JPH0464269A - Manufacture of oxide superconductor and manufacture of oxide superconducting thin film - Google Patents

Manufacture of oxide superconductor and manufacture of oxide superconducting thin film

Info

Publication number
JPH0464269A
JPH0464269A JP2176714A JP17671490A JPH0464269A JP H0464269 A JPH0464269 A JP H0464269A JP 2176714 A JP2176714 A JP 2176714A JP 17671490 A JP17671490 A JP 17671490A JP H0464269 A JPH0464269 A JP H0464269A
Authority
JP
Japan
Prior art keywords
oxygen
thin film
heat treatment
series
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2176714A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Kumiko Nishikura
西倉 久美子
Hideaki Adachi
秀明 足立
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2176714A priority Critical patent/JPH0464269A/en
Publication of JPH0464269A publication Critical patent/JPH0464269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To avoid high pressure heat treatment or drastic heat treatment by heat-treating a molded body of a chemical compound containing Ln-Ba-Cu without oxygen in an ambient atmosphere containing oxygen. CONSTITUTION:A molded body of a chemical compound whose main components include Ln, Ba, and Cu but no oxygen is heat-treated in an oxygen-contained ambient atmosphere or it is heat-treated in an oxygen-contained atmosphere as well after an alloy thin film 4 mainly comprising Ln, Ba and Cu is deposited on the substrate where La is one or more elements in calcium (Ca), yttrium (Y), scandium (Sc) and lanthanum series. This construction makes it possible to obtain a simplified method which does not call for a high pressure oxygen heat treatment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高臨界温度を有する酸化物超伝導体の製造方法
および酸化物超伝導薄膜の製造方法に関すも 従来の技術 高温超伝導体として、A15型二元系化合物として窒化
ニオブ(N b N)やゲルマニウムニオブ(NbsG
e)などが知られていた力(これらの材料の超伝導転移
温度はたかだか24にであっf=−X  ペロブスカイ
ト系三元化合物1よ さらに高い転移温度が期待さり、
  Ba−La−Cu−0系の高温超伝導体が提案され
た[J、G、Bednorz andK、A;−Mul
ler、7フイトシスリ717zア・フィシ゛−り(Z
eitshrift  Fur Physik B)−
Condensed Matter、vol、64.1
89−193(1986)L さら番−より超伝導臨界温度の高いYIBa2Cu a
 O?−X系(123系)か発見された[M、に、 W
uJ、R,Ashburn、 C,J、Torng、 
P、H,Hor、 R,L、Meng、 L、Gao、
  Z、J、Huang、   Y、Q、Wang  
and  C0W、Chu、  7(シ楡カル・レビュ
ー・レタース″’(Physical  Review
  Letters)Vol、58、908(1987
)]。続いて最近 同じY、Ba、CUからなるY+B
 aaCu40v、s*xの系(124系)が薄膜で発
見された[A、F、Marshall、 R,W、Ba
rtonK、Char、  A、Kaitulnik、
  B、Oh、  R,H,Hammond andS
、S、Laderman、  74シ′カル・レビュー
  B(Physical  Review B)Vo
l、37.9353(1988)]。この種の材料の超
伝導機構の詳細は明らかではない力士 転移温度が室温
以上に高くなる可能性があり、高温超伝導材料として従
来の二元系化合物より、より有望な特性が期待されも さらに123系は酸素欠損形であり、周囲の雰囲気に対
して不安定であるのに対して124系は極めて安定な結
晶構造を有している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor having a high critical temperature and a method for producing an oxide superconducting thin film. Niobium nitride (N b N) and germanium niobium (NbsG) are used as type binary compounds.
e) etc. (The superconducting transition temperature of these materials is at most 24 f = -
A high-temperature superconductor based on Ba-La-Cu-0 was proposed [J, G, Bednorz and K, A;-Mul
ler, 7-foot system 717z
eitshrift Fur Physik B)-
Condensed Matter, vol. 64.1
89-193 (1986) L Saraban - YIBa2Cu a with higher superconducting critical temperature
O? -X system (123 system) was discovered [M, ni, W
uJ, R, Ashburn, C,J, Torng,
P, H, Hor, R, L, Meng, L, Gao,
Z, J, Huang, Y, Q, Wang
and C0W, Chu, 7 (Physical Review Letters)
Letters) Vol. 58, 908 (1987
)]. Subsequently, recently Y+B consisting of the same Y, Ba, and CU
A system of aaCu40v, s*x (124 system) was discovered in a thin film [A, F, Marshall, R, W, Ba
rton K, Char, A, Kaitulnik,
B, Oh, R, H, Hammond and S
, S. Laderman, 74 Physical Review B (Physical Review B) Vo
I, 37.9353 (1988)]. The details of the superconducting mechanism of this type of material are not clear.The transition temperature may be higher than room temperature, and it is expected that it will have more promising properties as a high-temperature superconducting material than conventional binary compounds. The 123 series is an oxygen-deficient type and is unstable in the surrounding atmosphere, whereas the 124 series has an extremely stable crystal structure.

発明が解決しようとする課題 ところ力月24系の製造において、焼成体の酸化物超伝
導体の場合には数10気圧の酸素圧力のもとての熱処理
を必要とする。また酸化物超伝導薄膜の製造の場合には
急激な昇温 降温の熱処理を必要とし 他種の材料と組
合せたデバイスなどへの応用を不可能としていれ 本発明はこのような従来の課題を解決するもので、高圧
の加圧を必要としない酸化物超伝導体の製造方法および
急激な昇l 降温を必要としない酸化物超伝導薄膜の製
造方法の提供を目的とする。
Problems to be Solved by the Invention However, in the production of the Chigetsu 24 series, in the case of an oxide superconductor as a fired body, heat treatment under an oxygen pressure of several tens of atmospheres is required. Furthermore, in the case of manufacturing oxide superconducting thin films, heat treatment with rapid temperature increases and decreases is required, making it impossible to apply them to devices in combination with other types of materials.The present invention solves these conventional problems. The present invention aims to provide a method for producing an oxide superconductor that does not require high pressure, and a method for producing an oxide superconductor thin film that does not require rapid temperature increases.

課題を解決するための手段 上記の目的を達成するために本発明の酸化物超伝導体の
製造方法および酸化物超伝導薄膜の製造方法Lt、  
主成分がLn、BaおよびCuからなる酸素を含まない
化合物の成形体を酸素を含む雰囲気中で熱処理する力\
 基板上に 主成分がLn、BaおよびCuからなる合
金薄膜を堆積させ、薄膜堆積後、酸素を含む雰囲気中で
熱処理す4ここで、 LnはCa、Y、Scおよびラン
タン系列の一種以上の元素であa 作用 一般に124系を得るために高圧酸素のもとで熱処理を
必要とするの(友 焼成体を製造する初期にLn、Ba
、Cuのそれぞれの酸化物粉体を秤量し 混ぜ合わせる
ので成形体中に調整不可能な酸素が必然的に存在するた
めは 124系以外に123系の種ができてしま(\ 
123系の成長を抑え124系のみを成長させるために
高圧酸素のもとで熱処理が必要である。本発明の酸化物
超伝導体の製造方法は 酸素を含まないLn−Ba−C
uの化合物の成形体を酸素を含む雰囲気中で熱処理する
ので、熱処理の昇温の段階から絶えず金属元素に酸素を
供給しなから123系よりも結晶化温度の低い124系
を選択的に成長させるのであるかぺ 124系の結晶化
温度に熱処理温度を設定するだけで、高圧酸素のもとで
熱処理をすることなく、高品質の124系が製造できる
Means for Solving the Problems In order to achieve the above objects, the method of manufacturing an oxide superconductor and the method of manufacturing an oxide superconducting thin film Lt of the present invention,
The power to heat-treat a molded body of an oxygen-free compound whose main components are Ln, Ba, and Cu in an oxygen-containing atmosphere.
An alloy thin film mainly composed of Ln, Ba, and Cu is deposited on the substrate, and after the thin film is deposited, it is heat-treated in an atmosphere containing oxygen.4 Here, Ln is Ca, Y, Sc, and one or more elements of the lanthanum series. In general, heat treatment under high pressure oxygen is required to obtain the 124 series.
Since the oxide powders of Cu and Cu are weighed and mixed, uncontrollable oxygen is inevitably present in the molded product, so seeds of the 123 series are created in addition to the 124 series (\
In order to suppress the growth of the 123 series and grow only the 124 series, heat treatment is required under high pressure oxygen. The method for producing an oxide superconductor of the present invention is as follows: Ln-Ba-C which does not contain oxygen
Since the molded body of the compound u is heat-treated in an atmosphere containing oxygen, oxygen is not constantly supplied to the metal element from the temperature rising stage of heat treatment, and the 124-series, which has a lower crystallization temperature than the 123-series, is selectively grown. By simply setting the heat treatment temperature to the crystallization temperature of the 124 series, high-quality 124 series can be produced without heat treatment under high pressure oxygen.

124系の薄膜製造では 焼成体製造の場合に比べ 薄
膜の膜束 基板による制限を受けるので理由は明白とは
なってはいない力士 高圧酸素のもとての熱処理は必要
ではない力士 熱処理の時、急激な昇温 降温過程が不
可欠であった この過程も上記成形体の場合と同じく薄
膜中に調整不可能な酸素が存在するため123系の成長
を抑え 124系を成長させるためのものと考えられる
。この従来からの124系の薄膜製造に対し 本発明の
酸化物超伝導薄膜の製造方法でζ友Ln、Ba、Cuの
合金薄膜を基板上に堆積し 酸素を含む雰囲気中で熱処
理するので調整不可能な酸素は薄膜中に存在せず、酸素
は薄膜外からLn、  Ba、  CUに必要な量だけ
供給され 金属元素の組成調整と、熱処理温度の調整だ
けで124系だけが成長する。
In the production of 124 series thin films, compared to the production of fired bodies, the thin film bundle is limited by the substrate, so the reason is not clear.Rikishi.Heat treatment under high pressure oxygen is not necessary.During heat treatment, A rapid temperature rise/temperature cooling process was essential.This process is also thought to be used to suppress the growth of the 123 series and encourage the growth of the 124 series, due to the presence of uncontrollable oxygen in the thin film, as in the case of the above-mentioned compact. . In contrast to the conventional method for manufacturing 124-based thin films, the method for manufacturing oxide superconducting thin films of the present invention deposits an alloy thin film of Ln, Ba, and Cu on a substrate, and heat-treats it in an oxygen-containing atmosphere, making adjustments difficult. No possible oxygen exists in the thin film, and oxygen is supplied from outside the thin film in the required amount to Ln, Ba, and CU, and only the 124 series grows by adjusting the composition of the metal elements and adjusting the heat treatment temperature.

実施例 以下本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

まず本発明者らIt  Y −B a −Cu−〇系超
伝導体の製造を焼成化 薄膜の両者について、YBa2
cu30〒−x (123系)およびYBa2Cu2O
7,6・、(124系)の結晶成長の過程を詳細に調べ
てき九 その結果 124系を選択的に成長させるため
には少なくともY、Ba、Cuを含むアモルファス状態
の成形体および薄膜に熱処理を加える方法が最適である
ことを見いだした ところ力<、  124系を焼成体で製造するのと薄膜
で製造するのとは決定的な違いがある。焼成体の場合は
800〜1000 ℃のしかも数10気圧の高圧酸素熱
処理が不可欠である。−人 薄膜の場合は熱処理温度は
焼成体と同程度である万丈 瞬間加熱や液体窒素温度へ
の急冷(クエンチ)が不可欠であも 特に酸化物超伝導
薄膜の製造において急激な昇温 降温過程は他種材料と
組み合わせた応用を考えた場合、この種の材料の応且 
適用範囲を極めて狭めるものである。
First, the present inventors manufactured ItY-Ba-Cu-〇-based superconductor by firing.For both thin films, YBa2
cu30〒-x (123 series) and YBa2Cu2O
The process of crystal growth of 7, 6, (124 series) has been investigated in detail9.As a result, in order to selectively grow 124 series, amorphous molded bodies and thin films containing at least Y, Ba, and Cu are heat-treated. We found that the method of adding force <, there is a decisive difference between manufacturing the 124 series as a fired body and manufacturing it as a thin film. In the case of fired products, high-pressure oxygen heat treatment at 800 to 1000°C and several tens of atmospheres is essential. - People In the case of thin films, the heat treatment temperature is the same as that of the fired body.Although instantaneous heating and rapid cooling (quenching) to liquid nitrogen temperature are indispensable, especially in the production of oxide superconducting thin films, the rapid temperature rise and fall processes are When considering applications in combination with other types of materials, the response and
This extremely narrows the scope of application.

そこで本発明者ら(L 秤量段階でのY、Ba、Cu、
0の混合比風雲囲気ガスなど、種々の検討を行なった結
果 酸素を含まない成形体および薄膜に対して熱処理を
した場合、前記のような高圧熱処理や急激な熱処理は回
避できることを新たに見いだした 124系の酸化物超伝導体の製造方法の工程概略図を第
1図に示す。同図において酸素を含まない成形体1に対
して通常の酸素熱処理を施して容易に124系の焼成体
の酸化物超伝導体2が製造できた理由はよくわからない
力丈 およそ次のように解釈される。すなわ板 熱処理
前の成形体には酸素が含まれていないことかぺ 熱処理
段階で温度が上昇していく過程で酸素が供給され 通常
−結晶単位では123系より銅イオンと結合する酸素イ
オン個数の少ない124系(銅イオンの価数;123系
で平均2,33仏 124系で2.25価)が先に結晶
としての形を作り易いことか収 123系より先に形成
されることによるのではないかと考えられも 実施例1 本実施例では酸化物超伝導体の製造方法について説明す
も まず、二つの酸化物超伝導体の製造方法を試みな サンプルaはY2O3、BaCO5、CuOの粉体をY
:Ba:  Cu=1:  2:  4となるよう秤量
し よく混ぜ合わせ、直径5 mB  厚み3 mmの
ディスク状に押し固めた サンプルbはY、  BaF
2、Cuの各粉体をY:  Ba:  Cu=1:  
2:  4になるよう秤量しよく混ぜ合わせサンプルa
と同じサイズのディスク状に押し固め總 サンプルaと
bをまず1気圧の酸素雰囲気中で950 \ 5時間の
熱処理を施しへ 酸素熱処理後のサンプルa、サンプル
bのX線回折スペクトルを第2図に示す。第2図(a)
はサンプルaのスペクトル、第2図(b)は酸化物超伝
導体2であるサンプルbのスペクトルを示している万丈
 サンプルaはYBa2Cus○?−X構造(123系
)に合致したX線回折スペクトルである。−人 サンプ
ルbはYBa2cuaOr、s−x構造(124系)に
合致したX線回折スペクトルであム 超伝導特性に関し
てはサンプルaが超伝導性のみられない半導体的な特性
を示すのに対し サンプルbは超伝導転移温度83K、
ゼロ抵抗温度79  Kの超伝導特性を示し九 サンプ
ルaについては10気圧以上の酸素熱処理を施さないと
、 124系を得ることができなかった な抵 本発明者らは 主成分の元素比率力(1<Cu/
 (Y十Ba)≦1.5 の範囲で124系が安定して得られることを見いだし九 実施例2 さらに本発明者らi表12’4系の薄膜製造を行なっ九 般に124系の薄膜製造に(表 酸化物アモルファス薄
膜を急激に加熱処理する必要があった万丈この急激な昇
温は酸素雰囲気であってL 酸素を薄膜中から追い出す
還元処理といえも そこで、本発明者らはこのような急
激な還元昇温過程を経ない酸化物超伝導薄膜の製造方法
を発明し九その工程の概略図を第3図に示す。
Therefore, the present inventors (L) Y, Ba, Cu at the weighing stage,
As a result of various studies such as a mixture ratio of 0, wind, cloud, and surrounding gas, we newly discovered that when heat-treating compacts and thin films that do not contain oxygen, the high-pressure heat treatment and rapid heat treatment described above can be avoided. FIG. 1 shows a schematic process diagram of a method for producing a 124-based oxide superconductor. In the same figure, it is not clear why the 124-series sintered oxide superconductor 2 was easily produced by subjecting the oxygen-free compact 1 to the normal oxygen heat treatment. be done. In other words, the molded body before heat treatment does not contain oxygen.Oxygen is supplied as the temperature rises during the heat treatment stage.Number of oxygen ions that combine with copper ions from the 123 system in the crystal unit This may be because the 124 series (copper ion valence; average valence of 2.33 for the 123 series and 2.25 for the 124 series), which has a lower valence, is easier to form as a crystal first, or because it is formed before the 123 series. However, Example 1 In this example, we will explain the manufacturing method of oxide superconductors. First, we will try two manufacturing methods of oxide superconductors. Sample a is made of Y2O3, BaCO5, and CuO. Y the powder
:Ba: Cu = 1: 2: Weighed, mixed well, and pressed into a disk shape with a diameter of 5 mB and a thickness of 3 mm.Sample b is Y, BaF.
2. Each powder of Cu is Y: Ba: Cu=1:
2: Weigh and mix well so that the ratio is 4. Sample a
Samples a and b were first heat treated in an oxygen atmosphere of 1 atm for 950 \ 5 hours. Figure 2 shows the X-ray diffraction spectra of samples a and b after the oxygen heat treatment. Shown below. Figure 2(a)
shows the spectrum of sample a, and Figure 2 (b) shows the spectrum of sample b, which is oxide superconductor 2. Sample a is YBa2Cus○? This is an X-ray diffraction spectrum consistent with the -X structure (123 system). -Human Sample b has an X-ray diffraction spectrum that matches the YBa2cuaOr, s-x structure (124 system) Regarding superconducting properties, sample a shows semiconducting properties without superconductivity, whereas sample b is the superconducting transition temperature 83K,
Sample a exhibits superconducting properties with a zero resistance temperature of 79 K. Sample A could not have been obtained without oxygen heat treatment at 10 atm or higher. 1<Cu/
It was found that the 124 series can be stably obtained in the range of (Y1Ba)≦1.5. During production (Table 1) It was necessary to rapidly heat-treat the oxide amorphous thin film.This rapid temperature rise was caused by an oxygen atmosphere, and could be considered a reduction process to expel oxygen from the thin film.Therefore, the present inventors We have invented a method for manufacturing oxide superconducting thin films that does not involve such a rapid reduction and temperature rise process, and a schematic diagram of the process is shown in Figure 3.

本実施例では二つの条件の異なる薄膜の製造を試みへ 
薄膜の製造は高周波マグネトロンスパッタ法により行な
っ九 サンプルCはスパッタリングターゲットとしてY
−Ba−Cu−0酸化物焼成体を用いて、ガス圧0.5
Paのアルゴンと酸素の混合ガス中で150 Wの高周
波電力のもとでスパッタし 加熱していないMgO(1
00) 基板上に約5000人堆積させて得たアモルフ
ァス薄膜であも ターゲットの組成を調整し サンプル
Cの膜中の組成比はY:  Ba:  Cu=1:  
2:4になるようにし九−人  サンプルdはY−Ba
−Cuの合金ターゲットをガス圧0.5Paのアルゴン
ガス雰囲気中で100 Wの高周波電力のもとにスパッ
タし 加熱していないMg0(100)の基板3上に約
5000人堆積させて得たアモルファスの合金薄膜4で
ある。サンプルdの膜中の組成比もターゲットの組成比
を調整することにより、Y:  Ba:  Cu=1+
  2:  4になるように調整した そしてサンプル
C、サンプルdを同時に1気圧の酸素雰囲気中で熱処理
を施し通 熱処理の際の昇温速度、降温速度はともに4
00 ℃/hrとL  800  ℃で30分迎 温度
を一定に保っ九 熱処理後のX線回折スペクトルを第4
図に示す。第4図(a)、第4図(b)はそれぞれサン
プルc、  clのスペクトルを示している。サンプル
Cから得られたX線回折パターン[(第4図(a)]は
強度も弱くほとんどアモルファスの状態である力交 サ
ンプルdから得られた酸化物超伝導薄膜5のX線回折パ
ターン[(第4図(b)]は124系の結晶構造のC軸
配向性がみられる。サンプルCについては100 ℃/
miη以上の昇温速度、急冷過程を経ないと124系は
得られず、熱処理温度を850 ℃以上では123系し
か得られなかっな なお本発明者らは 124系を合成するのに必要な熱処
理温度は700〜850  t:の範囲にあることを見
いだしな さらに本発明者らは薄膜堆積時の基板温度が600 ℃
以下のとき124系が純度よく安定にできることを見い
だしな な耘 本発明者ら(′!、主体成分の元素比率力(1<
Cu/ (Y+B a)≦1.5 の範囲にで124系が安定して得られることを見いだし
九 な抵 本発明者らは焼成体 薄膜についてYの一部をC
aで置換したとき、 124系超伝導体の臨界電流密度
が上昇することを見いだしμ この原因は明白ではない
力<、CaをYと置換することによって、なんらかの理
由で結晶性が向上L124系の占める領域が増えること
によるものと考えられも  なhcaのYとの置換量は
Yの15%以下で有効であることを本発明者らは併せて
見いだした ま?=LnとしてYに代えてScおよびランタン系列の
一種以上の元素を用いて同様の効果が得られる。
In this example, we will attempt to manufacture thin films under two different conditions.
The thin film was manufactured using high-frequency magnetron sputtering.Sample C uses Y as a sputtering target.
- Using Ba-Cu-0 oxide fired body, gas pressure 0.5
Unheated MgO (1
00) Even with the amorphous thin film obtained by depositing about 5,000 people on a substrate, the composition of the target was adjusted, and the composition ratio in the film of sample C was Y: Ba: Cu = 1:
Make the ratio 2:4 9 people Sample d is Y-Ba
-Cu alloy target was sputtered under 100 W of high-frequency power in an argon gas atmosphere with a gas pressure of 0.5 Pa, and approximately 5,000 sputters were deposited on an unheated Mg0 (100) substrate 3. This is the alloy thin film 4. By adjusting the composition ratio of the target, the composition ratio in the film of sample d becomes Y: Ba: Cu=1+
Sample C and sample d were then heat-treated at the same time in an oxygen atmosphere of 1 atm.The heating rate and cooling rate during the heat treatment were both 4.
00 °C/hr and L for 30 minutes at 800 °C.The temperature was kept constant.The X-ray diffraction spectrum after heat treatment was
As shown in the figure. Figures 4(a) and 4(b) show the spectra of samples c and cl, respectively. The X-ray diffraction pattern [(Figure 4(a)] obtained from sample C is weak and almost amorphous. Figure 4(b)] shows the C-axis orientation of the 124-based crystal structure.For sample C, the temperature was 100 °C/
The 124 series could not be obtained without a rapid cooling process at a temperature increase rate of more than miη, and only the 123 series could be obtained at a heat treatment temperature of 850 °C or higher. The inventors found that the temperature ranged from 700 to 850 t:
The present inventors have discovered that the 124 series can be made stable with high purity when the following conditions apply.
The present inventors found that the 124 series can be stably obtained in the range of Cu/(Y+B a)≦1.5.
It was found that the critical current density of the 124-based superconductor increases when Ca is substituted with a. The present inventors have also found that the amount of substitution of hca with Y is effective when it is less than 15% of Y, which may be due to the increase in the area occupied. A similar effect can be obtained by using Sc and one or more elements of the lanthanum series in place of Y as =Ln.

発明の効果 以上のように本発明による酸化物超伝導体の製造方法(
よ 高圧の酸素熱処理を必要としない簡略化した工業的
価値の大きいYBa2cuaQ7.6・X系の製造方法
を提供するものであム さらに本発明の酸化物超伝導薄
膜の製造方法c表  急激な昇温降温の熱処理過程を必
要としないYBa2Cu407!・x系の薄膜製造方法
を提供するものであり、他種の材料と組み合わせたデバ
イスなどへの応用を可能とした点で工業的価値は犬き鶏
Effects of the Invention As described above, the method for producing an oxide superconductor according to the present invention (
The present invention provides a simplified method for producing YBa2cuaQ7.6.X series that does not require high-pressure oxygen heat treatment and has great industrial value. YBa2Cu407 does not require a heat treatment process of cooling down!・It provides a method for producing x-based thin films, and has great industrial value in that it can be applied to devices that are combined with other types of materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における酸化物超伝導体の製造
方法の工程概略母 第2図(a)、 (b)は本発明の
実施例における酸化物超伝導体のX線回折スペクトル、
第3図は本発明の実施例における酸化物超伝導薄膜の製
造方法の工程概略医 第4図(a)、 (b)は本発明
の実施例における酸化物超伝導薄膜のX線回折スペクト
ルである。 1・・・成形#、、 2・・・酸化物超伝導体 3・・
・基板、4・・・合 金薄111L5・・・酸化物超伝
導薄八代理人の氏名 弁理士 粟野重孝 はか1名成形
捧 第2図 e Y   O日a  OCu 自警化9381云@Pト ☆Y日Q2CU40?、5+1 (124系) ↓ 通常の酸素熱処理 坏   法 占 i 油 醸 内;fじgllI誹J伝導4欣 通常の瓢牽熱岩理 峰123不 0124系 (〜) 0124系 (斥う
FIG. 1 is a schematic process diagram of the method for producing an oxide superconductor in an example of the present invention. FIGS. 2(a) and 2(b) are
Figure 3 is a process outline of the method for producing an oxide superconducting thin film in an example of the present invention. Figures 4 (a) and (b) are X-ray diffraction spectra of an oxide superconducting thin film in an example of the present invention. be. 1... Molding #, 2... Oxide superconductor 3...
・Substrate, 4... Alloy thin 111L5... Oxide superconducting thin 8 Name of agent Patent attorney Shigetaka Awano Haka 1 person molding dedication Figure 2 e YO day a OCu Vigilance 9381 Yū@P ☆Y day Q2CU40? , 5 + 1 (124 series) ↓ Normal oxygen heat treatment method law reading i oil brewing;

Claims (2)

【特許請求の範囲】[Claims] (1)主成分がLn、バリウム(Ba)および銅(Cu
)からなる酸素を含まない化合物の成形体を酸素を含む
雰囲気中で熱処理することを特徴とする酸化物超伝導体
の製造方法。 ここで、Lnはカルシウム(Ca)、イットリウム(Y
)、スカンジウム(Sc)およびランタン系列の一種以
上の元素である。
(1) The main components are Ln, barium (Ba) and copper (Cu)
1. A method for producing an oxide superconductor, which comprises heat-treating a molded body of an oxygen-free compound consisting of ) in an oxygen-containing atmosphere. Here, Ln is calcium (Ca), yttrium (Y
), scandium (Sc), and one or more elements of the lanthanum series.
(2)基板上にLn、BaおよびCuからなる合金薄膜
を堆積させ、薄膜堆積後酸素を含む雰囲気中で熱処理す
ることを特徴とする酸化物超伝導薄膜の製造方法。 ここで、LnはCa、Y、Scおよびランタン系列の一
種以上の元素である。
(2) A method for producing an oxide superconducting thin film, which comprises depositing an alloy thin film made of Ln, Ba, and Cu on a substrate, and heat-treating the film in an oxygen-containing atmosphere after the thin film is deposited. Here, Ln is one or more elements of Ca, Y, Sc, and lanthanum series.
JP2176714A 1990-07-04 1990-07-04 Manufacture of oxide superconductor and manufacture of oxide superconducting thin film Pending JPH0464269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176714A JPH0464269A (en) 1990-07-04 1990-07-04 Manufacture of oxide superconductor and manufacture of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176714A JPH0464269A (en) 1990-07-04 1990-07-04 Manufacture of oxide superconductor and manufacture of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0464269A true JPH0464269A (en) 1992-02-28

Family

ID=16018480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176714A Pending JPH0464269A (en) 1990-07-04 1990-07-04 Manufacture of oxide superconductor and manufacture of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0464269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289636A (en) * 2006-03-28 2007-11-08 Toshiba Tec Corp Display shelf and display shelf system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289636A (en) * 2006-03-28 2007-11-08 Toshiba Tec Corp Display shelf and display shelf system

Similar Documents

Publication Publication Date Title
JPH0464269A (en) Manufacture of oxide superconductor and manufacture of oxide superconducting thin film
US5049542A (en) La123 superconductor materials
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3314102B2 (en) Manufacturing method of oxide superconductor
US5153170A (en) La123 Superconductor materials
JPH061616A (en) Production of bi based oxide superconductor
KR100232296B1 (en) Superconductive wire
JPS63303810A (en) Ceramic superconductor
JPH0692717A (en) Production of bi based oxiee superconductor
JPH0238359A (en) Production of superconductor
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH01122921A (en) Method for treating oxide superconductor
JPH04243955A (en) Production of oxide superconductor
JPH0412023A (en) Oxide superconductor
JPH03112810A (en) Production of oxide superconducting film
JPH01157009A (en) Superconductor thin film
JPH05254834A (en) Oxide superconductor and production process thereof
JPH03275557A (en) Production of thallium-based oxide superconducting wire rod
JPH01156463A (en) Thin superconductor film
JPH06263520A (en) Production of oxide superconductor
JPS63276824A (en) Manufacturing of high-temperature superconducting film
JPH01157455A (en) Production of oxide superconducting sintered body
JPH0222126A (en) Production of superconductor
JPH02167854A (en) Production of superconductive oxide