JPS58216462A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58216462A
JPS58216462A JP9931782A JP9931782A JPS58216462A JP S58216462 A JPS58216462 A JP S58216462A JP 9931782 A JP9931782 A JP 9931782A JP 9931782 A JP9931782 A JP 9931782A JP S58216462 A JPS58216462 A JP S58216462A
Authority
JP
Japan
Prior art keywords
silicon layer
amorphous silicon
wafer
emitter
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9931782A
Other languages
Japanese (ja)
Inventor
Tomoyuki Tanaka
知行 田中
Koichiro Yamada
耕一郎 山田
Yasumichi Yasuda
安田 保道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9931782A priority Critical patent/JPS58216462A/en
Priority to DE8383900660T priority patent/DE3381606D1/en
Priority to PCT/JP1983/000049 priority patent/WO1983003032A1/en
Priority to EP83900660A priority patent/EP0101739B1/en
Publication of JPS58216462A publication Critical patent/JPS58216462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a manufacturing method for a hetero junction semiconductor device with less photoetching steps by growing an oxygen-doped polycrystalline or amorphous silicon layer on a base silicon wafer, then ion implanting or diffusing phosphorus on the part to form an emitter and boron on the part to form a base electrode contact. CONSTITUTION:A single crystal silicon wafer is used as a starting material, and a base 13 is formed by oxidizing, photoetching and boron diffusing. An oxidized film 14 on the surface of the wafer is removed, the wafer is heated at 660 deg.C in a reaction furnace, and a mixture gas is flowed to form an oxygen-doped polycrystalline or amorphous silicon layer 42. The surface of the wafer is oxidized, a window is opened by photoetching on the prescribed part of the film 15, and phosphorus is implanted to form an emitter 21. The surface of the wafer is again oxidized, a window is opened at the prescribed part of the film 16, and boron ions are implanted to form a low specific resistance boron-doped polycrystalline or amorphous silicon layer 22. An electrode material is deposited, and an emitter electrode 31, a base electrode 32 and a collector electrode 33 of the prescribed shape is formed by photoetching.

Description

【発明の詳細な説明】 本発明は半導体装置、特にベースに比べて禁止帯幅の広
い物質から成るエミッタを有する半導体装置及びその製
造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device having an emitter made of a material with a wider forbidden band width than a base, and a method for manufacturing the same.

例えば、トランジスタのエミッタ注入効率を高め、hF
Zを大きくする手法の一つとして、ベースを構成する物
質よシ屯禁止帯幅の広い物質でエミッタを構成した所6
Nワイドギャツ/エミッタヘテロ接合トランジスタ(・
以下、ヘテロ接合トランジツタと呼ぶ)が知られている
。異種物質間に形成されるヘテロ接合が有効に動作する
ためには接合の界面準位密度が小さいことが重要で、こ
のため異種物質間で格子定数、熱膨張係数の差が小さい
ことが必要である。これまで、GaAsとG aAtA
sの組合せなど数多くのへテロ接合が検討されている。
For example, by increasing the emitter injection efficiency of transistors, hF
One way to increase Z is to configure the emitter with a material that has a wider forbidden zone than the material that makes up the base6.
N wide gates/emitter heterojunction transistor (・
Hereinafter referred to as a heterojunction transistor) is known. In order for a heterojunction formed between different materials to operate effectively, it is important that the interface state density of the junction is small, and therefore it is necessary that the difference in lattice constant and thermal expansion coefficient between the different materials be small. be. Until now, GaAs and GaAtA
Many heterojunctions, such as combinations of s, are being considered.

しかし、トランジスタ、サイリスタ等半導体装置は主と
して単結晶シリコンを材料としており、製造上、また素
子の特性上、Ge又は他の材料によるものよシメリット
が多い。従って、ヘテロ接合を応用する場合も単結晶シ
リコンを基本とすることが望ましい。単結晶シリコンを
ベースとするヘテロ接合としては、これまでに酸素全含
む多結晶又は非晶質シリコンと単結晶シリコンとの組合
せが知られている。以下、図面によってこの従来例を詳
しく説明する。
However, semiconductor devices such as transistors and thyristors are mainly made of single crystal silicon, which has many advantages over devices made of Ge or other materials in terms of manufacturing and device characteristics. Therefore, even when applying a heterojunction, it is desirable to use single crystal silicon as the basis. As a heterojunction based on single-crystal silicon, a combination of polycrystalline or amorphous silicon containing all oxygen and single-crystal silicon is known so far. This conventional example will be explained in detail below with reference to the drawings.

第1図は従来のへテロ接合トランジスタの断面図で、図
において、トランジスタ100は、コレクタとして動作
するn型高比抵抗シリコ2層11、n型低比抵抗シリコ
7層12、ベースとして動作するp型で比較的低比抵抗
シリコン層13より成る単結晶シリコン基体1、工2ツ
タとして動作するn型で低比抵抗の酸素を含む多結晶又
は非晶質シ17コン層21、(−れぞれエミッタ、ベー
ス、コレクタ層に低抵抗接触する電極31,32,33
及U P 8 G S i Otの如きパッシベーショ
ン膜41とから構成される。酸素を含む多結晶又は非晶
質シリコン層21の禁止帯幅は単結晶シリコンのそれよ
りも大きい。従って、エミッタ・ベース間のpn接合は
エミッタワイドギャップのへテロ接合となり、前述の如
くエミッタの注入効率、が大きく、電流増幅率hrtが
大きい。なお、電極31の構成材質によっては多結晶又
は非晶質シリコン21を2層構造とし、電極31と接触
する部分又は層を酸素?含まない層、pベース13と接
する部分又は層を酸素を含む層とすることも知られてい
る。
FIG. 1 is a cross-sectional view of a conventional heterojunction transistor. In the figure, a transistor 100 includes an n-type high resistivity silicon 2 layer 11 that operates as a collector, an n-type low resistivity silicon 7 layer 12 that operates as a base. A single crystal silicon substrate 1 consisting of a p-type relatively low resistivity silicon layer 13, an n-type low resistivity oxygen-containing polycrystalline or amorphous silicon layer 21 acting as a vine, Electrodes 31, 32, 33 in low resistance contact with the emitter, base, and collector layers, respectively.
and a passivation film 41 such as U P 8 G S i Ot. The forbidden band width of the polycrystalline or amorphous silicon layer 21 containing oxygen is larger than that of single crystal silicon. Therefore, the pn junction between the emitter and the base becomes a heterojunction with an emitter wide gap, and as described above, the emitter injection efficiency is high and the current amplification factor hrt is high. Depending on the constituent material of the electrode 31, the polycrystalline or amorphous silicon 21 may have a two-layer structure, and the portion or layer in contact with the electrode 31 may be made of oxygen. It is also known that a layer that does not contain oxygen, a portion or a layer that is in contact with the p-base 13 is a layer that contains oxygen.

この場合も、エミッタ・ベース間のpn接合に関する限
シ、層21全体が酸素を含む場合と本質的に同じである
。次にかかる装置100の製造方法について説明する。
In this case as well, the limitations regarding the emitter-base pn junction are essentially the same as in the case where the entire layer 21 contains oxygen. Next, a method for manufacturing the device 100 will be described.

第2図は製造途中の装[itl旦」の断面図を示す。FIG. 2 shows a cross-sectional view of the device in the process of being manufactured.

また、第3図に輿造工程ケ示す。まず、n型高比抵抗の
シリコン単結晶ウェハに燐を拡散するか、エピタキシャ
ル成長法によシ n4層12をもつn型ウェハを作製し
く第2図(a) ) 、ウニへ表面金熱酸化し、酸化膜
(Slot膜)14.14’を形成し、このS10を膜
の所定部分にホトエツチングにより窓あけしてボロンを
拡散し、pペース13を得る(第2図(b))。再びウ
ェハを酸化し、将来ベース電極を形成する部分に窓あけ
し、ボロンを拡散し、低抵抗のベース13′を形成した
後、ウェハを酸化し、ニオツタ・ベース接合を形成すべ
ら191Q、膜部分を窓あけし、然る後にSIRいP 
Hs 、 Nt Oの混合ガスを原料ガスとする気相成
長法により、酸素、燐がドープされた多結晶又は非晶質
シリコン層21を成長させる(第2 因(C) )。
Furthermore, Figure 3 shows the palanquin construction process. First, an n-type wafer with an n4 layer 12 is prepared by diffusing phosphorus into an n-type high resistivity silicon single crystal wafer or by epitaxial growth (see Figure 2(a)), and then thermally oxidizing the surface of the wafer with gold. Then, an oxide film (Slot film) 14, 14' is formed, and a window is formed in a predetermined portion of the film by photoetching S10 to diffuse boron to obtain a p-paste 13 (FIG. 2(b)). The wafer is oxidized again, a window is made in the part where the base electrode will be formed in the future, and boron is diffused to form a low resistance base 13'.The wafer is then oxidized to form the Niotsuta-base junction. I opened the window and then turned on the SIR.
A polycrystalline or amorphous silicon layer 21 doped with oxygen and phosphorus is grown by a vapor phase growth method using a mixed gas of Hs and NtO as a raw material gas (second factor (C)).

この後、シリコン層21中の燐の活性化熱処理全し、ホ
トエツチングによシエミッタとなるべき部分を残し、残
余の多結晶又は非晶質シリコン層全除去する。ウェハ表
面にPEG S’0!の如きパッシベーション膜41i
形成する(第2図(d))。次に、パッシベーション膜
41の所定部分に窓あけし、エミッタ、ベース、コレク
タにそれぞれ電極(例えばCr−Au)31,32,3
32形成して装置100ができあがる(第1図)。なお
、必要に応じて、この後装[10(1−水素気流中で熱
処理することによってbyi ’itさらに向上させる
ことも可能である。
Thereafter, the phosphorus in the silicon layer 21 is heat-treated to activate it, and the remaining polycrystalline or amorphous silicon layer is completely removed by photo-etching, leaving only a portion to become an emitter. PEG S'0 on the wafer surface! A passivation film 41i like
(Fig. 2(d)). Next, a window is opened in a predetermined portion of the passivation film 41, and electrodes (for example, Cr-Au) 31, 32, 3 are formed on the emitter, base, and collector, respectively.
32 to complete the device 100 (FIG. 1). Note that, if necessary, it is also possible to further improve this rear mounting [10 (1-1) by heat treatment in a hydrogen stream.

このような従来のへテロ接合トランジスタの欠点は通常
のトランジスタ(ホモ接合トランジスタ)と比べて製造
プロセスが長いこと、特に製造”コストの大半を占める
ホトエッチ、ング工程数が多いことである。
The disadvantage of such conventional heterojunction transistors is that the manufacturing process is longer than that of ordinary transistors (homojunction transistors), especially the number of photo-etching steps that account for most of the manufacturing cost.

本発明の目的は、かかる従来技術の欠点全解消し、ホト
エツチング工程数の少い、廉価なヘテロ接合半導体装置
及びその創造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive heterojunction semiconductor device that eliminates all of the drawbacks of the prior art, requires fewer photoetching steps, and a method for creating the same.

本発明は上記へテロ接合半導体装置のエミッタである酸
素、燐、ドープ多結晶又は非晶質シリコンが燐を取除く
と、比抵抗が10’〜1o10Ω・(1)又はそれ以上
の半絶縁性で良好なパッシベーション膜となることに着
目し、エミッタとパッシベーション膜を同時に形成する
方法を考案し、ホトエツチング工程数の低減を実現した
ものである。即ち、従来はエミッタの形成にs t■4
4. pFIs、 NIOを原料ガスとして1.ψ素、
燐ドープ多結晶又は非晶質シリコン層を成長させ、ホト
エツチングにより所定形状のエミッタとしていだが、本
発明では、まず酸素ドーグ多結晶又は非晶質シリコン層
を基体シリコンウェハ上に成長させ、然る後にエミッタ
となる部分に燐を、またベースシ匝接触部となる部分に
ボロンをイゝオン打込み又は拡散させることにより、エ
ミッタ、ベースコンタクト、高耐圧高信頼度パッシベー
ション膜を形成する。
The present invention provides that when the oxygen, phosphorus, doped polycrystalline or amorphous silicon which is the emitter of the above-mentioned heterojunction semiconductor device removes phosphorus, it becomes semi-insulating with a resistivity of 10' to 1010Ω.(1) or more. Focusing on the fact that a good passivation film can be obtained in the process, a method was devised to form an emitter and a passivation film at the same time, thereby reducing the number of photoetching steps. That is, conventionally, emitter formation was performed using s t■4
4. 1. Using pFIs and NIO as source gas. ψ element,
Although a phosphorus-doped polycrystalline or amorphous silicon layer is grown and photo-etched to form an emitter in a predetermined shape, in the present invention, an oxygen-doped polycrystalline or amorphous silicon layer is first grown on a base silicon wafer, and then By ion-implanting or diffusing phosphorus into a portion that will later become an emitter and boron into a portion which will become a base-contact contact portion, an emitter, a base contact, and a high-voltage, high-reliability passivation film are formed.

第4図は本発明の実施列であるペテロ接合トランジスタ
の断面図である。トランジスタ200はコレクタとして
動作するn型高比抵抗層11、n型低比抵抗層12、及
びベースとして動作するp型の比較的低比抵抗層13か
ら成る単結晶シリコン基体1上に、酸素を含む多結晶又
は非晶質シリコン酸42,21.22が積層され、この
うち部分21.22にはそれぞれ燐、ボロンがドープさ
れて、21はエミッタとして動作する。42はベース・
コレクタ間のpn接合の端部及び近傍を被覆している。
FIG. 4 is a cross-sectional view of a petrojunction transistor that is an embodiment of the present invention. The transistor 200 includes oxygen on a single crystal silicon substrate 1 consisting of an n-type high resistivity layer 11 that operates as a collector, an n-type low resistivity layer 12, and a p-type relatively low resistivity layer 13 that operates as a base. Polycrystalline or amorphous silicon acids 42, 21.22 containing polycrystalline or amorphous silicon acids 42, 21.22 are stacked, of which portions 21.22 are doped with phosphorus and boron, respectively, and 21 acts as an emitter. 42 is the base
It covers the end and vicinity of the pn junction between the collectors.

31,32.33はそれぞれエミッタ電極、ベース電極
、コレクタ電極である。
31, 32, and 33 are an emitter electrode, a base electrode, and a collector electrode, respectively.

かかるトランジスタ1旦」は第5図に示すプロセスによ
って與造される。また第6図には製造工程の途中におけ
るトランジスタ200の断面図を示す。n型4Ω・αの
単結晶シリコンウェハ11に燐を拡散C表面濃度1 x
i □!Oatorns /、yl、拡散深さ140μ
mlて低比抵抗層12f:形成してnn4とした単結晶
シリコンウェハを出発材料とし、これを公知の手段で酸
化、ホトエッチ、ボロン拡散して、ベース13を形成す
る(第6図(a))。
Such a transistor is manufactured by the process shown in FIG. Further, FIG. 6 shows a cross-sectional view of the transistor 200 in the middle of the manufacturing process. Diffusion of phosphorus into n-type 4Ω・α single crystal silicon wafer 11 C surface concentration 1 x
i □! Oatorns /, yl, diffusion depth 140μ
ml low resistivity layer 12f: A single crystal silicon wafer formed with nn4 is used as a starting material, and this is oxidized, photoetched, and boron diffused by known means to form the base 13 (FIG. 6(a)). ).

ベース13の拡散深さは約10μmである。仁のウェハ
の表面の酸化膜14を除去し、反応炉中で660Cに加
熱して、S I H430(−C/M、 N! 060
         ”Cc/mm、 N、 25 t/
―の混合ガスを流し、約1.Oamの酸素ドープ多結晶
又は非晶質シリコン層42を形成する(46図(b))
。次にウエノ・表面を酸化し、酸化膜15の所定部分に
氷トエッチングにより窓あけし、燐を100kVで10
” cm”打込み、エミッタ21を形成する(第6図(
C))。再びウエノ・表面を酸化し、酸化膜16の所定
部分に窓あけし、ボロンを約10” cm−”打込み、
低比抵抗のボロンドープ多結晶又は非晶質シリコン層2
2を形成する(第6図(d))。900〜l100Cで
燐、ボロンの活性化処理をした後、電極材料(Cr−A
u)を蒸着し、ホトエツチングによシ所定形状のエミッ
タ電極31、ベース電極32、コレクタ電極331に形
成する(第4図)。450Cで水素処理をし、トランジ
スタ200が完成する。
The diffusion depth of the base 13 is approximately 10 μm. The oxide film 14 on the surface of the solid wafer was removed and heated to 660C in a reactor to produce S I H430 (-C/M, N!060).
”Cc/mm, N, 25t/
- Flow the mixed gas of about 1. Form an Oam oxygen-doped polycrystalline or amorphous silicon layer 42 (Figure 46(b))
. Next, the surface of the oxide film 15 is oxidized, a window is made in a predetermined part of the oxide film 15 by ice etching, and phosphorus is applied at 100 kV for 10 minutes.
"cm" implantation to form the emitter 21 (see Fig. 6).
C)). The Ueno surface is oxidized again, a window is opened in a predetermined portion of the oxide film 16, and boron is implanted to a depth of approximately 10 cm.
Low resistivity boron-doped polycrystalline or amorphous silicon layer 2
2 (Fig. 6(d)). After activating phosphorus and boron at 900 to 100C, the electrode material (Cr-A
u) is vapor-deposited and formed into predetermined shapes of an emitter electrode 31, a base electrode 32, and a collector electrode 331 by photoetching (FIG. 4). Hydrogen treatment is performed at 450C, and the transistor 200 is completed.

完成トランジスタ200のhFllは約120で、ベー
ス、コレクタ層を同じとする従来型トランジスタ(ホモ
接合トランジスタ)と比べて約5培であった。
hFll of the completed transistor 200 was approximately 120, which was approximately 5 times higher than that of a conventional transistor (homojunction transistor) having the same base and collector layers.

第7図は第4図における多結晶又は非晶質シリコン膜2
1.22及び42を酸素ドープした層211.221,
421と酸素ドープしない層212.222,422の
2層で構成した場合である。との場合には電極31.3
2はAt、At−B1等通常トランジスタで用いる電極
金属とすることができる。このようにエミッタ膜を2層
構造とする場合、従来の製造プロセスではエミッタ膜の
ホトエツチング工程で問題が生じる。即ち、酸素がドー
プされない層212は、酸素ドープされた層よりも通常
のエッチ液では1桁以上エッチ速度が早いため、膜21
2が著しくサイドエッチされてしまう。その結果、エミ
ッタの微細加工が困難となる。しかし、本発明の第7図
の場合には、工Sツタのエツチングが不要であるため、
不都合が生じないというメリットがある。
Figure 7 shows the polycrystalline or amorphous silicon film 2 in Figure 4.
1.22 and 42 are oxygen-doped layers 211.221,
This is a case where it is composed of two layers: 421 and a layer 212, 222, 422 that is not doped with oxygen. In the case of electrode 31.3
Reference numeral 2 can be an electrode metal such as At or At-B1 that is normally used in transistors. When the emitter film has a two-layer structure as described above, problems arise in the photo-etching process of the emitter film in the conventional manufacturing process. That is, the layer 212 that is not doped with oxygen has an etch rate that is more than an order of magnitude faster than the layer that is doped with oxygen, so
2 is markedly side-etched. As a result, fine processing of the emitter becomes difficult. However, in the case of FIG. 7 of the present invention, etching of the S-shaped ivy is not necessary, so
This has the advantage of not causing any inconvenience.

第3図及び第5図より明らかな如く、本発明では従来の
へテロ接合トランジスタの製造プロセスに比べて、ホト
エッチ王権数が2回少く、大幅な原価低減が可能となる
As is clear from FIGS. 3 and 5, in the present invention, compared to the conventional manufacturing process of a heterojunction transistor, the number of photo-etch processes is reduced by two, making it possible to significantly reduce the cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のへテロ接合トランジスタの断面図、第2
図は第1図の装置の製造途中の断面図、第3図は第1図
の装置の製造プロセスフローチャート、第4図は本発明
の実施列であるヘテロ接合トランジスタの断面図、第5
図はその製造プロセスフローチャート、第6図は第4図
のトランジスタの製造途中での断面図、第7図は本発明
の他の実施例であるヘテロ接合トランジスタの断面図で
ある。 13・・・第1の導電型の単結晶シリコン層、1111
2・・・第2の導電型の単結晶シリコン層、21゜21
1.212・・・多結晶又は非晶質シリコン層の第1の
領域、22,221,222・・・多結晶又は非晶質シ
リコン層の第2の領域、31・・・第1の電極手段、3
2・・・第2の電極手段。 °1 ・j−t′ 晴 弔/口 lOθ       33 弔2(2) /3     /4− 200  33 33 3θ0
Figure 1 is a cross-sectional view of a conventional heterojunction transistor;
3 is a manufacturing process flowchart of the device shown in FIG. 1, FIG. 4 is a sectional view of a heterojunction transistor which is an embodiment of the present invention, and FIG.
6 is a sectional view of the transistor shown in FIG. 4 during manufacture, and FIG. 7 is a sectional view of a heterojunction transistor according to another embodiment of the present invention. 13... Single crystal silicon layer of first conductivity type, 1111
2... Second conductivity type single crystal silicon layer, 21°21
1.212...First region of polycrystalline or amorphous silicon layer, 22,221,222...Second region of polycrystalline or amorphous silicon layer, 31...First electrode means, 3
2...Second electrode means. °1 ・j-t' Harusuke/mouth lOθ 33 Sorrow 2 (2) /3 /4- 200 33 33 3θ0

Claims (1)

【特許請求の範囲】 1、(イ)少くも1個のpn接合全含み、該pn接合の
端部が一方の主表面上に露出することによって一方の主
表面が第1の導′li型のシリコン層と、これを取囲む
第2の導電型のシリコン層とから成る単結晶シリコン基
体、 回 前記単結晶シリコン基体の一方の主表面上に積層さ
れた多結晶又は非晶質シリコン層で、前記単結晶シリコ
ン基本の第1の導電型のシリコン層に隣接し第2の導電
型決定不純物を含む第1の領域と、第1の領域から離れ
前記単結晶シリコン基体の第1の導電型のシリコン層に
隣接し第1の導電型決定不純物を含む第2の領域が形成
された多結晶又は非晶質シリコン層、 (ハ)前記多結晶又は非晶質シリコン層の第1、第2の
領域にそれぞれ低抵抗接触する第1、第2の電極手段、 から成ることを特徴とする半導体装置。 2、建起多結晶又は非晶質シリコン層に酸素を含むこと
全特徴とする特許請求の範囲第1項記載の半導体装置。 3、単結晶シリコン基体にpn接合を形成する工程、該
単結晶シリコン基体の一方の主表面に多結晶又は非晶質
シリコン層を積層形成する工程、然る後に多結晶又は非
晶質シリコン層に互いに離れた個所において第1、第2
の導電型決定不純物をドープする工程、電極手段を設け
る工程とからなること全特徴とする半導体装置の遡造方
法。
[Claims] 1. (a) At least one pn junction is fully included, and the end of the pn junction is exposed on one main surface, so that one main surface is a first conductive type. a single-crystalline silicon substrate comprising a silicon layer and a silicon layer of a second conductivity type surrounding the single-crystalline silicon layer; , a first region adjacent to the silicon layer of the first conductivity type of the single crystal silicon base and containing a second conductivity type determining impurity, and a first region of the first conductivity type of the single crystal silicon substrate separated from the first region; a polycrystalline or amorphous silicon layer in which a second region containing a first conductivity type determining impurity is formed adjacent to the silicon layer; (c) the first and second regions of the polycrystalline or amorphous silicon layer; 1. A semiconductor device comprising: first and second electrode means each in low resistance contact with a region of the semiconductor device. 2. The semiconductor device according to claim 1, characterized in that the raised polycrystalline or amorphous silicon layer contains oxygen. 3. A step of forming a pn junction on a single crystal silicon substrate, a step of laminating a polycrystalline or amorphous silicon layer on one main surface of the single crystal silicon substrate, and then a polycrystalline or amorphous silicon layer. first and second at locations apart from each other.
1. A retroactive fabrication method for a semiconductor device, comprising the steps of doping with a conductivity type determining impurity and providing electrode means.
JP9931782A 1982-02-19 1982-06-11 Semiconductor device and manufacture thereof Pending JPS58216462A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9931782A JPS58216462A (en) 1982-06-11 1982-06-11 Semiconductor device and manufacture thereof
DE8383900660T DE3381606D1 (en) 1982-02-19 1983-02-18 TRANSISTOR WITH HETEROUE TRANSITION AND METHOD FOR THE PRODUCTION THEREOF.
PCT/JP1983/000049 WO1983003032A1 (en) 1982-02-19 1983-02-18 Semiconductor device and method of fabricating the same
EP83900660A EP0101739B1 (en) 1982-02-19 1983-02-18 Heterojunction transistor and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9931782A JPS58216462A (en) 1982-06-11 1982-06-11 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58216462A true JPS58216462A (en) 1983-12-16

Family

ID=14244257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9931782A Pending JPS58216462A (en) 1982-02-19 1982-06-11 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58216462A (en)

Similar Documents

Publication Publication Date Title
US5156981A (en) Method of making a semiconductor device of a high withstand voltage
JPS6112388B2 (en)
JPH05182980A (en) Heterojunction bipolar transistor
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
JPH08228001A (en) Semiconductor device and manufacture thereof
US5223442A (en) Method of making a semiconductor device of a high withstand voltage
JPS60175453A (en) Manufacture of transistor
EP0101739B1 (en) Heterojunction transistor and method of fabricating the same
US4968635A (en) Method of forming emitter of a bipolar transistor in monocrystallized film
JPS58216462A (en) Semiconductor device and manufacture thereof
JPH0645340A (en) Semiconductor device and its manufacture
JPS60175452A (en) Manufacture of transistor
JPH0137856B2 (en)
JP2546651B2 (en) Method of manufacturing bipolar transistor
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPS61136267A (en) Bipolar semiconductor device
JPS58142571A (en) Semiconductor device and preparation thereof
JPH0464180B2 (en)
JPH03198344A (en) Semiconductor device and photoelectric transducer using same
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPS60170231A (en) Manufacture of semiconductor device
JPS59152665A (en) Semiconductor device and manufacture thereof
JPS5966168A (en) Manufacture of semiconductor device
JPH01135069A (en) Manufacture of heterojunction bipolar transistor
JPH01273353A (en) Bipolar transistor and manufacture thereof