を実質的に含まないが、汚れ成分由来の水分を洗浄剤中に混和可能な洗浄剤(B)中の水分測定装置であって、
前記洗浄剤(A)または(B)の屈折率を測定する屈折率測定部と、
前記洗浄剤(A)または(B)の密度を測定する密度測定部と、
予め作成された前記洗浄剤(A)または(B)の水分量と屈折率および密度の相関関係に基づく検量線を記憶する記憶部と、
前記屈折率測定部および前記密度測定部により測定された前記洗浄剤(A)または(B)の屈折率および密度を使用し、前記記憶部に記憶された検量線に基づき水分量を算出する水分算出部と、
を備えることを特徴とする洗浄剤の水分測定装置。
In the cleaning agent (A) containing water in a proportion of 1% by weight or more and less than 50% by weight, or in the cleaning agent (B) substantially free of water but miscible with moisture from the soil component A moisture measuring device,
A refractive index measuring unit for measuring the refractive index of the cleaning agent (A) or (B);
A density measuring unit for measuring the density of the cleaning agent (A) or (B);
A storage unit for storing a calibration curve based on the correlation between the water content of the cleaning agent (A) or (B) prepared in advance and the refractive index and density;
Moisture for calculating the amount of moisture based on the calibration curve stored in the storage unit using the refractive index and density of the cleaning agent (A) or (B) measured by the refractive index measurement unit and the density measurement unit A calculation unit;
A moisture measuring apparatus for a cleaning agent, comprising:
JP2014014637A 2014-01-29 2014-01-29 Method and device for measuring water of cleaning agent Pending JP2015141125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014014637A JP2015141125A (en) 2014-01-29 2014-01-29 Method and device for measuring water of cleaning agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014637A JP2015141125A (en) 2014-01-29 2014-01-29 Method and device for measuring water of cleaning agent

Publications (1)

Publication Number Publication Date
JP2015141125A true JP2015141125A (en) 2015-08-03

Family

ID=53771566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014637A Pending JP2015141125A (en) 2014-01-29 2014-01-29 Method and device for measuring water of cleaning agent

Country Status (1)

Country Link
JP (1) JP2015141125A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390741A (en) * 1986-10-03 1988-04-21 Dai Ichi Kogyo Seiyaku Co Ltd Rapid measurement method for ternary solution composition
JPH0545280A (en) * 1990-09-13 1993-02-23 Arakawa Chem Ind Co Ltd Managerial method for rosin type solder flux detergent solution of non-halogen series
JPH07151676A (en) * 1993-11-29 1995-06-16 Tonen Corp Method for managing moisture concentration of aqueous cleaning liquid
JPH07248299A (en) * 1994-03-09 1995-09-26 Mitsuyasu Aida Control device of flux washing solution
JPH07280728A (en) * 1994-04-08 1995-10-27 Marcom:Kk Water content concentration control device for washing liquid
JP2003082392A (en) * 2001-09-11 2003-03-19 Asahi Kasei Corp Method for controlling detergent solution
JP2006232866A (en) * 2005-02-22 2006-09-07 Asahi Kasei Chemicals Corp Method and apparatus for controlling cleaning agent composition and cleaning apparatus
JP2013117008A (en) * 2011-10-31 2013-06-13 Jx Nippon Oil & Energy Corp Cleaning liquid composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390741A (en) * 1986-10-03 1988-04-21 Dai Ichi Kogyo Seiyaku Co Ltd Rapid measurement method for ternary solution composition
JPH0545280A (en) * 1990-09-13 1993-02-23 Arakawa Chem Ind Co Ltd Managerial method for rosin type solder flux detergent solution of non-halogen series
JPH07151676A (en) * 1993-11-29 1995-06-16 Tonen Corp Method for managing moisture concentration of aqueous cleaning liquid
JPH07248299A (en) * 1994-03-09 1995-09-26 Mitsuyasu Aida Control device of flux washing solution
JPH07280728A (en) * 1994-04-08 1995-10-27 Marcom:Kk Water content concentration control device for washing liquid
JP2003082392A (en) * 2001-09-11 2003-03-19 Asahi Kasei Corp Method for controlling detergent solution
JP2006232866A (en) * 2005-02-22 2006-09-07 Asahi Kasei Chemicals Corp Method and apparatus for controlling cleaning agent composition and cleaning apparatus
JP2013117008A (en) * 2011-10-31 2013-06-13 Jx Nippon Oil & Energy Corp Cleaning liquid composition

Similar Documents

Publication Publication Date Title
US7588646B2 (en) Cleaning compositions containing an alkyl ester and methods of using same
WO2002028992A1 (en) Compositions and methods for releasing adherent deposits from surfaces and substrates
Rakowska et al. Experimental study on surface activity of surfactants on their ability to cleaning oil contaminations
JP6056345B2 (en) Cleaning composition and cleaning method using the same
CN103242971A (en) Green efficient thick oil dirt nearly-neutral water-based cleaning agent without adding any acid-base
JPH0248034B2 (en)
Rocha e Silva et al. Formulation of a biodegradable detergent for cleaning oily residues generated during industrial processes
JP2017031326A (en) Method for evaluating detergency of w/o microemulsion-type detergent, cleaning method by w/o microemulsion-type detergent, and method for forming film
JP2019523343A (en) Solvent composition and process for removing asphalt and other contaminants
JPWO2019208019A1 (en) Cleaning agent composition, cleaning aerosol, cleaning method for contaminated parts
JP6113035B2 (en) Cleaning method for objects to be cleaned containing materials with low water resistance
KR101848711B1 (en) Composition for removing organic material from metallic surface
JP2015141125A (en) Method and device for measuring water of cleaning agent
PT91380A (en) A process for the preparation of a non-toxic, non-toxic and non-toxic Solvent Composition based on Para-Mentadienes
CN110753747B (en) Novel minimum boiling azeotropes of n-butyl 3-hydroxybutyrate and n-undecane and their use in solvent cleaning
JP7073655B2 (en) Detergent composition stock solution and detergent composition containing the detergent composition stock solution
JP2011084660A (en) Cleaning solvent composition
KR100998243B1 (en) A detergent composition for metal working fluids with high viscosity
RU2412985C1 (en) Oil sludge washing composition
JP2016080597A (en) Management method of w/o micro emulsion type detergent, and management device of w/o micro emulsion type detergent
JP6113034B2 (en) Drainer cleaning method and drainer cleaning composition
US20180134991A1 (en) Petroleum Distillates With Increased Solvency
JPH0925497A (en) Detergent for wax and water-soluble processing solution
CN113684020A (en) Water-washing type fluorescent penetrant
Soares da Silva et al. Evaluation of the Stability of a Biodetergent for Industrial Use.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306