JPH0464180B2 - - Google Patents

Info

Publication number
JPH0464180B2
JPH0464180B2 JP59036668A JP3666884A JPH0464180B2 JP H0464180 B2 JPH0464180 B2 JP H0464180B2 JP 59036668 A JP59036668 A JP 59036668A JP 3666884 A JP3666884 A JP 3666884A JP H0464180 B2 JPH0464180 B2 JP H0464180B2
Authority
JP
Japan
Prior art keywords
region
semiconductor layer
emitter
base
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59036668A
Other languages
Japanese (ja)
Other versions
JPS60182165A (en
Inventor
Tetsuo Toyooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3666884A priority Critical patent/JPS60182165A/en
Publication of JPS60182165A publication Critical patent/JPS60182165A/en
Publication of JPH0464180B2 publication Critical patent/JPH0464180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ベース抵抗の低減をはかつたバイ
ポーラトランジスタおよびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a bipolar transistor with reduced base resistance and a method for manufacturing the same.

従来例の構成とその問題点 バイポーラトランジスタの低雑音化、高周波化
を図るために、一方法として例えばベース抵抗を
下げることが提案されている。
Conventional Structures and Their Problems In order to reduce the noise and increase the frequency of bipolar transistors, it has been proposed to lower the base resistance, for example, as a method.

この方法の1つとして、たとえば、ベース領域
の不純物濃度を高くする方法があるが、この場
合、ベースコンタクト領域とともに活性ベース領
域の不純物濃度も高くなるためエミツタからのキ
ヤリアの注入効率が悪くなり電流増幅率hFEが低
下する欠点がある。
One method for this is, for example, to increase the impurity concentration in the base region, but in this case, the impurity concentration in the active base region as well as the base contact region becomes high, so the efficiency of carrier injection from the emitter deteriorates and the current There is a drawback that the amplification factor h FE decreases.

そこで、上記の問題点を解決す構造として活性
ベース領域は低不純物濃度で、ベースコンタクト
領域は高不純物濃度にするいわゆるグラフトベー
ス構造が提案されている。しかし、ブースコンタ
クト領域の不純物濃度を高くしすぎると格子欠陥
や転位などが発生し結晶の完全性が得られず1/
雑音が大きくなるという欠点が生じる。
Therefore, as a structure to solve the above problems, a so-called graft base structure has been proposed in which the active base region has a low impurity concentration and the base contact region has a high impurity concentration. However, if the impurity concentration in the booth contact region is too high, lattice defects and dislocations will occur, making it impossible to obtain crystal integrity and
This has the disadvantage of increased noise.

これらの欠点を克服してベース抵抗を下げる構
造として第1図に示すように、ベース電極に多結
晶シリコン層を使用しできるだけエミツタ領域に
近づけベースコンタクト領域でのベース抵抗を下
げる構造が取られている。
In order to overcome these drawbacks and lower the base resistance, as shown in Figure 1, a structure is adopted in which a polycrystalline silicon layer is used for the base electrode to lower the base resistance in the base contact region as close as possible to the emitter region. There is.

この構造のトランジスタは、高不純物濃度のn
形シリコン基板1の上に低不純物濃度のn形のエ
ピタキシヤル層2を成長させ、この上に絶縁膜3
(図示していないがエミツタ領域8となる上にも
ある)をマスクとしてp形の不純物がドープされ
たベース電極となる多結晶シリコン膜4を選択的
に形成し、イオン注入と多結晶シリコン膜4から
の不純物拡散によりベース領域5を作るとともに
多結晶シリコン膜4の表面とベース領域5の一部
のシリコン層を酸化シリコン膜6に変換し、次
に、エミツタ領域8となる上の絶縁膜(図示せ
ず)を除去し、酸化シリコン膜6をマスクとして
n形不純物をドープした多結晶シリコン膜7を選
択的に形成し、多結晶シリコン膜7からの不純物
拡散によりエミツタ領域8を作り込み、最後に、
多結晶シリコン膜4と7に電極9を形成する過程
を経て形成される。
A transistor with this structure has a high impurity concentration
An n-type epitaxial layer 2 with a low impurity concentration is grown on a silicon substrate 1, and an insulating film 3 is formed on this.
A polycrystalline silicon film 4 doped with p-type impurities, which will become a base electrode, is selectively formed using the mask as a mask (not shown, but also on the emitter region 8), and ion implantation and polycrystalline silicon film 4 are doped with p-type impurities. A base region 5 is formed by impurity diffusion from 4, and the surface of the polycrystalline silicon film 4 and a part of the silicon layer of the base region 5 are converted into a silicon oxide film 6, and then an upper insulating film that becomes an emitter region 8 is formed. (not shown), selectively forms a polycrystalline silicon film 7 doped with n-type impurities using the silicon oxide film 6 as a mask, and forms an emitter region 8 by diffusing the impurities from the polycrystalline silicon film 7. ,lastly,
It is formed through a process of forming electrodes 9 on polycrystalline silicon films 4 and 7.

ところで、このトランジスタの構造では、マス
ク合せ精度により、エミツタ領域8の端からベー
ス電極用多結晶シリコン膜4の端までの距離Aが
1μm以上離れるため十分に接近しておらずベース
抵抗が十分に低くならない不都合が生じるし、ま
た製造方法も非常に複雑である。
By the way, in the structure of this transistor, the distance A from the end of the emitter region 8 to the end of the base electrode polycrystalline silicon film 4 is determined by the precision of mask alignment.
Since they are separated by more than 1 μm, they are not close enough and the base resistance cannot be lowered sufficiently, and the manufacturing method is also very complicated.

発明の目的 本発明は上記の不都合を排除することができる
トランジスタ、すなわち、エミツタ領域の端から
ベース電極用多結晶シリコン膜までの距離を1μm
以内に近づけベース抵抗を十分に下げることがで
きるトランジスタとその簡単な製造方法を提供す
るものである。
Purpose of the Invention The present invention provides a transistor that can eliminate the above-mentioned disadvantages, that is, the distance from the edge of the emitter region to the polycrystalline silicon film for the base electrode is 1 μm.
The purpose of the present invention is to provide a transistor that can sufficiently lower the base resistance by bringing the base resistance closer to the lower limit, and a simple manufacturing method thereof.

発明の構成 コレクタ領域となる一導電形の半導体層上に逆
導電形の不純物をドープした多結晶半導体層を選
択的に形成し、さらにこの上に窒化シリコン膜を
形成してから前記多結晶半導体層内の不純物を前
記半導体層内へ拡散させベース領域を形成する。
Structure of the Invention A polycrystalline semiconductor layer doped with an impurity of an opposite conductivity type is selectively formed on a semiconductor layer of one conductivity type that becomes a collector region, and a silicon nitride film is further formed on the polycrystalline semiconductor layer. Impurities in the layer are diffused into the semiconductor layer to form a base region.

次にベース領域上に選択的にエミツタ形成用の
開口を形成して前記一導電形の不純物を拡散させ
前記エミツタ領域を形成する工程で、前記エミツ
タ領域の半導体層が露出した部分には絶縁膜を形
成すると同時に、前記多結晶半導体層を前記窒化
シリコン膜をマスクとして前記エミツタ形成用の
開口より酸化物に変換する過程を経ることによ
り、前記エミツタ領域上の少なくとも一部を覆う
絶縁膜が1μm以内の幅で前記エミツタ領域を包囲
する前記ベース領域上にまで延在し、前記ベース
領域の上には逆導電形の不純物をドープした多結
晶半導体層が前記絶縁膜と隣接して配置、エミツ
タ領域とベース領域に電極が形成された構造のト
ランジスタが形成される。したがつてこの構造に
よればベース電極用多結晶半導体層がエミツタ領
域に1μm以内と非常に接近したトランジスタが得
られベース抵抗を大きく下げることができる。
Next, in the step of selectively forming an opening for forming an emitter on the base region and diffusing the impurity of one conductivity type to form the emitter region, an insulating film is formed on the exposed portion of the semiconductor layer of the emitter region. At the same time, the polycrystalline semiconductor layer is converted into an oxide through the emitter formation opening using the silicon nitride film as a mask, so that the insulating film covering at least a portion of the emitter region becomes 1 μm thick. a polycrystalline semiconductor layer doped with an impurity of the opposite conductivity type is disposed adjacent to the insulating film on the base region, and a polycrystalline semiconductor layer doped with an impurity of an opposite conductivity type is disposed adjacent to the insulating film, and A transistor having a structure in which electrodes are formed in the region and the base region is formed. Therefore, according to this structure, a transistor can be obtained in which the base electrode polycrystalline semiconductor layer is very close to the emitter region within 1 μm, and the base resistance can be greatly reduced.

実施例の説明 本発明のトランジスタの構造を得るための製造
方法の一実施例を第2図a〜fの断面図を参照に
して説明する。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the manufacturing method for obtaining the transistor structure of the present invention will be described with reference to cross-sectional views of FIGS. 2a to 2f.

まず、コレクタ領域となる高不純物濃度のn形
のシリコン基板1を準備し、その上に低不純物濃
度のn形のエピタキシヤル層2を1〜20μmの厚
さに成長させる。この後に、表面に酸化シリコン
膜10を形成し、周知の写真食刻法によりベース
領域となる部分の酸化シリコン膜10を除去す
る。
First, an n-type silicon substrate 1 with a high impurity concentration that will become a collector region is prepared, and an n-type epitaxial layer 2 with a low impurity concentration is grown thereon to a thickness of 1 to 20 μm. Thereafter, a silicon oxide film 10 is formed on the surface, and a portion of the silicon oxide film 10 that will become the base region is removed by a well-known photolithography method.

次に、表面全域に多結晶シリコン膜11を形成
し、イオン注入法により多結晶シリコン膜11中
にボロンイオン(B+)を注入する〔第2図a〕。
Next, a polycrystalline silicon film 11 is formed over the entire surface, and boron ions (B + ) are implanted into the polycrystalline silicon film 11 by an ion implantation method [FIG. 2a].

この後、ベース領域を形成するべき部分上の多
結晶シリコン膜のみを残し、他を全て除去した
後、全面に窒化シリコン膜12を形成する〔第2
図b〕。
After this, only the polycrystalline silicon film on the part where the base region is to be formed is left, and everything else is removed, and then a silicon nitride film 12 is formed on the entire surface [second
Figure b].

次に、多結晶シリコン膜11の中にドープされ
たボロンの不純物をn形エピタキシヤル層2中に
拡散させてベース領域5を形成する〔第2図c〕。
Next, the boron impurity doped into the polycrystalline silicon film 11 is diffused into the n-type epitaxial layer 2 to form the base region 5 [FIG. 2c].

次に、写真食刻法により、ベース領域5内のエ
ミツタ領域を形成するべき部分上の窒化シリコン
膜12と多結晶シリコン膜11を選択的に除去し
開口部13を設け砒素イオン(As+)をイオン注
入する〔第2図d〕。
Next, by photolithography, the silicon nitride film 12 and polycrystalline silicon film 11 on the portion of the base region 5 where the emitter region is to be formed are selectively removed, an opening 13 is formed, and arsenic ions (As + ) are removed. ion implantation [Fig. 2d].

この後、酸化性雰囲気中で拡散することにより
エミツタ領域8を形成すると同時に、エミツタ形
成用開口13のシリコンが露出した部分には酸化
シリコン膜14を形成し、かつ、窒化シリコン膜
12をマスクとしてエミツタ形成用開口13に面
する多結晶シリコン膜11も選択的に酸化シリコ
ン膜15に変換する。この時、多結晶シリコン膜
11中には不純物がドープされているためエミツ
タ領域の拡散による横広がりよりも酸化シリコン
膜15の横方向の酸化速度が速く、酸化シリコン
膜15がエミツタ領域より0.2〜0.8μm突出した構
造になる〔第2図e〕。
Thereafter, the emitter region 8 is formed by diffusion in an oxidizing atmosphere, and at the same time, a silicon oxide film 14 is formed on the exposed silicon part of the emitter forming opening 13, and the silicon nitride film 12 is used as a mask. The polycrystalline silicon film 11 facing the emitter forming opening 13 is also selectively converted into a silicon oxide film 15. At this time, since the polycrystalline silicon film 11 is doped with impurities, the lateral oxidation rate of the silicon oxide film 15 is faster than the lateral spread due to diffusion of the emitter region, and the silicon oxide film 15 is 0.2 to 0.2 times larger than the emitter region. This results in a structure that protrudes by 0.8 μm [Figure 2 e].

エミツタ領域8およびベース領域5上の多結晶
シリコン膜11および窒化シリコン膜12を選択
的に除去し、電極を形成するためコンタクト部分
を露出させ、これらの部分に高純度のアルミニウ
ムAlあるいは重量比で1%のシリコン(Si)を
含んだアルミニウムを用いて電極を形成すること
によりトランジスタが形成される〔第2図f〕。
The polycrystalline silicon film 11 and silicon nitride film 12 on the emitter region 8 and base region 5 are selectively removed to expose the contact portions for forming electrodes, and these portions are coated with high-purity aluminum (Al) or with a weight ratio. A transistor is formed by forming electrodes using aluminum containing 1% silicon (Si) [FIG. 2f].

このように本発明のトランジスタの構造では、
ベース電極がエミツタ領域の極く近傍にあるため
ベースコンタクト領域の抵抗がほとんど無視でき
ベース抵抗を大幅を低減することができる。
In this way, in the structure of the transistor of the present invention,
Since the base electrode is located very close to the emitter region, the resistance of the base contact region can be almost ignored, making it possible to significantly reduce the base resistance.

発明の効果 以上説明したように本発明のトランジスタの構
造および簡潔な製造方法によれば、シリコンの結
晶性を損わずしてベース抵抗の低減化を図ること
ができトランジスタの雑音および高周波特性を改
善することができる。
Effects of the Invention As explained above, according to the transistor structure and simple manufacturing method of the present invention, the base resistance can be reduced without impairing the crystallinity of silicon, and the noise and high frequency characteristics of the transistor can be reduced. It can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波トランジスタの断面構造
図、第2図a〜fは本発明のベース抵抗低減のト
ランジスタの工程断面図である。 1……n形シリコン基板、2……n形エピタキ
シヤル層、3……絶縁膜、4,7,11……多結
晶シリコン膜、5……ベース領域、6,10,1
4,15……酸化シリコン膜、8……エミツタ領
域、9……電極、12……窒化シリコン膜、13
……開口。
FIG. 1 is a cross-sectional structural diagram of a conventional high frequency transistor, and FIGS. 2 a to 2 f are process cross-sectional diagrams of a transistor with reduced base resistance according to the present invention. DESCRIPTION OF SYMBOLS 1... N-type silicon substrate, 2... N-type epitaxial layer, 3... Insulating film, 4, 7, 11... Polycrystalline silicon film, 5... Base region, 6, 10, 1
4, 15... Silicon oxide film, 8... Emitter region, 9... Electrode, 12... Silicon nitride film, 13
...Opening.

Claims (1)

【特許請求の範囲】 1 コレクタ領域となる一導電形の半導体層中に
作り込まれたベース領域内に、さらに、エミツタ
領域が作り込まれ、前記エミツタ領域上の少なく
とも一部を覆う階段上の酸化膜が1μm以内の幅で
前記エミツタ領域を包囲する前記ベース領域上に
まで延在し、前記ベース領域の上には逆導電形の
不純物をドープした多結晶半導体層が前記酸化膜
と隣接して配置されるとともに、同多結晶半導体
層の表面が窒化シリコン膜で覆われ、前記ベース
領域上に金属電極が形成されていることを特徴と
するトランジスタ。 2 コレクタ領域となる一導電形の半導体層上に
逆導電形の不純物をドープした多結晶半導体層を
選択的に形成し、さらにこの上に窒化シリコン膜
を形成する工程、前記多結晶半導体層内の不純物
を前記半導体層へ拡散させベース領域を形成する
工程、前記ベース領域上に選択的にエミツタ形成
用の開口を形成し、前記一導電形の不純物を拡散
させエミツタ領域を形成する工程で、前記エミツ
タ領域の半導体層が露出した部分に酸化膜を形成
すると同時に、前記多結晶半導体層を前記窒化シ
リコン膜をマスクとして前記エミツタ形成用の開
口より選択的に酸化物に変換することを特徴とす
るトランジスタの製造方法。
[Scope of Claims] 1. An emitter region is further formed in a base region formed in a semiconductor layer of one conductivity type, which becomes a collector region, and a stairway on a step covering at least a part of the emitter region is formed. An oxide film with a width of 1 μm or less extends over the base region surrounding the emitter region, and on the base region, a polycrystalline semiconductor layer doped with an impurity of an opposite conductivity type is adjacent to the oxide film. 1. A transistor characterized in that the surface of the polycrystalline semiconductor layer is covered with a silicon nitride film, and a metal electrode is formed on the base region. 2. A step of selectively forming a polycrystalline semiconductor layer doped with an impurity of an opposite conductivity type on a semiconductor layer of one conductivity type that will serve as a collector region, and further forming a silicon nitride film on this; a step of diffusing an impurity into the semiconductor layer to form a base region, a step of selectively forming an opening for forming an emitter on the base region, and a step of diffusing the impurity of one conductivity type to form an emitter region, An oxide film is formed on the exposed portion of the semiconductor layer in the emitter region, and at the same time, the polycrystalline semiconductor layer is selectively converted into an oxide from the opening for forming the emitter using the silicon nitride film as a mask. A method for manufacturing transistors.
JP3666884A 1984-02-28 1984-02-28 Transistor and its manufacture Granted JPS60182165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3666884A JPS60182165A (en) 1984-02-28 1984-02-28 Transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3666884A JPS60182165A (en) 1984-02-28 1984-02-28 Transistor and its manufacture

Publications (2)

Publication Number Publication Date
JPS60182165A JPS60182165A (en) 1985-09-17
JPH0464180B2 true JPH0464180B2 (en) 1992-10-14

Family

ID=12476232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3666884A Granted JPS60182165A (en) 1984-02-28 1984-02-28 Transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPS60182165A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211775A (en) * 1981-06-23 1982-12-25 Nec Corp Semiconductor device and manufacture thereof
JPS58102558A (en) * 1981-12-14 1983-06-18 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS58102559A (en) * 1981-12-14 1983-06-18 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211775A (en) * 1981-06-23 1982-12-25 Nec Corp Semiconductor device and manufacture thereof
JPS58102558A (en) * 1981-12-14 1983-06-18 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS58102559A (en) * 1981-12-14 1983-06-18 Fujitsu Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS60182165A (en) 1985-09-17

Similar Documents

Publication Publication Date Title
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
JPH025432A (en) Semiconductor device and its manufacture
JPS60175453A (en) Manufacture of transistor
US5237200A (en) Semiconductor bipolar transistor with concentric regions
JPH0464179B2 (en)
JPH0464180B2 (en)
JP2546651B2 (en) Method of manufacturing bipolar transistor
JPS61212062A (en) Semiconductor device
JPH07114208B2 (en) Transistor manufacturing method
JPS58216462A (en) Semiconductor device and manufacture thereof
JPS5966168A (en) Manufacture of semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPS6228588B2 (en)
JPH0137856B2 (en)
JPS6018951A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPH01111372A (en) Manufacture of semiconductor device
JPH0319237A (en) Manufacture of semiconductor device
JPH0132669B2 (en)
JPS584454B2 (en) hand tai souchi no seizou houhou
JPH02113534A (en) Manufacture of semiconductor device
JPS59205758A (en) Manufacture of transistor
JPS60140759A (en) Manufacture of semiconductor device
JP2000312009A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees