JPH0463435A - Semiconductor device and manufacture of same - Google Patents

Semiconductor device and manufacture of same

Info

Publication number
JPH0463435A
JPH0463435A JP17587690A JP17587690A JPH0463435A JP H0463435 A JPH0463435 A JP H0463435A JP 17587690 A JP17587690 A JP 17587690A JP 17587690 A JP17587690 A JP 17587690A JP H0463435 A JPH0463435 A JP H0463435A
Authority
JP
Japan
Prior art keywords
gate electrode
concentration impurity
impurity region
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17587690A
Other languages
Japanese (ja)
Inventor
Masahiko Azuma
雅彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17587690A priority Critical patent/JPH0463435A/en
Publication of JPH0463435A publication Critical patent/JPH0463435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent a gate oxide film under a gate electrode from becoming defective and obtain a high-operation-reliability MOSFET by forming high- concentration impurity regions in contact with low-concentration impurity regions with the boundaries between them at the edges of the gate electrode. CONSTITUTION:High-concentration impurity regions 15 in contact with low- concentration impurity regions 12 composing sources or drains are formed with the boundaries between them at the edges 14a of a gate electrode 14. That is, the low-concentration impurity regions 12 are formed by implanting ions vertically, a gate oxide film and the gate electrode 14 are formed, and the high-concentration impurity regions 15 are formed. Thereby the gate oxide film under the gate electrode is free from a defect, the quality of the film is not decreased by heat treatment, and a high-operation-reliability LDD transistor is obtained.

Description

【発明の詳細な説明】 〔概要〕 L D D (lightly doped drai
n )構造のMOSFET及びその製造方法に関し、 ゲート電極下のゲート酸化膜に欠陥を形成しないように
し、動作信頼性の高いMOSFETを得ることを目的と
し、 ゲート電極のエツジ部分を境に、ソースまたはドレイン
を構成する低濃度不純物領域に接する高濃度不純物領域
を形成した構成とし、その製造に際17、半導体基板上
に絶縁膜を形成後、その表面にゲート電極ダミーパター
ンを形成する工程と、ゲート電極ダミーパターンをマス
クにして垂直方向イオン注入を行なって低濃度不純物領
域を形成する工程と、絶縁膜及びゲート電極ダミーパタ
ーンを除去し、半導体基板上にゲート酸化膜及びゲート
電極ダミーパターンよりも幅の大きいゲート電極を形成
する工程と、ゲート電極をマスクにして垂直方向イオン
注入を行なって高濃度不純物領域を形成する工程とを含
む。
[Detailed description of the invention] [Summary] L D D (lightly doped dry
n) Regarding the MOSFET structure and its manufacturing method, the purpose is to prevent the formation of defects in the gate oxide film under the gate electrode and to obtain a MOSFET with high operational reliability. A structure is adopted in which a high concentration impurity region is formed in contact with a low concentration impurity region constituting the drain, and in the manufacturing process 17, after forming an insulating film on the semiconductor substrate, a step of forming a gate electrode dummy pattern on the surface thereof, and a step of forming a gate electrode dummy pattern on the surface thereof. A process of forming a low concentration impurity region by performing vertical ion implantation using the electrode dummy pattern as a mask, removing the insulating film and the gate electrode dummy pattern, and depositing a layer on the semiconductor substrate with a width wider than the gate oxide film and the gate electrode dummy pattern. The method includes a step of forming a gate electrode with a large impurity concentration, and a step of performing vertical ion implantation using the gate electrode as a mask to form a high concentration impurity region.

〔産業上の利用分野〕[Industrial application field]

本発明は、LDD構造のMOSFET及びその製造方法
に関する。
The present invention relates to an LDD structure MOSFET and a method for manufacturing the same.

近年、LSIて用いられるトランジスタは微細化か要求
されてきており、今後その傾向はまずます強くなるもの
と考えられる。このように微細化を行なうとホットエレ
クトロンによる閾値電圧V THや相互コンダクタンス
の変動等の問題を生じ、このため、ポットエレクトロン
効果を抑える必要かある。そこて、このホットエレクト
ロンによる耐圧低下の原因である高電界を緩和するため
の低濃度不純物拡散領域ソース、ドレインの一部として
もつ、LDD)ランジスタか用いられるようになってき
た。この場合、低濃度不純物拡散領域かゲート電極下に
まで重なるように形成した方か高電界集中がより緩和さ
れることが知られている。
In recent years, there has been a demand for miniaturization of transistors used in LSIs, and this trend is expected to become even stronger in the future. Such miniaturization causes problems such as variations in threshold voltage V TH and mutual conductance due to hot electrons, and therefore it is necessary to suppress the pot electron effect. Therefore, LDD (LDD) transistors, which have low concentration impurity diffusion regions as part of the source and drain, have come to be used to alleviate the high electric field that causes the breakdown voltage to drop due to hot electrons. In this case, it is known that high electric field concentration can be more alleviated by forming a low concentration impurity diffusion region or by forming the region so as to overlap the region below the gate electrode.

〔従来の技術〕[Conventional technology]

第2図は従来の一例の製造工程図を示す。同図(A)に
おいて、P形シリコン基板1 (半導体基板)上に通常
のLOGO3工程を用いて素子分離領域2を数1000
人形成した後にゲート酸化膜3(酸化シリコン)を数1
00人形成し、更にその表面に多結晶シリコンのゲート
電極4を数1000人形成する。
FIG. 2 shows a manufacturing process diagram of a conventional example. In the same figure (A), several thousand isolation regions 2 are formed on a P-type silicon substrate 1 (semiconductor substrate) using the normal LOGO3 process.
After forming the gate oxide film 3 (silicon oxide)
000 electrodes are formed, and several thousand gate electrodes 4 of polycrystalline silicon are further formed on the surface thereof.

次に同図(B)において、ゲート電極4をマスクにして
斜め方向イオン注入(低濃度不純物は基板1と逆導電形
の例えばリンで、ドーズ量は10′3〜I Ol4cI
T!−2)により低濃度不純物領域5を形成する。この
斜め方向イオン注入は、ゲート電極4下にまで重なるよ
うに低濃度不純物領域5を形成するためである。
Next, in the same figure (B), ions are implanted in an oblique direction using the gate electrode 4 as a mask.
T! -2) to form the low concentration impurity region 5. This oblique ion implantation is performed to form the low concentration impurity region 5 so as to overlap the gate electrode 4.

続いて同図(C)に示す如く、表面に酸化シリコン膜6
′ (破線)を形成し、その後異方性エツチングにより
、ゲート電極4の両側に側壁部6か幅0.2μm〜0.
4μm程度残るように他の部分を除去する。次に同図(
D)に示す如く、ゲート電極4及び側壁部6をマスクに
して垂直方向イオン注入(高濃度不純物は基板1と逆導
電形の例えばヒ素で、ドーズ量は1016cm−2以下
)により高濃度不純物領域7を形成する。次に同図(E
)において、例えばPSG等の層間絶縁膜8を数100
0人形成して電極窓8aを開孔し、ここに例えばアルミ
ニウ19合金等の配線金属9を数1000人パターニン
グ形成する。
Subsequently, as shown in the same figure (C), a silicon oxide film 6 is formed on the surface.
' (dashed line), and then anisotropic etching is performed to form sidewall portions 6 on both sides of the gate electrode 4 with a width of 0.2 μm to 0.2 μm.
Other parts are removed so that about 4 μm remains. Next, the same figure (
As shown in D), a high concentration impurity region is formed by vertical ion implantation (the high concentration impurity is arsenic of the opposite conductivity type to the substrate 1, for example, and the dose is 1016 cm-2 or less) using the gate electrode 4 and the side wall portion 6 as a mask. form 7. Next, the same figure (E
), several hundred interlayer insulating films 8 such as PSG are used.
Electrode windows 8a are formed by one person, and several thousand wiring metals 9, such as aluminum-19 alloy, are formed therein by patterning.

C発明か解決しようとする課題〕 第2図(B)に示す斜め方向イオン注入に際し、第3図
に示す如(、低濃度イオンはゲート電極4、ゲート酸化
膜3を通過して基板lに達する。このとき、ゲート酸化
膜3に×印で示した欠陥を生しるか、従来例は、第3図
に示すように斜め方向イオン注入を行なっているので欠
陥かグー1〜電極4下のゲート酸化膜3にも存在する。
C Problems to be Solved by the Invention] During the oblique ion implantation shown in FIG. 2(B), as shown in FIG. At this time, either a defect indicated by an x mark is generated in the gate oxide film 3, or a defect is caused in the gate oxide film 3, since the ion implantation is performed in an oblique direction as shown in FIG. It also exists in the gate oxide film 3 of.

このため、その後の熱処理によってストレスを受けるこ
とによってゲート電極4下のゲート酸化膜3の膜質か悪
化し、トランジスタ特性か悪くなる等、信頼性か低くな
る問題点があった。
For this reason, the film quality of the gate oxide film 3 under the gate electrode 4 deteriorates due to stress caused by subsequent heat treatment, resulting in problems such as deterioration of transistor characteristics and lower reliability.

本発明は、ゲート電極下のゲート酸化膜に欠陥を生じな
いようにし、動作信頼性の高い半導体装置及びその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that prevents defects from occurring in a gate oxide film under a gate electrode and has high operational reliability, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、ゲート電極のエツジ部分を境に、ソース
またはドレインを構成する低濃度不純物領域に接する高
濃度不純物領域を形成してなることを特徴とする半導体
装置によって解決される。又、半導体基板上に絶縁膜を
形成後、その表面にゲート電極ダミーパターンを形成す
る工程と、ゲート電極ダミーパターンをマスクにして垂
直方向イオン注入を行なって低濃度不純物領域を形成す
る工程と、絶縁膜及びゲート電極ダミーパターンを除去
し、半導体基板上にゲート酸化膜及びゲート電極ダミー
パターンよりも幅の大きいゲート電極を形成する工程と
、ゲート電極をマスクにして垂直方向イオン注入を行な
って高濃度不純物領域を形成する工程とを含むことを特
徴とする半導体装置の製造方法によって解決される。
The above problem is solved by a semiconductor device characterized in that a high concentration impurity region is formed in contact with a low concentration impurity region constituting the source or drain, with the edge portion of the gate electrode as the boundary. Further, after forming an insulating film on the semiconductor substrate, a step of forming a gate electrode dummy pattern on the surface thereof, and a step of performing vertical ion implantation using the gate electrode dummy pattern as a mask to form a low concentration impurity region, The insulating film and gate electrode dummy pattern are removed, and a gate electrode with a width larger than the gate oxide film and gate electrode dummy pattern is formed on the semiconductor substrate. Vertical ion implantation is performed using the gate electrode as a mask to increase the height. The problem is solved by a method of manufacturing a semiconductor device, which is characterized by including a step of forming a concentrated impurity region.

〔作用〕[Effect]

本発明では、垂直方向イオン注入で低濃度不純物領域を
形成した後、新たにゲート酸化膜及びゲート電極を形成
して高濃度不純物領域を形成しているため、ゲート電極
下のゲート酸化膜には欠陥を生じることはない。
In the present invention, after forming a low concentration impurity region by vertical ion implantation, a gate oxide film and a gate electrode are newly formed to form a high concentration impurity region. No defects will occur.

〔実施例〕〔Example〕

第1図は本発明の一実施例の製造工程図を示す。 FIG. 1 shows a manufacturing process diagram of an embodiment of the present invention.

同図(A)において、P形シリコン基板1上にLOCO
3工程を用いて素子分離領域2を形成し、続いてそれ以
外の部分に絶縁膜10(例えば酸化膜)を数100人形
成し、更に、絶縁膜10の表面にレジスト膜11 (ゲ
ート電極のダミーパターン)を形成する。この場合、レ
ジスト膜11は、同図(C)におけるゲート酸化膜形成
時の熱処理によってトランジスタの実効チャネル長か短
くなることを想定したうえで、その幅が実効チャネル長
よりも僅かに大きくなるように形成する。次に同図(B
)において、レジスト膜11をマスクにして垂直方向イ
オン注入(低濃度不純物は例えばリンで、ドーズ量は1
013〜10 ”am−2)により低濃度不純物領域1
2を形成する。
In the same figure (A), LOCO is placed on the P-type silicon substrate 1.
The element isolation region 2 is formed using three steps, then several hundred insulating films 10 (for example, oxide films) are formed on the other parts, and then a resist film 11 (for gate electrodes) is formed on the surface of the insulating film 10. dummy pattern). In this case, the width of the resist film 11 is made to be slightly larger than the effective channel length, assuming that the effective channel length of the transistor is shortened by the heat treatment during the formation of the gate oxide film in FIG. to form. Next, the same figure (B
), vertical ion implantation is performed using the resist film 11 as a mask (the low concentration impurity is, for example, phosphorus, and the dose is 1).
Low concentration impurity region 1 due to 013~10"am-2)
form 2.

続いて、同図(B)に示すレジスト膜11及び絶縁膜1
0を除去し、しかる後、同図(C)に示すようにゲート
酸化膜13及び多結晶シリコンのゲート電極14を数1
000人形成する。この場合、ゲート電極14は、その
輻か第2図に示す従来例におけるゲート電極4及び側壁
部6を合計した幅になるように形成する。
Subsequently, the resist film 11 and the insulating film 1 shown in FIG.
0 is removed, and then, as shown in FIG.
Form 000 people. In this case, the gate electrode 14 is formed so that its radius is the sum of the width of the gate electrode 4 and the side wall portion 6 in the conventional example shown in FIG.

次に同図(D)において、ゲート電極14をマスクにし
て垂直方向イオン注入(高濃度不純物は例えばヒ素で、
ドーズ量は10”an−2以下)により高濃度不純物領
域15を形成する。この垂直方向イオン注入によって高
濃度不純物領域15上のゲート酸化膜13には欠陥を生
じるか、ゲート電極14下に形成されたゲート酸化膜1
3には欠陥を生じない。次に同図(E)において、層間
絶縁膜8を形成して電極窓8aを開孔し、ここに配線金
属9をパターニング形成する。
Next, in the same figure (D), vertical ion implantation is performed using the gate electrode 14 as a mask (the high concentration impurity is, for example, arsenic).
The high concentration impurity region 15 is formed using a high concentration impurity region 15 (dose amount is 10"an-2 or less). Due to this vertical ion implantation, defects are generated in the gate oxide film 13 on the high concentration impurity region 15, or defects are formed under the gate electrode 14. gate oxide film 1
3 has no defects. Next, in FIG. 5E, an interlayer insulating film 8 is formed, an electrode window 8a is opened, and a wiring metal 9 is patterned therein.

同図(E)に示す如く、本発明になる半導体装置は、ゲ
ート電極14に従来例のような側壁部は設けられておら
ず、ゲート電極14のエツジ部分14aを境に高濃度不
純物領域15が形成されている。又、ゲート電極14下
に形成されているゲート酸化膜13には欠陥がなく、熱
処理を行なっても膜質が悪化することはない。
As shown in FIG. 2E, in the semiconductor device of the present invention, the gate electrode 14 is not provided with a sidewall portion unlike the conventional example, and a highly concentrated impurity region 15 is formed with the edge portion 14a of the gate electrode 14 as a boundary. is formed. Further, the gate oxide film 13 formed under the gate electrode 14 has no defects, and the film quality does not deteriorate even if heat treatment is performed.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、ゲート電極下のゲ
ート酸化膜には欠陥を生じることはなく、熱処理を行な
っても膜質か悪化することはなく、動作信頼性の高いL
DD )ランジスタを得ることができる。
As explained above, according to the present invention, no defects occur in the gate oxide film under the gate electrode, the film quality does not deteriorate even after heat treatment, and the L
DD) transistor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程図、第2図は従来
の一例の製造工程図、 第3図は従来例における欠陥を示す図である。 図において、 はシリコン基板(半導体基板)、 0は絶縁膜、 1はレジスト膜(ゲート電極ダミーパタ2は低濃度不純
物領域、 3はゲート酸化膜、 4はゲート電極、 4aはゲート電極のエツジ部分、 ン)、 5は高濃度不純物領域 を示す。 一\−】
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention, FIG. 2 is a manufacturing process diagram of a conventional example, and FIG. 3 is a diagram showing defects in the conventional example. In the figure, 0 is a silicon substrate (semiconductor substrate), 0 is an insulating film, 1 is a resist film (gate electrode dummy pattern 2 is a low concentration impurity region, 3 is a gate oxide film, 4 is a gate electrode, 4a is an edge part of the gate electrode, 5 indicates a high concentration impurity region. One\−】

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極(14)下の半導体領域にソースまた
はドレインを構成する低濃度不純物領域(12)を形成
されてなるトランジスタにおいて、上記ゲート電極(1
4)のエッジ部分 (14a)を境に、該低濃度不純物領域に接する高濃度
不純物領域(15)を形成してなることを特徴とする半
導体装置。
(1) A transistor in which a low concentration impurity region (12) constituting a source or drain is formed in a semiconductor region under the gate electrode (14).
4) A semiconductor device characterized in that a high concentration impurity region (15) is formed in contact with the low concentration impurity region with the edge portion (14a) as a boundary.
(2)ゲート電極(14)下の半導体領域にソースまた
はドレインを構成する低濃度不純物領域(12)を形成
されてなるトランジスタの製造において、 半導体基板(1)上に絶縁膜(10)を形成後、その表
面にゲート電極ダミーパターン(11)を形成する工程
と、 該ゲート電極ダミーパターン(11)をマスクにして垂
直方向イオン注入を行なって低濃度不純物領域(12)
を形成する工程と、 上記絶縁膜(10)及びゲート電極ダミーパターン(1
1)を除去し、上記半導体基板(1)上にゲート酸化膜
(13)及び上記ゲート電極ダミーパターン(11)よ
りも幅の大きいゲート電極(14)を形成する工程と、 該ゲート電極(14)をマスクにして垂直方向イオン注
入を行なって高濃度不純物領域(15)を形成する工程
と を含むことを特徴とする半導体装置の製造方法。
(2) In manufacturing a transistor in which a low concentration impurity region (12) forming a source or drain is formed in a semiconductor region under a gate electrode (14), an insulating film (10) is formed on a semiconductor substrate (1). After that, there is a step of forming a gate electrode dummy pattern (11) on the surface, and a low concentration impurity region (12) is formed by performing vertical ion implantation using the gate electrode dummy pattern (11) as a mask.
a step of forming the insulating film (10) and the gate electrode dummy pattern (10);
1) and forming a gate oxide film (13) on the semiconductor substrate (1) and a gate electrode (14) having a width larger than the gate electrode dummy pattern (11); ) using a mask as a mask to perform vertical ion implantation to form a high concentration impurity region (15).
JP17587690A 1990-07-03 1990-07-03 Semiconductor device and manufacture of same Pending JPH0463435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17587690A JPH0463435A (en) 1990-07-03 1990-07-03 Semiconductor device and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17587690A JPH0463435A (en) 1990-07-03 1990-07-03 Semiconductor device and manufacture of same

Publications (1)

Publication Number Publication Date
JPH0463435A true JPH0463435A (en) 1992-02-28

Family

ID=16003756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17587690A Pending JPH0463435A (en) 1990-07-03 1990-07-03 Semiconductor device and manufacture of same

Country Status (1)

Country Link
JP (1) JPH0463435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717254A (en) * 1993-09-20 1998-02-10 Fujitsu Limited Semiconductor device including a plurality of transistors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717254A (en) * 1993-09-20 1998-02-10 Fujitsu Limited Semiconductor device including a plurality of transistors
US6160294A (en) * 1993-09-20 2000-12-12 Fujitsu Limited Semiconductor device having an interconnection pattern for connecting among conductive portions of elements

Similar Documents

Publication Publication Date Title
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JP3058981B2 (en) Method for manufacturing transistor
JPH0463435A (en) Semiconductor device and manufacture of same
JPH07321212A (en) Forming method for channel stop diffusion layer
JPH03142841A (en) Manufacture of semiconductor device
JPH07153953A (en) Method for forming gate electrode having polyside structure
JPS6150398B2 (en)
JPH06151451A (en) Manufacture of semiconductor device
JPH053135B2 (en)
KR100250686B1 (en) Manufacturing method of a semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH0563193A (en) Manufacture of semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPS62291066A (en) Manufacture of vertical field-effect transistor
JPS6381866A (en) Manufacture of semiconductor device
JPH0621464A (en) Thin film mos transistor
JPS63153862A (en) Manufacture of semiconductor device
JPH07130997A (en) Manufacture of high-breakdown-strength transistor
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPH03227526A (en) Manufacture of semiconductor element
JPH06310711A (en) Field-effect transistor and fabrication thereof
JPS59114869A (en) Non-volatile semiconductor memory device having floating gate of polycrystalline silicon
JPH04277621A (en) Manufacture of semiconductor device